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Supplementary Figure S1. Complete mapping of datapoints and references of Figure 1 in 

the main text.  
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Supplementary Figure S2. Reviewed works of the literature – raw data without 

normalization. The main conclusion of Figure 1 in the main text remains unchanged: none of 

the experimental works come close to the limit set by thermomechanical noise.  
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Supplementary Figure S3. Frequency response of the NEMS resonator of Figure 2b-c in 

the main text, for different drive voltages. The voltage values correspond to those of the Allan 

deviation of Figure 2c. The bias voltage through the gauges is Vbias = 1.5 V, the measurement 

frequency is 530 kHz and the drive voltage is applied at half the actuation frequency with no 

DC. The measurement at 0 mV corresponds to the measurement of the thermomechanical 

noise; its shift in frequency with respect to the other graphs was caused by operation 

condition (temperature, pressure) changes with time. The measurement at 2000 mV already 

shows signs of non-linearity. Using the curve at 1300 mV at the limit of non-linearity, the 

dynamic range of the resonator is of 107 dB for an integration time of 1s (first-order filter). 

By fitting the resonances we find quality factors ranging from 5950 to 6150 without a clear 

dependence with respect to driving voltage, suggesting the absence of non-linear damping in 

the resonators. We also measured the frequency response varying the speed of the sweep by 

two orders of magnitude. We observe no appreciable change in the quality factor, suggesting 

that spectral broadening due to frequency fluctuations is negligible compared to the 

resonator’s linewidth.  
  



 
 

 
 

Supplementary Figure S4. Allan deviation of a monocrystalline cantilever resonator at long 

timescales for different drive voltages, measured during 3000s. Here the bias voltage through 

the gauges is Vbias = 1.5 V and the measurement frequency is 530 kHz. The resonator is the 

same as for Figure 2c in the main text. At long timescales ( > 102) the Allan deviation 

increases due to systematic drifts in the resonance frequency of the resonator.  
 

  



 
 

 
 

Supplementary Figure S5. Simulations of phase noise as a function of the signal-to-noise 

ratio (SNR), for additive white noise. White noise is added to two different signals (sinusoids) 

with different amplitudes (0.04 V and 0.11 V). The in-phase (X) and quadrature (Y) 

components of the signal are plotted. Phase fluctuation levels are denoted 1 and 2. 
  



 
 

 
 

Supplementary Figure S6. Power spectral density of normalized frequency fluctuations 

𝛿𝑓/𝑓0. This data is obtained from phase measurements using a lock-in amplifier, and this 

graph is calculated from the same set of raw data than Figure 2c of the main text. The power 

spectral density of 𝛿𝑓/𝑓0 is obtained using the Welch method. We observe the same 

behaviour as with the Allan deviation: for low drive voltages, white noise dominates in the 

major part of the spectrum. As the drive voltage is decreased, a limit appears with a 1/f main 

trend (dashed grey line in the figure).  
 

  



 
 

 
 

Supplementary Figure S7. Cartesian representation of samples used to calculate the phase 

and frequency deviations. The samples are represented by the in-phase (X) and quadrature 

(Y) components in V. The graphs are built from a subset of 2000 samples taken during 75 

ms, from the same data used in Figure 2c of the main text. The samples are first rotated so 

that the mean phase is zero (centred at X=0), and some outliers beyond 2 from the mean of 

X and Y are eliminated to facilitate the visualization. a, Representation of the samples for 

different drive voltages. We observe that at low voltages the noise is white and independent 

of the drive voltage. At higher drive voltages (>570 mV) we observe increased phase noise 

(noise in Y) proportional to the drive voltage, while the amplitude noise remains constant. b, 

Representation of the mean Y value (square dot) +/- the standard deviation (bars) of the 

samples, as a function of the mean X value. We observe the same effect than in Figure S7a: 

for large driving voltages, the noise in phase (Y) is proportional to the amplitude of the signal 

(X). c, Alternative representation for b, where the standard deviations of X and Y are plotted 

as a function of mean X.  
 



 
 

 
 

Supplementary Figure S8. Frequency stability of a clamped-clamped crystalline Si beam 

resonator. a, SEM image of the resonator, indicating the different parts of the resonator. The 

resonator has a length of 10 m, and a section of 300x160 nm. The piezoresistive nanogauges 

have a length of 300 nm and a section of 80x160 nm. b, Frequency stability of the clamped-

clamped beam resonator as a function of the integration time, for different drive voltages. 

