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1 A discrete and probabilistic model of lateral activation and inhibi-

tion: the corresponding time-continuous version

The continuous-time Markov chain U(t) evolves the configuration of colours over a spatial

domain Ω that is discretized as a square lattice; at any time t, a configuration assigns to

each discrete lattice site x in Ω (each cell) one of two colours, either white Ux(t) = W ,

or black Ux(t) = B.

At time t = 0, the cells have colours that are independent and identically distributed,

taking value W with probability 1/2. This constitutes the initial condition, the configu-

ration U(0), which ensures that initially the colours of different cells are uncoupled. For

the cells x outside Ω, their colours are prescribed at time t = 0 and thereafter remain

fixed for all t > 0; these permanently coloured cells constitute the boundary condition.

The colour prescriptions for different xs outside of Ω are independent and identically

distributed, taking value W with probability 1/2. Thereafter U(t) evolves as x s change

their colours according to the kinetics that are now described.

Colour changes occur at a probabilistic rate that depends on the local density of

white, or equivalently black, cells within three different length-scales: (i) only cells

that have a neighbour of opposite colour may flip their colour; this is activation at the

interface. The list of colours among the 8 neighbouring cells of x is denoted by Nx.

(ii) Around each x we consider a concentric sphere Lx of radius rL (in units of a cell
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diameter) that is constant and common to all x. Denote by wLx the fraction of white

cells among all cells in Lx, and denote by bLx the fraction of black cells among all cells

in Lx. Of course we have wLx + bLx = 1. The rate of flipping from black to white

decreases with wLx and increases with bLx ; this is the condition of long-range inhibition.

We associate with this inhibition a noise, TL, which as TL → ∞ wipes out the long-

range inhibition. (iii) Just as for (ii), around each x we consider a concentric sphere

Sx of radius rS(< rL) that is constant and common to all x. Now the rate of flipping

from black to white increases with wSx and decreases with bSx ; this is the condition of

short-range activation. Again, we associate with this activation a noise, TS , which as

TS →∞ wipes out the short-range activation.

The precise form of the reaction kinetics now follows. As a time increment ∆t elapses

from t to t + ∆t, U(t) may evolve by a colour change at one cell along the interface

according to

W ∈ Nx : B →W with prob. e β+T−1
S

(w−b)
Sx
−T−1

L
(w−b)

Lx ∆t

B ∈ Nx : W → B with prob. e−β+T−1
S

(b−w)
Sx
−T−1

L
(b−w)

Lx ∆t

The derivation of the mean-field equation is below. This probabilistic dynamical system

is simulated by the Gillespie algorithm [1] which is exact in the sense that there is no

finite time-step approximation.

2 Changing the domain size and the domain geometry

For lateral inhibition only (TS = ∞, TL � 1), striped attractors have a wavelength of

4rL/3 [2]; similarly for labyrinths (TS = TL � 1) with rS � rL, but the wavelength

increases as rS increases, see Figure S1a. Changing the domain size l × l over a 4-

fold range appears to have no effect on the pattern’s wavelength for either stripes or

labyrinths, see Figure S1b. Stripes and labyrinths tend to orient perpendicularly to the

domain boundary; away from the boundary, domain geometry does not appear to affect

the local structure of the pattern, see Figure S1c.
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Figure S1: (a) The wavelengths of labyrinths, in units of the diameter of a lattice site, are
≈ 4rL/3 for rS � rL (blue dashed line) then increase as rS increases. (b) For both stripes
with rL = 12 (top) and labyrinths with rS = rL/3 = 4 (bottom), attractors’ wavelengths vary
little from 4rL/3 (blue dashed line) with domain length l so long as l/rL � 1. (c) Stripes and
labyrinths tend to orient perpendicularly to the domain boundary; away from the boundary,
domain geometry does not appear to affect the local structure of the pattern. See Table S1 for
parameter values.

3 The validity of the mean-field approximation for stationary inter-

faces

Time-invariant patterned attractors must have reactions B →W and W → B happening

at equal rates along stationary interfaces. This gets the mean-field approximation

(w − b)Lx/TL − (w − b)Sx/TS ≈ β for all x on the interface. (1)

When β = 0, this simplifies to

(w − b)Lx ≈ TL/TS × (w − b)Sx for all x on the interface.

