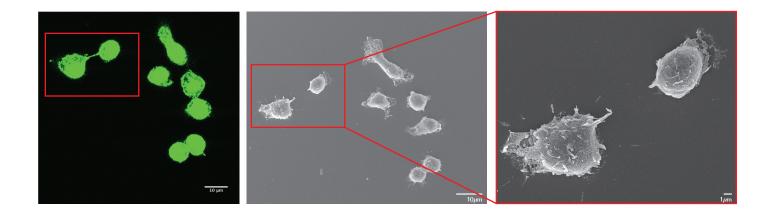

Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells

Margot Karlikow^{1,5}, Bertsy Goic¹, Vanesa Mongelli¹, Audrey Salles², Christine Schmitt³, Isabelle Bonne³, Chiara Zurzolo⁴, Maria-Carla Saleh¹*

- Institut Pasteur, Viruses and RNA interference, CNRS URM 3569, 75724 Paris Cedex 15, France.
- 2- Institut Pasteur, Imagopole, Citech, 75724 Paris Cedex 15, France.
- Institut Pasteur, Platform of Ultra-structural microscopy, 75724 Paris Cedex 15, France.
- Institut Pasteur, Membrane traffic and pathogenesis, 75724 Paris
 Cedex 15, France.
- Sorbonne Universités, UPMC Université Paris VI, IFD, 4 Place Jussieu
 75252 Paris Cedex 05, France.

Correspondence: carla.saleh@pasteur.fr (M.C.S.)



DAPI / Phalloidin

Supplementary Figure S1:

Nanotube-like structures are present in Drosophila Kc167 cells. Immunofluorescence and confocal microscopy. Cells were stained for F-actin using Phalloidin 647 Alexa-Fluor to show membrane continuity between connected cells. DAPI is used to mark nuclei.

Supplementary Figure S1 Karlikow *et al.*

Supplementary Figure S2:

Correlative microscopy of nanotube-like structures. S2 cells were grown overnight on an alphanumeric coded, grid-patterned glass and imaged for Ago2-along nanotube-like structures in confocal microscopy (red square). The alphanumeric code allowed localization, and scanning electron microscopy was performed on the exact same cells.

Supplementary Figure S2 Karlikow *et al.*