The bias voltage is set at 1.5 V, and the measurement frequency is 530 kHz. A drive voltage 

of 0.3 V represents the limit of linear behaviour for this device. The frequency stability results 

are very similar to those of the cantilever in Figure 2c in the main text. 
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Supplementary Figure S9. Experimental set-up used to perform the correlation 

measurements in Figure 4 of the main text. a, Schematic of the set-up. It is based on the set-

up described in detail in Supplementary Section 3, but each element is doubled: two different 

drive signals, bias signals and outputs signals are used. b, Representation of the different 

tones present in the system. The device, with resonance frequency f0, is actuated at two 

different frequencies within its bandwidth by two different drive voltages, 𝑉𝐷𝑟𝑖𝑣𝑒,1 and 

𝑉𝐷𝑟𝑖𝑣𝑒,2. In this case, the actuation force is at twice the frequency of the drive voltages 

(𝐹𝐷𝑟𝑖𝑣𝑒𝛼𝑉𝐷𝑟𝑖𝑣𝑒
2 ), although a drive voltage consisting of a DC plus an AC component can also 

be used. The two bias voltages are located out of resonance and far away from each other, to 

minimize interferences. To choose the bias offsets ∆𝑓1 and ∆𝑓2, we first perform a frequency 

sweeps with a single drive voltage while measuring with the two bias, and ensure that the 

measured responses are identical.  Typical values for these parameters are: f0 = 45 MHz, 

∆𝑓1 = 300 kHz, ∆𝑓2 = 370 kHz and 𝑓𝑐𝑜𝑟𝑟 = 1 kHz. 
 



 
 

 
 

Supplementary Figure S10. Frequency stability of frequency traces measured 

simultaneously at two different points of the response of the resonator. The Allan deviation 

as a function of integration time, for different drive voltages, is calculated from the same 

samples as in Figure 4 in the main text. The frequency traces are measured at the resonance 

frequency plus and minus 1 kHz. The coloured lines represent the Allan deviation of the first 

frequency trace (f0+1kHz), and the thin black lines the Allan deviation of the second one (f0-

1kHz).  
 

  



 
 

 

 
 

Supplementary Figure S11. Correlation of two frequency traces measured out of resonance. 

The measurements are performed in the same manner as in Figure 4b of the main text, and 

using the exact same measurement conditions (including frequency difference between the 

two signals) but several MHz out of resonance. In this case, the measured phase data is 

converted to resonance frequency as if it was obtained from the resonator, that is, using its 

parameters of f0 and Q. 
 

  



 
 

 
 

Supplementary Figure S12. Frequency stability of the RF generator which provides the 

drive voltage. The Allan deviation is measured as a function of the integration time, for a 

frequency of 40 MHz and for different amplitudes. The black dashed line represents the 

theoretical frequency stability according to specifications at 10 MHz, and supposing a 

constant f-1 phase noise. We observe that, even in the worst case, the stability of the source is 

well below 10-7, and therefore an order of magnitude lower than the stability results obtained 

with the resonator.  
 

  



 
 

 

 

Supplementary Figure S13. Frequency fluctuations caused by the measurement system. 

The stability of the RF source is experimentally characterized—see Supplementary Figure 

S12—and modelled here as two regions with different slopes. The fluctuations arising from 

noise in the drive and bias signals are characterized as follows: first, the frequency spectrum 

of a cantilever resonator is measured in open loop with varying voltages of drive and bias. 

The results are then fitted to a Lorentzian to extract the voltage-to-resonance-frequency 

relationship, which may include different effects, such as the Duffing non-linearity or 

electrostatic stiffness tuning. This relationship is linearized around the operating point 

(amplitude of 1.5V, both for drive and bias). Then the frequency fluctuations are deduced 

from the voltage noise specified in the specifications of the RF sources (25 𝑛𝑉. 𝐻𝑧−1/2), 

white in a small bandwidth around resonance. The gray thick line represents the addition of 

these noise sources. The violet thick line is the open loop Allan deviation of the resonator 

(Figure 2c in the main text) for a drive voltage of 1.3 V and a bias voltage of 1.5 V, for 

comparison.  

 
  



 
 

 
 

Supplementary Figure S14. Frequency stability of the second mode of a clamped-clamped 

beam resonator before and after the temperature correction. The results are very similar to 

the ones for the first mode shown in Figure 5b of the main text.  
 

  



 
 

Supplementary Section 1 – Literature review: thermomechanical noise limit and 

normalization 

In Figure 1 of the main text we compare the experimental frequency stability with the 

thermomechanical noise-limited stability: the thermomechanical noise spectral density in the 

mechanical domain (in 𝑚2𝐻𝑧−1) is given by the following formula 

𝑆𝑥,𝑡ℎ ≈
𝑘𝐵𝑇𝑄

2𝜋3𝑚𝑒𝑓𝑓𝑓
0
3
 (S1) 

 

where 𝑚𝑒𝑓𝑓 and 𝑓0 are the effective mass and the resonant frequency that we determined 

from the data available in each paper; 𝑘𝐵 is the Boltzmann constant; 𝑇 is the temperature of 

operation, and 𝑄 is the quality factor of the resonator. The Allan deviation was then estimated 

with equation (1) in the main text, expressed in the mechanical domain:  

𝜎𝐴,𝑡ℎ ≈
1

2𝑄

√𝑆𝑥,𝑡ℎ

𝐴𝑐

1

√2𝜋𝜏
 (S2) 

 

where 𝜏 is the integration time that is used in each paper to obtain the experimental value 

and 𝐴𝑐 is the onset of non-linearity in displacement, estimated separately for each of the 

designs. 