Figure S2 demonstrates the validity of this approximation for β = 0. It shows the

end state of simulations for varying TL/TS (left) and the corresponding scatter plots of

(w − b)Sx vs (w − b)Lx (left-middle) evaluated at every cell on the interface (i.e. every
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cell that is adjacent to an oppositely coloured cell, and so has non-zero probability of

flipping its colour). The scatter plots and their density projections along orthogonal

axes t× (−2, 1) : t ∈ R (right-middle) and t× (1, 2) : t ∈ R (right) demonstrate how the

anti-correlation for TL/TS � 1 shifts to a positive correlation as TL/TS increases; the

mean-field approximation predicts this qualitative trend. The negative correlation for

TL/TS = 0 is due to the finite size of the sphere L.

�0.7 0.7

�0.7

0.7

�0.7 0.7

0.5

�0.7 0.7

0.5

�0.7 0.7

�0.7

0.7

�0.7 0.7

0.5

�0.7 0.7

0.5

�0.7 0.7

�0.7

0.7

�0.7 0.7

0.5

�0.7 0.7

0.5

�0.7 0.7

�0.7

0.7

�0.7 0.7

0.5

�0.7 0.7

0.5

�0.7 0.7

�0.7

0.7

�0.7 0.7

0.5

�0.7 0.7

0.5

!"#$%&'%()#*) !"#$%&'%()#*)

+)

,-.)

,)

/-.)

.)

Figure S2: The end state of simulations for varying TL/TS (left) and the corresponding scatter
plots of (w − b)Sx vs (w − b)Lx (left-middle) evaluated at every cell on the interface. Density
projections of the scatter plots along orthogonal axes t × (−2, 1) : t ∈ R (right-middle) and
t× (1, 2) : t ∈ R (right).
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4 A justification of the form of the reaction kinetics

Consider a more general form of the reaction kinetics for two colours, but retaining

only one range of lateral feedback rJ because the following analysis is straightforward

to extend to an arbitrary number of ranges,

W ∈ Nx : Cx = B →W with prob. e β+T−1
J

fBW ((w−b)
Jx

)/Z

B ∈ Nx : Cx = W → B with prob. e−β+T−1
J

fWB((b−w)
Jx

)/Z

where the functions fWB and fBW are yet to be constrained. Let x = (w − b)Jx ; then

−x = (b − w)Jx . The corresponding mean-field approximation for stationary interfaces

is

T−1
J

(fBW (x)− fWB(−x)) = −2β.

Define

fo(x) =
fBW (x)− fWB(−x)

2
and fe(x) =

fBW (x) + fWB(−x)

2

then the mean-field approximation can be expressed as

T−1
J
fo(x) = −β,

that is, it does not depend on fe(x).

Since in our study we have assumed that the mean-field approximation entirely de-

termines the spatial structure of patterned attractors, we may set fe(x) = 0 without

excluding interesting attractors from our results. Equivalently, we consider only func-

tions such that fBW (x) = −fWB(−x). In particular, if fWB(x) = x+ a1x
2 + a2x

3 + . . .

then fBW (x) = x− a1x2 + a2x
3 − . . ..

5 Summary statistics

5.1 Summary statistic for 2-colour symmetry breaking transitions

For all colour symmetry breaking bifurcations (β, βS , βL 6= 0), the summary statistic fb

representing the corresponding transitions between patterns is the time-averaged overall

fraction of white minus black cells in the l × l domain at the end of each simulation.

5



5.2 Summary statistic for the transition from stationary labyrinths to labyrinthine

highways

The summary statistic fS , which represents the bifurcation from labyrinths to labyrinthine

highways, is computed as follows. Let nx (ny) denote the wavenumber along the hori-

zontal (vertical) axis of an attractor simulated on a square l× l grid with corresponding

wavelength l/nx (l/ny), (Figure S3, left column). The total power for wavelengths of

magnitude l/
√
n2x + n2y, calculated from the 2D discrete Fourier transform of an attrac-

tor represented as a grid of 1s and -1s (Figure S3, middle column), is plotted in Figure

S3, right column; compare the top row with the bottom row. The attractor’s domi-

nant wavelength is the value of l/
√
n2x + n2y which maximizes this power; in practice,

this is the wavelength of the labyrinth pattern in the absence of interwoven spots. For

TS = TL � 1 and β = 0 as Figure 2 of the main text, the dominant wavelength does not

change as σS varies (not shown). The summary statistic fS is the fraction of power con-

centrated among wavelengths that are smaller than 1/2 of the dominant wavelength. In

practice, this corresponds to the fraction of power concentrated among the short-range

spots nestled within the long-range labyrinth pattern.

5.3 Summary statistic for the transition from stationary labyrinths to gyrating

labyrinths

The summary statistic fL, which provides a measure of the speed of movement of the

interface to represent the transition from stationary to gyrating labyrinths, is computed

as follows. Arbitrary values are assigned to the colours black and white so that each

lattice site is associated with one of two numerical values at any given time. Then for

each time t = n×∆t, n = 1, 2, . . ., the change in the colour configuration ∆x(t) at lattice

site x since time t−∆t is computed. By summing the absolute values of ∆x over the l× l
domain at time t, we get the change in area ∆A swept out by the moving interface over

time period ∆t. In our results, ∆t is chosen so that the number of colour flips between

time-points is 12% of the total number of lattice sites. The sum of lattice sites on the

interface lI is also computed at each time-point. A measure for the average speed of

movement of the interface at time-point t is then ∆A(t)/(lI(t)×∆t), see Figure S4. The

summary statistic fL is the increase in this time-averaged speed above its time-averaged

value for the corresponding stationary labyrinth when σL = 0.
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Figure S3: Attractors of diameter l = 210 at the ‘end time’ of simulations (left) and their corre-
sponding power spectra from discrete Fourier transforms. The wavenumber along the horizontal
(vertical) axis is denoted nx (ny). The power spectrum, which in the right plot was totalled over

wavenumbers of magnitude
√
n2x + n2y, becomes more concentrated among larger wavenumbers

or smaller wavelengths as |σS | increases beyond 1 (compare top row with bottom row).

6 The effects of boundary conditions

For 2-colour and 3-colour labyrinthine highways, 2-colour gyrating labyrinths, and 3-

colour cycling spirals generated by short-range activation and cyclic symmetry breaking,

the local qualitative forms of the patterning modes persist when the boundary conditions

are altered so that the cells of fixed colour on the boundary all have the same colour

(see Figure S5 left through to middle-right columns and Movies S11 and S12), whereas

for reorganising labyrinths generated by 3-colour cyclic symmetry breaking, attractors

are strongly perturbed (see Figure S5 right column and Movie S13).

7 The effects of varying noise over lateral ranges

In the main text, 2-colour patterns are invariably simulated for TS = TL. For labyrinthine

highways, we varied the value of TS relative to TL by ±25% to find that the local

qualitative form of the labyrinthine highway persists, albeit becoming more fuzzy with

increased noise strength, see left panel Figure S6. Similarly, for gyrating labyrinths, as
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Figure S4: The time evolution of ∆A(t)/(lI(t)×∆t), a measure of the speed of movement of
the interface. The time-averaged value of ∆A(t)/(lI(t) × ∆t) increases as |σL| increases above
some threshold greater than 1 (see main text, Section 3.2).

the value of TL is varied relative to TS by ±25%, the gyrations persist while their spatial

reach decreases as the noise level decreases, see right panel of Figure S6 (corresponding

movies not shown).

8 Mean-field equations for generalisations of the simple model of lat-

eral activation and inhibition

Recall that the Markov chain U(t) represents the colour configurations of cells that at

any instant take one colour from a finite list C1, C2, . . . , Cn in a spatial domain Ω as

they evolve in time according to reactions Ci → Cj , and that Ux(t) denotes the colour

of U(t) at cell x ∈ Ω. We shall now attempt to derive a system of coupled mean-field

equations that represent the evolution of U(t) in a form akin to continuous time PDEs.