Given that the operation conditions were not identical throughout all works and in order to 

obtain data that can be better compared, we applied a normalization to account for these effects. 

In the calculation of thermomechanical noise-limited Allan deviation (equations (S1) and (S2)), 

the final result does not depend on the quality factor (𝑄). Indeed, if we assume the frequency 

stability is limited by  thermomechanical noise and the resonator is driven at its onset of non-

linearity (which scales like √
1

𝑄
), then the quality factor does not appear in equation (S2). Thus, 

we only rescaled the temperature and chose 300 K as the operation temperature for all cases 

(the rescaling factor ranges from 1 to 8.7).  

For the experimental values, we assumed that the Allan deviation can be expressed as: 

𝜎𝐴,𝑒𝑥𝑝 ≈
1

2𝑄

1

𝑆𝑁𝑅
 

1

√2𝜋𝜏
 (S2) 

Where 𝑆𝑁𝑅 is the signal-to-noise ratio. We also assumed the SNR depends on temperature 

T and to scale like ∝ 𝑇−1/2. In other words, we assumed the signal would remain constant while 

the noise is of thermal origin. Like above, we rescaled the temperature to 300K.  



 
 

Additionally, we rescaled 𝜎𝐴,𝑒𝑥𝑝 by substituting the quality factor of the resonator under 

study by which of the same device at 300 K and in vacuum. To obtain these values for 𝑄 we 

searched the literature for papers from the same groups where devices with similar frequencies, 

shape and material were operated under those conditions (300 K and in vacuum). In the few 

cases where this was not possible, we looked for other groups and similar devices operated 

under those conditions. The overall scaling factors for the experimental Allan deviation values 

ranged from 0.05 to 43 (values very different from 1 are obtained for experiments performed in 

air or at very low temperatures only). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Supplementary Section 2 - Fabrication of the resonators 

 

The NEMS resonators are fabricated from 200 mm silicon-on-insulator (SOI) wafers, in a Si 

device layer of 160 nm and a buried oxide of 400 nm. The device Si layer is doped with boron 

and then annealed to obtain a homogeneous resistivity of around 9 m cm. The devices 

(resonator, nanogauges and drive electrode) and their interconnections are defined using a 

hybrid e-beam/DUV lithography technique, which allows a minimum feature size of 50 nm. 

Then the structures are etched in the top Si layer using anisotropic reactive ion etching. A layer 

of AlSi is deposited in the interconnections and wire-bonding pads. Finally, the nanoresonators 

are released from the SiO2 layer using a vapor HF isotropic etching. The final structures are 

shown in Figure 2a of the main text, as well as in Supplementary Figure S15. The dimensions 

of the structure are detailed in Table S1.  

 
Supplementary Figure S15. Crystalline silicon NEMS resonators. a, Schematic of the 

resonator. The crystalline Si beam and nanogauges are suspended. The bias, output and drive 

electrodes are attached to the buried oxide layer. b, Dimensions of the structure, detailed in 

supplementary table 1.   
 

Thickness 

Si layer 

Length 

resonator l 

Width 

resonator w 

Length 

gauges lg 

Width 

gauges 

wg 

Gap 

resonator-

drive g 

Distance 

gauges-

anchor l1 

160 nm 3.2 m 300 nm 1 m 100 nm 150 nm 480 nm 
 

Table S1. Dimensions of the cantilever resonator shown in Figure S15.   

  



 
 

Supplementary Section 3 - Measurement set-up 

 

 

The measurements of the NEMS resonators are performed using a downmixing set-up, 

shown in Supplementary Figure S16a. The resonator is electrostatically actuated, by applying 

a voltage to a lateral side-gate. No DC voltage is used, and the drive frequency is at half the 

actuation frequency (0) to reduce the parasitic signal. The mechanical motion is transduced 

through two piezoresistive nanogauges in a differential fashion (Supplementary Figure S16b).  

 

 

 

The downmixing set-up allows us to measure the signal of the resonator at low frequency, 

in order to reduce signal loss from parasitic capacitances. In general, the gauges have a 

resistance Rg = R0(1+R), where R is the piezoresistive term which depends on the elongation 

of the gauges. When the device is at resonance at a frequency 0, this term becomes R=R/R0 

cos(0t). If we consider an infinite resistance of the measurement instrument, the voltage at the 

output of the resonator is 𝑉𝑜𝑢𝑡 = 𝑉𝐵𝑖𝑎𝑠𝛿𝑅. When the bias voltage is at a frequency 0+, and 

the variation of the nanogauges at 0, an output term is mixed at low frequency fed into 

the lock-in amplifier.  

  

 
 

Supplementary Figure S16. Measurement method. a, Schematic of the down-mixing 

measurement set-up. As all the signals are internally generated by a single instrument, there 

is no need for the external reference generation branch, which is usually present in this kind 

of set-up. b, schematic of the resonator. It can be represented as two resistances at the 

nanogauges, and an output resistance.  



 
 

Supplementary Section 4 - Effect of noise sources in the frequency stability of NEMS 

resonators 

 

We study the effect of additive phase noise in the frequency stability of a NEMS resonator. 

The resonator is an ideal oscillator, with resonance frequency f0. The measurement of the 

resonance frequency is performed by measuring the phase fluctuations of a downmixed signal. 

However, the fact that the measured signal is at low frequency does not affect the stability 

results. In general, the frequency stability of a NEMS resonator measured with a bandwidth B 

can be defined from the spectral noise density in frequency Sf(f), which has units of Hz2/Hz1 

[1]:  

〈𝛿𝑓〉 = [∫ 𝑆𝑓(𝑓) 𝑑𝑓
𝑓0+𝜋𝐵

𝑓0−𝜋𝐵

]

1/2

 (S3) 

As the resonance frequency is indirectly measured from the phase fluctuations, we study the 

case where the stability is dominated from additive noise in the phase signal. In this case, the 

spectral density of frequency noise can be defined from the spectral density of phase 

fluctuations: 

𝑆𝑓(𝑓) =
𝑆𝜑(𝑓)

(𝜕𝜑/𝜕𝑓)2
 (S4) 

The relationship between phase and frequency is obtained from the transfer function of the 

resonator. In general, the measurement of the phase is performed at the resonance frequency 

and the phase fluctuations are small. Under these conditions, 𝜕𝜑/𝜕𝑓 ≅ 2𝑄/𝑓0 if the resonator’s 

response is Lorentzian. It is not the case anymore in the presence of, for example, frequency 

fluctuations. The associated spectral broadening causes an error in the observed quality factor. 

In our case, typical resonance frequency and quality factor of our devices are 45MHz and 6000 

respectively. This translates into a width at half maximum of about 7.5kHz. For the long time 

scales used in our measurements, we measure a typical frequency stability limited by frequency 

fluctuations of about 10-7, inducing a spectral broadening around 5Hz. This ratio (of more than 

3 orders of magnitude) is independent on the quality factor, meaning for these time scales, the 

error associated with the way the quality factor is measured is negligible. This is further 

confirmed by the fact that no change in Q could be observed when different sweeping speeds 

were used to plot the frequency response (See Supplementary Figure S3). On the other hand, 

                                                           
[1] K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon 

nanoelectromechanical systems,” J. Appl. Phys., vol. 95, no. 5, pp. 2682–2689, Mar. 2004. 

 



 
 

the employed measurement scheme is insensitive to frequency fluctuations with correlation 

times smaller than the decay rate of the resonator. Should such fluctuations significantly 

contribute to the observed quality factor, an error would be made by using the perturbative 

treatment leading to the expression of 𝜕𝜑/𝜕𝑓. This would all the more show how strong the 

effect of frequency noise can be for such resonators. 

Besides measuring the quality factor by the linewidth of the driven resonator, we also 

measure the linewidth of the Brownian motion, as well as the ring-down time of the resonator 

(see Figure S17). All three measurements are very consistent within measurement precision. It 

should also be noted that the amplitude of the measured Brownian peak does not change with 

the driving signal, as shown in the white noise regime in Figure 2c of the main text.  

As importantly, a large error in the measurement of Q would only shift upwards or 

downwards all curves in Figure 2 of the main text, both theoretical and experimental, by the 

same ratio. Hence all our conclusions would still hold. 

 

 
Supplementary Figure S17. Measurement of the quality factor measured using different 

methods. a, Measurement of the quality factor using the ring-down method. The 

measurement is performed using the set-up of Supplementary Figure S16. Both output and 

drive signals were monitored simultaneously. The resonator is driven at resonance and the 

drive voltage is set to 0 at time t=0 on the graph. The output signal is recorded with a time 

constant of 1.5 s, roughly 100 times smaller than the response time of the resonator. The 

magnitude of the undriven signal is fitted to 𝐴𝑒
−

𝑓0
2𝑄, where the only unknown is the quality 

factor Q. With this method, we find Q=6400. b, Linewidth measurement of the same driven 

resonator yielding Q=6418. c, Linewidth measurement of the thermomechanical peak 

yielding Q=6330. 