In order to do this, real values must be assigned to colours, and the reaction kinetics in

the model must be approximated by PDE operators. We define a collection of functions

over y ∈ Ω:

fkl(U,y, t) =


1 if Uy(t) = Ck

−1 if Uy(t) = Cl

0 otherwise

for every colour pair k, l = 1, . . . , n, k 6= l. We have defined n(n − 1) functions, but

only n − 1 of these functions are independent since, for a given k, the subset fki, i =

1, . . . , n, i 6= k, completely specifies U . The operator associated with sphere L which can
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Figure S5: Altering the boundary conditions from fixed cells on the boundary equally and
independently probable to to all fixed cells having a single colour (top versus bottom row)
appears to have no impact on the qualitative forms of patterning modes for labyrinthine highways,
gyrating labyrinths, and cyclic swirls (left through to middle-right column and Movies S11 and
S12), while the impact is stronger for reorganising labyrinths (right column and Movie S13) that
are generated by 3-colour short-range activation and long-range inhibition plus cyclic symmetry
breaking.

be considered a discrete analog of the Laplacian is defined over y ∈ Ω to be:

4Lf(U,y, t) =
∑
w∈Ly

f(U,w, t)/NL − f(U,y, t)

where NL is the total number of cells in sphere L. Similarly for sphere S. Then,

according to the model’s definition

(4L + 1)fkl(U,y, t) = (ck − cl)Ly

and along the interface kl, since fkl(U,y, t) is −1 on one side of the interface and +1 on

the other, we may approximate fkl(U,y, t) ≈ 0, so

4Lf
kl(U,y, t) = (ck − cl)Ly along the interface kl.

This simple form justifies our choice of functions {fkl}. The following sets of functions

will also be important in what follows below. Define the set {Ii}, i = 1, . . . , n over y ∈ Ω
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Figure S6: Altering noise on the short-range (TS) and long-range (TL) by ±25% has little
affect on the qualitative features of labyrinthine highways (left panel) and gyrating labyrinths
(right panel).

to be

Ii(U,y, t) =

 1 if Uy = Ci

0 otherwise,

which can be expressed in terms of {f ij} s as

Ii =

∑
j:j 6=i f

ij + 1

n
. (2)

While the functions

N i(U,y, t) =

 1 if a cell neighbouring y has colour Ci

0 otherwise,

are given by

N i(U,y, t) = 1−
∏

w∈Ny

(
1−

∏
j:j 6=i

(1− Ij(U,w, t))
)

(3)

where Ny is the set of cells neighbouring y. Note that, according to the model’s defini-

tion, for a given configuration U at time t the rate of the colour flip Cix → Cjx is non-zero
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if and only if (Ii ×N j)(U,x, t) = 1.

Some new notation is introduced in order to simplify the expression for the Kol-

mogorov forward equation, an evolution equation for the probability distribution of U ,

which must necessarily be written down to derive the mean-field equations. For each

x ∈ Ω and each colour pair (i, j) i 6= j, define a flip operator F ijx , which, if cell x has

colour Ci, flips it to colour Cj , and otherwise F ijx does nothing:

(
F ijx (U)

)
y
= Uy for all y 6= x ∈ Ω,

(
F ijx (U)

)
x
=

 Cj if Ux = Ci

Ux otherwise.

Note that F jix (F ijx (·)) = I(·), the identity map.

The rate of the reaction Ux = Ci → Cj is represented below by r
U F ij

x (U)
which equals

zero if Ux 6= Ci. The Kolmogorov forward equation (see e.g. [3]) is

d

dt
P{u = U(t)} =

∑
x

∑
(i,j):i 6=j

r
F ij
x (U)U

P{u = F ijx (U)} −
∑
x

∑
(i,j):i 6=j

r
U F ij

x (U)
P{u = U}

where P{·} is the probability of {·} conditioned upon the initial state of U . So, for any

real-valued function f(U), we have

d

dt
E[f(U)] =

d

dt

∑
U

f(U)P{u = U(t)} =
∑
U

f(U)
d

dt
P{u = U(t)}

=
∑
U

f(U)
∑

x,(i,j):i 6=j

(
r
F ij
x (U)U

P{u = F ijx (U)} − r
U F ij

x (U)
P{u = U}

)
=

∑
U ′

∑
x,(j,i):j 6=i

f(U ′) r
F ji
x (U ′)U ′

P{u = F jix (U ′)} −
∑
U

∑
x,(i,j):i 6=j

f(U) r
U F ij

x (U)
P{u = U}.