 

 

The phase deviations of a noisy oscillator signal can be defined in terms of the signal to noise 

ratio of the measurement2[2]. Therefore the spectral density of phase fluctuations can be defined 

as:  

                                                           
[2] W. P. Robins, “Phase Noise in Signal Sources,” Electronics and Power, vol. 30. Peter Peregrinus Ltd., IET, 

p. 82, 1984. 



 
 

𝑆𝜑(𝑓) =
𝑁𝑣(𝑓)

𝑆𝑣
2

 (S5) 

Where Nv(f) is the spectral density of voltage fluctuations in V2/Hz, and Sv is the amplitude 

of the measured signal in volts. Then in general the frequency noise caused by an additive phase 

noise in the measurement can be expressed as: 

〈𝛿𝑓𝑝ℎ𝑎𝑠𝑒〉 =
𝑓0

2𝑄

1

𝑆𝑣
[∫ 𝑁𝑣(𝑓) 𝑑𝑓

𝑓0+𝐵/2

𝑓0−𝐵/2

]

1/2

 (S6) 

 

 
 

Supplementary Figure S18. (Figure 3 of the main text, reproduced here for convenience) 

Effect of different noise sources on the frequency stability as a function of the integration 

time 𝜏, and for different signal levels. a, Additive white noise, manifesting itself as phase 

noise. It presents a constant slope of 𝜏−1
2⁄ . The stability improves with increasing signal 

level. b, Combination of additive white and 𝑓−1  noises. For low integration times it presents 

a slope of 𝜏−1
2⁄ , which becomes 𝜏0 when the 𝑓−1 noise dominates at large integration times. 

The stability improves with increasing signal level in the whole time range. c, Combination 

of additive white noise with 𝑓−1 frequency-fluctuations. For low integration times it presents 

a slope of 𝜏−1
2⁄ , which becomes 𝜏0 when the 𝑓−1 frequency noise dominates. Moreover, the 

stability due to frequency fluctuations is insensitive to the signal level: therefore, an increase 

in the signal has an effect only when additive noise dominates.   

 

One of the most common noise in the detection is white noise, for example noise in the 

detection or Johnson noise. In this case 𝑁𝑣(𝑓) = 𝑁0,𝑤ℎ𝑖𝑡𝑒
2 , (where 𝑁0,𝑤ℎ𝑖𝑡𝑒 has units of 𝑉 ×

𝐻𝑧−1/2)  then the resonance frequency noise is: 

〈𝛿𝑓𝑝ℎ𝑎𝑠𝑒,𝑤ℎ𝑖𝑡𝑒〉 =
𝑓0

2𝑄

𝑁0,𝑤ℎ𝑖𝑡𝑒

𝑆𝑣
𝐵1/2 (S7) 

This expression is used to fit the frequency stability in Supplementary Figure S18a. Another 

common noise source is 𝑓−1 noise, which can be originated from Hooge noise in the resistances, 

or detection noise at low frequencies. In this case, 𝑁𝑣(𝑓) = 𝑁0,𝑓−1
2 /𝑓. In the case that the 



 
 

measurement bandwidth is much smaller than the resonance frequency (𝐵 ≪ 𝑓0), the integral 

of the expression is: 

∫ 𝑁0,𝑓−1
2 /𝑓 𝑑𝑓 = 𝑁0,𝑓−1

2 𝑙𝑛(𝑓0 + 𝐵/2)

𝑙𝑛(𝑓0 − 𝐵/2)

𝑓0+𝐵/2

𝑓0−𝐵/2

≅ 𝑁0,𝑓−1
2  (S8) 

Then the frequency noise is 

〈𝛿𝑓𝑝ℎ𝑎𝑠𝑒,𝑓−1〉 =
𝑓0

2𝑄

𝑁0,𝑓−1

𝑆𝑣
 (S9) 

 

Finally, in general the frequency stability is affected by different noise sources:  

〈𝛿𝑓〉 = [∫ (𝑆𝑓1(𝑓) + 𝑆𝑓2(𝑓) + ⋯ ) 𝑑𝑓
𝑓0+𝜋𝐵

𝑓0−𝜋𝐵

]

1/2

 (S10) 

Supplementary Figure S18b shows the Allan deviation in the case of additive white noise 

(equation S7) combined with  𝑓−1noise equation (S9).  

In the situation studied in the main text, the resonator is affected by additive phase noise and 

frequency fluctuations 𝑆𝑓0
(𝑓).  

〈𝛿𝑓𝑝ℎ𝑎𝑠𝑒,𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦〉 = [
𝑓0

2𝑄

1

𝑆𝑣
∫ 𝑁𝑣(𝑓) 𝑑𝑓

𝑓0+𝐵/2

𝑓0−𝐵/2

+ ∫ 𝑆𝑓0
(𝑓) 𝑑𝑓

𝑓0+𝐵/2

𝑓0−𝐵/2

]

1/2

 (S11) 

This situation is plotted in Supplementary Figure S18c, where we show the special case of 

white additive phase noise and an 𝑓−1frequency fluctuation noise: 

〈𝛿𝑓𝐹𝑖𝑔.3𝑐〉 = [(
𝑓0

2𝑄

𝑁0,𝑤ℎ𝑖𝑡𝑒

𝑆𝑣
)

2

𝐵 + 𝛿𝑓𝐴]

1/2

 (S12) 

 

  



 
 

 

Supplementary Section 5 - Temperature compensation experiments 

 

For this experiment, doubly-clamped beam resonators are placed in a liquid nitrogen cryostat 

with temperature control (these resonators display the same frequency fluctuations than 

cantilevers but their first and second mode frequencies are closer than cantilevers). The 

temperature coefficients 𝑇𝐶𝑓1 and 𝑇𝐶𝑓2 are obtained by measuring the frequency response of 

the resonator at different temperatures, and fitting it to a Lorentzian to obtain the resonance 

frequency. The temperature is controlled by a resistive heater located at the base of the chip 

containing the resonator, and measured by a temperature sensor located close to the heater. The 

measurements are performed several times, sweeping the temperature up or down, to ensure 

that the observed dependence arises from temperature changes instead of time drifts. The 

temperature dependencies of these two frequencies are linear in a wide range around room 

temperature (Figure 5a in the main text), and are close to expectations (𝑇𝐶𝑓1=-28 𝑝𝑝𝑚 °𝐶−1 

and 𝑇𝐶𝑓2=-36 𝑝𝑝𝑚 °𝐶−1  for the first and second modes respectively.  

The frequency traces 𝑓1(𝑡) and 𝑓2(𝑡) of the two first modes are recorded over some period 

of time (typically 300s). The Allan deviations of both modes in this measurement show similar 

features (Supplementary Figure S19). The instantaneous temperature variation (actually its 

spatial average within the resonator) is given by ∆𝑇 =  
(𝑓2−𝑓̅2)

𝑇𝐶𝑓2
 where 𝑓2̅ is the sample mean of 

𝑓2(𝑡). The temperature-compensated frequency of mode 1 is then given by 𝑓1,𝐶(𝑡) = 𝑓1(𝑡) −

𝑇𝐶𝑓1∆𝑇(𝑡), and its Allan deviation can be computed. 



 
 

 

 Figure 5b in the main text shows the comparison between the uncompensated and 

temperature-compensated frequency stabilities of mode 1. Unsurprisingly, frequency stability 

is significantly improved by our temperature compensation technique in the long-term regime 

(integration times 𝜏 > 101 s), dominated by temperature drifts. In the frequency fluctuations 

regime (10−1 𝑠 < 𝜏 < 101 𝑠) however, we observe only a slight improvement of the stability, 

by a very small extent compared to the level added by the frequency fluctuations. Correcting 

the temperature dependence of the second mode using the first one as a temperature probe 

provides the same result (Supplementary Figure S14). Our correction assumes a uniform 

temperature change within the resonator, ignoring the effect of potential local temperature 

changes (due to, for instance, particles impinging on the device): indeed, the small heat 

capacitance of our resonators yield a thermal time constant of around few nanoseconds, much 

smaller than the measurement time. Of course, this technique would – partially—cancel out any 

source inducing correlated fluctuations of the two modes, and we attribute the slight 

improvement of stability in the intermediate regime to this effect. This is similar to the work 

in3[3], who used a feedback loop to compensate for the fluctuations of one mode by monitoring 

the fluctuations of another mode. The compensation was not based on measured temperature 

                                                           
[3] Gavartin, E., Verlot, P. & Kippenberg, T. J. Stabilization of a linear nanomechanical oscillator to its 

thermodynamic limit. Nat Commun 4, (2013). 

 

 
 

Supplementary Figure S19. Frequency stability of a clamped-clamped beam resonator, for 

the first two modes of resonance. In this case, the frequency stability of both modes is 

measured simultaneously. The stability of both modes has a very similar shape, with three 

different regimes like for the first mode only. 



 
 

sensitivities of frequency but on a feedback corrector experimentally chosen to cancel as much 

as possible the fluctuations. The fact that a large part of the fluctuations were compensated for 

indicates the presence in their system of a fluctuation source affecting both modes, like 

temperature variations for example. By contrast, our results suggest that temperature 

fluctuations cannot account for the frequency fluctuations in our silicon resonators. 