(4)

For each triplet (U,x, (i, j)), i 6= j, there is a corresponding unique triplet (U ′,x, (j, i)), j 6=
i such that F jix (U ′) = U and F ijx (U) = U ′. Consequently r

F ji
x (U ′)U ′

= r
U F ij

x (U)
and we

see that there is a pairwise cancellation for every term such that f(F ijx (U)) = f(U), i 6= j.

Then (4) simplifies to

d

dt
E[f(U)] =

∑
U

∑
x,(i,j):i 6=j

(
f(F ijx (U))− f(U)

)
r
U F ij

x (U)
P{u = U}, (5)
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where E[f(U)] is the expectation of f(U) conditioned upon the initial state of U .

Substituting into (5) the function fkl gets

d

dt
E[fkl(U,y, t)] =

∑
U

∑
(i,j),i 6=j

(
fkl(F ijy (U),y, t)− fkl(U,y, t)

)
r
U F ij

y (U)
P{u = U}

=
∑
U

(∑
i 6=k

(rU F ik
y (U) − rU Fki

y (U))−
∑
i 6=l

(rU F il
y (U) − rU F li

y (U))
)
P{u = U}

= E
[∑
i 6=k

(rU F ik
y (U) − rU Fki

y (U))−
∑
i 6=l

(rU F il
y (U) − rU F li

y (U))
]
. (6)

When there are only 2 colours, Ck and Cl, (6) simplifies to

d

dt
E[fkl(U,y, t)] = 2E

[
rU F lk

y (U) − rU Fkl
y (U)].

The final challenge is to express r
U F ij

x (U)
in terms of the functions {fkl} and ap-

proximations to familiar operators such as the Laplacian; along with assumptions such

as E[xi] = E[x]i, this would provide a deterministic continuum model that could be

simulated as a PDE. For each model that we have studied, the reaction rates take the

form :

r
U F ij

x (U)
= IiN j e gij(4Sf

ij ,4Lf
ij ,4Sf

jk,4Lf
jk,...)(U,x, t)

where each gij depends on the model’s definition. From (2), Ii is simply a linear sum of

a subset of the functions {fkl}, but the expression for N j from (3) is more complicated

and we cannot see how to write N j in terms of familiar operators acting on {fkl}: the

assumption of activation at the interface makes the mean-field equations challenging to

derive. A second complication is due to the two lengthscales rS and rL which, according

to our definition, result in two distinct discrete analogs to the Laplacian, 4S and 4L.

If the model featured only a single lengthscale rL (this is the case for lateral inhibition

only) then 4L corresponds to the dimensionless Laplacian operator D/k∇2.

In future these two difficulties may be resolved, in which case it would be interesting

to compare the dynamics of our discrete and probabilistic models with the corresponding

continuous and deterministic models.

9 Supplementary movie captions

All movies can be found at https://www.repository.cam.ac.uk/handle/1810/253075.
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Movie S1. Two colour symmetric lateral inhibition produces stationary striped attractors.

Movie S2. Two colour symmetric short-range lateral activation and long-range lateral inhibition

produces stationary labyrinths.

Movie S3. Colour symmetric short-range activation with competing nonlinear short-range inhibi-

tion and long-range inhibition produces labyrinthine highways; the labyrinths are near stationary.

Movie S4. Colour symmetry break for short-range activation with competing nonlinear short-

range inhibition and long-range inhibition. This produces near stationary Kagome lattices for

rS/rL = 1/2.

Movie S5. Nonlinear colour symmetry break for short-range activation with competing nonlinear

short-range inhibition and long-range inhibition. This produces near stationary train tracks.

Movie S6. Colour symmetric short-range activation and long-range inhibition with competing

nonlinear long-range activation. This produces non-stationary continually gyrating labyrinths.

Movie S7. Cyclic symmetry break for three colour lateral inhibition produces travelling tri-

stripes.