 

 

  



 
 

Supplementary Section 6 - Sources of frequency fluctuations 

 

Adsorption-desorption 

The adsorption-desorption noise is quantified following the method described in references4 

[4], [5]. In our case, we consider measurements at room temperature (T=300K), with a pressure 

of 5 × 10−5 mbar and a contamination by nitrogen. With this parameters we calculate the ratio 

of adsorption of molecules per area: 

 

𝑟𝑎 =
2

5

𝑃

√𝑚𝑘𝐵𝑇
𝑠 

 

(S13) 

Where P is the pressure, m is the mass of the adsorbing molecules, s is the sticking ratio 

(here we suppose that it is 0.1). We suppose 1 adsorption site each 0.25 𝑛𝑚2. The desorption 

attempt rate per site is:  

𝑟𝑑 = 𝜐𝑑𝑒𝑥𝑝 (−
𝐸𝑏

𝑘𝐵𝑇
) 

 

(S14) 

Where 𝜐𝑑 is the desorption attempt rate (1013, in the order of the vibrational frequency of a 

diatomic molecule) and 𝐸𝑏 the binding energy, which is 10 kcal/mol in our case. The parameter 

values used for the calculation of adsorption/desorption ratios (s, 𝐸𝑏 and 𝜐𝑑) are based on Ref 

[5], which shows an experimental validation of these formulae in the case of Xe atoms. 

Supposing a measurement time 𝜏𝐴 much larger than the correlation time of the 

adsorption/desorption process (𝜏𝑟 = 1/(𝑟𝑎 + 𝑟𝑑)), the frequency fluctuations arising from this 

process are: 

𝜎𝑎(𝜏𝑎) =
1

2√3
𝜎𝑜𝑐𝑐√𝑁𝑎 (

𝑚

𝑀
) (

𝜏𝑟

𝜏𝑎
)

1/2

 (S15) 

Where 𝜎𝑜𝑐𝑐 = √𝑟𝑎𝑟𝑑/(𝑟𝑎 + 𝑟𝑑) is the surface occupation deviation, 𝑁𝐴 is the number of 

adsorption sites in the resonator, 𝜏𝑎 the integration time of the measurement and M is the mass 

of the resonator. The Allan deviation obtained in this way is more than 4.5 orders of magnitude 

                                                           
[4] A. N. Cleland and M. L. Roukes, “Noise processes in nanomechanical resonators,” J. Appl. Phys., vol. 92, 

no. 5, pp. 2758–2769, Sep. 2002. 

[5] Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface Adsorbate Fluctuations and Noise in 

Nanoelectromechanical Systems,” Nano Lett., vol. 11, no. 4, pp. 1753–1759, 2011.  



 
 

lower than the experimental results. Even though a number of parameters in these calculations 

are estimations, even a large error in these would not account for this difference.  

 

Surface diffusion 

Molecules attached to the resonator can also diffuse through its surface. This effect changes 

the mass distribution of the resonator, and therefore causes resonance frequency fluctuations. 

Under certain conditions (resonator subjected to a flow of molecules at low temperature) this 

effect has been shown to be the dominating source of frequency fluctuations [5], when the mean 

occupation of adsorbing sites of the resonator is large. In our case, however, the occupation 

ratio of adsorbing sites is found to be very small, due to the fact the experiments are carried out 

at low pressure and room temperature. Following the development in [5], the Allan deviation 

when the time constant of the diffusion process is much smaller than the measurement time 

(𝜏𝐷 ≪ 𝜏𝐴) can be expressed as 

𝜎𝑑(𝜏𝑎) ≈ 0,83√𝑁 (
𝑚

𝑀
) (

𝜏𝐷

𝜏𝑎
)

1/4

 (S16) 

where 𝑁 is the number of atoms in the surface and 𝜏𝐷 is the time constant of the diffusion 

process. For a measurement time much larger than the diffusion time (𝜏𝐴 ≪ 𝜏𝐷) this expression 

becomes: 

𝜎𝑑(𝜏𝑎) ≈ 0,51√𝑁 (
𝑚

𝑀
) (

𝜏𝑎

𝜏𝐷
)

1/2

 (S17) 

Here we suppose a diffusion time 𝜏𝐷in the order of 0.1 s, in the same order of magnitude of 

Xe atoms diffusing in a NEMS resonator. Measurement times used in our experiments are 

chosen in a range starting from well below the diffusion time up to values well above. In order 

to obtain a crude estimation of the surface diffusion fluctuations at intermediate values, we 

assume that the inverse of the total Allan deviation can be described as the addition of the 

inverse of equations (S16) and (S17). Again, there is a huge difference between the theoretical 

values of the frequency fluctuations due to surface diffusion and the experimental results (close 

to 13 orders of magnitude). Even huge errors in parameter values would not account for this 

difference in magnitude.  