Movie S8. Cyclic symmetry break for three colour lateral activation produces cyclic spirals.

Movies S9 and S10. Cyclic symmetry break for three colour short-range activation and long-

range inhibition produces continually reorganising labyrinths (long-range cycling–S9) and cycling

checkerboards (short-range cycling–S10).

Movie S11. Colour symmetric short-range activation and long-range inhibition with competing

nonlinear long-range activation with all white cells forming the boundary condition (compare

with Movie S6).

Movie S12. Cyclic symmetry break for three colour lateral activation produces cyclic spirals with

all green cells forming the boundary condition (compare with Movie S8).

Movie S13. Colour symmetric short-range activation and long-range inhibition with competing

nonlinear long-range activation with all white cells forming the boundary condition (compare

with Movie S9).
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Table S1: Parameters for figures. The ‘end time’ is the number of transitions per simulation.

n is the number of instances simulated for generating statistics. ‘V’ stands for ‘varying’ in the

corresponding figure or plot.

Figure l β (rS , T
−1
S , βS , σS , γS) (rL, T

−1
L , βL, σL, γL) end time n

S1a) 140 0 (V, 16,–,–,–) (12, 16,–,–,–) 2× 106 5

S1b) top row V 0 (–, –,–,–,–) (12, 16,–,–,–) 2× 106 5

S1b) bottom row V 0 (4, 16,–,–,–) (12, 16,–,–,–) 2× 106 5

S1c) 210 0 (V, V,–,–,–) (12, 16,–,–,–) 2× 106 –

S2) 210 0 (6, V,–,–,–) (18, 16, –, –,–) 3× 106 –

S3) top row 210 0 (6, 16, 0, 0,–) (18, 16, 0, 0,–) 5× 106 –

S3) bottom row 210 0 (6, 16, 0, 2.5,–) (18, 16, 0, 0,–) 5× 106 –

S4) left 140 0 (6, 16, 0, 0,–) (12, 16, 0, 0,–) 5× 106 –

S4) right 140 0 (6, 16, 0, 0,–) (12, 16, 0, 3,–) 5× 106 –

S5) left 140 0 (4, 16, 0, 2,–) (12, 16, 0, 0,–) 3× 106 –

S5) middle-left 140 0 (6, 16, 0, 0,–) (12, 16, 0, 2.3,–) 3× 106 –

S5) middle 140 0 (4, 16, 0, 2,–) (12, 16, 0, 0,–) 3× 106 –

S5) middle-right 210 0 (4, 16, 0, 0, 1) (–, –, –, –, –) 3× 106 –

S5) right 210 0 (4, 16, 0, 0, 0) (12, 16, 0, 0, 2) 3× 106 –
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Table S2: Parameters for supplementary movies accompanying each figure in the main text.

The ‘end time’ is the number of transitions per simulation.

Movie l β (rS , T
−1
S , βS , σS , γS) (rL, T

−1
L , βL, σL, γL) end time

S1 210 0 (–, –, –,–,–) (18, 16, –,–,–) 3× 106

S2 210 0 (6, 16, –,–,–) (18, 16, –,–,–) 3× 106

S3 210 0 (6, 16, 0, 2,–) (18, 16, –,–,–) 2× 106

S4 210 2 (6, 16, 0, 2,–) (12, 16, –,–,–) 3× 106

S5 210 0 (6, 16, 6, 2,–) (18, 16, –,–,–) 3× 106

S6 210 0 (9, 16, –, –,–) (18, 16, 0, 2,–) 5× 106

S7 140 – (–, –, –, –,–) (12, 16, –, –,1) 3× 106

S8 210 – (4, 16, –, –,1) (–, –, –, –,–) 3× 106

S9 140 – (4, 16, –, –,0) (12, 16, –, –, 2) 3× 106

S10 210 – (6, 16, –, –,0.5) (18, 16, –, –,0) 3× 106

S11 140 0 (6, 16, –, –,–) (12, 16, 0, 2.3,–) 3× 106

S12 210 – (4, 16, –, –,1) (–, –, –, –,–) 3× 106

S13 210 – (4, 16, –, –,0) (12, 16, –, –, 2) 3× 106
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