 

 

 



 
 

 

 

Non-linear mode-coupling 

The resonance frequency of one mode of a resonator depends on the amplitude of motion of 

the same mode (via the Duffing non-linearity) and of the other modes (non-linear mode 

coupling). Even though this effect is especially relevant at large amplitudes of motion, some 

works have described frequency fluctuations arising from thermomechanical noise coupled 

through the Duffing non-linearity or non-linear mode coupling. The relationship between the 

change of resonance frequency of mode N (∆𝑓𝑁) as a function of the amplitude of motion of 

mode M (𝐴𝑀) can be derived from Euler Bernoulli theory, which includes tension. The tension 

depends on transverse displacement and this is the origin of non-linear mode coupling[6], [7]: 

5 

∆𝑓𝑁

𝑓𝑁
= 𝑆𝑀𝑁𝐴𝑀

2  (S18) 

Where 𝑆𝑀𝑁 is the coupling term. There clearly is a cut-off in the order of modes perturbing the 

frequency of one mode; we calculated the coupling coefficient between the first mode and the 

first 100 modes of the resonator using the same method as in reference [7] and Ref. 51 of the 

main text, and computed the frequency fluctuations arising from thermomechanical noise of 

                                                           
[6] Westra, H. J. R., Poot, M., van der Zant, H. S. J. & Venstra, W. J. Nonlinear Modal Interactions in Clamped-

Clamped Mechanical Resonators. Phys. Rev. Lett. 105, 117205 (2010). 

[7] Matheny, M. H., Villanueva, L. G., Karabalin, R. B., Sader, J. E. & Roukes, M. L. Nonlinear Mode-Coupling 

in Nanomechanical Systems. Nano Lett. (2013). 

 
Supplementary Figure S20.  Calculated cumulative contribution of higher modes to the 

frequency fluctuations of the first mode through non-linear mode-coupling. Higher modes 

vibrate due to thermomechanical noise. The graph shows the cumulative noise for the first 

100 modes.  b, Detail of figure a showing only the first 5 modes. The contribution of the first 

mode to itself is due to the Duffing non-linearity. The first two modes account for 97% of 

the total frequency fluctuations. 



 
 

each one of these modes. We found that the combined noise of modes 1 and 2 already account 

for 97% of the total frequency fluctuations caused by the first 100 modes of the resonator 

(Supplementary Figure S20). The frequency of mode 1 is perturbed by its amplitude fluctuation 

due to the Duffing non-linearity. 

We measured the coupling coefficients and the thermomechanical noise of the first two modes, 

in order to estimate the frequency fluctuations caused by non-linear mode coupling. In the 

particular case of the Duffing non-linearity 𝑆11, we measure the dependence of the resonance 

frequency of the resonator on its amplitude of motion (Supplementary Figure S21. ), when  

driven at resonance with a drive voltage of 1.5 V.  

 
 

 

Supplementary Figure S21. Frequency fluctuations arising from non-linear mode-coupling 

in a clamped-clamped resonator. Thermomechanical noise measurements of the first two 

modes of the resonator allow us to characterize the sensitivity of the measurement set-up. a, 

Thermomechanical noise of mode 1. The sensitivity of the measurement set-up is 3.2 ×
104 𝑉/𝑚. b, Thermomechanical noise of mode 2. The sensitivity of the set-up is 8.8 ×
104 𝑉/𝑚. c, Resonance frequency of mode 1 as a function of its oscillation amplitude. The 

curve is obtained by operating the resonator in closed loop with a PID while changing the 

driving voltage. The phase error is continuously monitored to ensure a correct operation of 

the PID. The amplitude to voltage dependence is calculated to fit  
∆𝑓1

𝑓1
= 7.6 × 1011𝐴1

2 (red 

dashed line). d, Resonance frequency of mode 1 as a function of the oscillation amplitude of 

mode 2. The curve is obtained by monitoring the resonance frequency of mode 1 with a PID, 

with a small amplitude of motion. At the same time, we perform frequency sweeps to monitor 



 
 

the frequency response of mode 2. The points in the figure are taken from the peak of the 

frequency response obtained with these sweeps. The amplitude to voltage dependence is 

fitted to  
∆𝑓1

𝑓1
= 5.5 × 1012𝐴2

2 (red dashed line). In Figures c-d, for high amplitude values, the 

resonator is in a highly nonlinear regime, where electrostatic tuning is negligible compared 

to the Duffing nonlinearity arising from the stiffening of the resonator.   

 

 

 

 


