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Note: The method introduced here is more general than that of the
main paper in the sense that the factor matrix U , along with the
other matrices V and S, is treated as a parameter to be estimated,
instead of being fixed to an indicator matrix constructed from the
patient’s cancer type.

1 MOTIVATION
1.1 Nonnegative tri-matrix factorization (NMTF) for

mutation data
The NMTF aims to approximate a data matrix X by the product of
three factor matrices, such that X ≈ USV >, where U ∈ Rn×k1+ ,
S ∈ Rk1×k2+ and V ∈ Rm×k2+ . Thus the objective (loss) function
to estimate the factor matrices can be defined as

min
U≥0,S≥0,V ≥0

1

2
‖X −USV >‖2F , (1)

where ‖M‖F is the Frobenius norm of a matrixM , i.e., ‖M‖F =√∑
i,j [M ]2ij

1.

1 [M ]ij and Mij both refer to the (i,j)th element in the matrix M .

The NMTF can be applied to simultaneously co-cluster different
types of entities, such as the clustering of documents and words
(Ding et al., 2006). In our case, it is used to co-cluster patients
and genes at the same time, where the factor matrix U can be
interpreted as the cluster indicator matrix for patients, the factor
matrix V becomes the cluster indicator matrix for genes, and the
factor matrix S represents the association between patient clusters
and gene clusters. However, the solutions obtained from the NMTF
formulation Eq. (1) do not necessarily yield biologically meaningful
results.

1.2 Weighted loss function
Note that the data matrix X in the main paper, constructed from
the mutation data, is significantly sparse: only about 1% of it is
nonzero entries. From the perspective that mutated genes are more
informative than normal ones, the Frobenius norm in (1) might
not be appropriate to evaluate the goodness of the decomposition
models since it is dominated by the errors on zero entries when the
data matrixX is sparse. Let us define a weight matrixW ∈ Rn×m,
where Wij is 1 if Xij > 0, and otherwise is set to a nonnegative
constant. Then the weighted version of the loss (1), which only
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concerns errors on the non-zero entries inX , is given by

‖X −USV >‖2W ,
n∑
i=1

m∑
j=1

Wij

(
Xij − [USV >]ij

)2
. (2)

We use this weighted version of the norm, Eq. (2), for the loss
function instead of the Frobenius norm in Eq. (1).

1.3 Incorporating prior knowledge on the structure of
the factor matrices

We here consider three different types of prior knowledge: the
cancer type of each patient, the pathway database and the gene-
gene interaction network. With the cancer type information for each
patient, we defineU0 ∈ Rn×k1 (k1 = #cancer types), each row of
which is a length k1 row vector containing a single 1 for the cancer
type of the patient and 0 elsewhere. With the pathway database, we
construct V 0 ∈ Rm×k2 (k2 = #pathways), each column of which
is a length of n vector where 1 in the jth element indicates that the
jth gene is a member of the corresponding pathway and 0 indicates
that it is not a member. Thus we define that the constraints enforcing
the factor matricesU and V are closed toU0 and V 0, respectively:

‖U −U0‖2F < tU0 , ‖V − V 0‖2F < tV0 , (3)

where tU0 , tV0 ≥ 0. These constraints enable us to obtain
biologically meaningful results from the decomposition results of
the tri-factorization models: 1) each row of U can be interpreted as
a soft membership of the corresponding patient within the different
cancers; 2) we can identify new member genes in the pathways by
checking the newly added nonzero entries in V ; and 3) the factor S
reveals how different cancer types are associated with the pathways.

For the factor matrix V , we additionally consider network
regularization constraints, which are based on the assumption that
any genes connected in the network are more likely to be placed
in the same pathway. We use in the paper the human gene-gene
interaction network (Zhang et al., 2011). Denoting the adjacency
matrix of the gene interaction network by A ∈ Rm×m, where Aij
is 1 if the genes i and j are interacting with each other, otherwise 0,
the network regularization constraint can be defined by

k2∑
k=1

m∑
i=1

m∑
j=1

Aij(Vki − Vkj)2 ≤ tVL (4)

where tVL ≥ 0. Let us denote the Laplacian matrix byL =D−A,
whereD is a diagonal matrix and its diagonal element is a row sum
of A, i.e., Dii =

∑m
j=1Aij . Then the constraint Eq. (4) can be

rewritten as

tr{V >LV } ≤ tVL . (5)

2 NETWORK REGULARIZED SPARSE
NON-NEGATIVE TRI MATRIX FACTORIZATION
FOR PATHWAY IDENTIFICATION (NTRIPATH)

Combining all the ideas in the previous section and the routines
to avoid inadmissible zeros (Chi and Kolda, 2012), we propose a
Network regularized sparse non-negative TRI matrix factorization
for PATHway identification (NTriPath). In addition, we provide

the convergence analysis of the proposed method, based on the
technique that is used to prove the convergence of nonnegative
matrix factorization algorithms (Lee and Seung, 2001; Ding et al.,
2006; Blondel et al., 2008).

2.1 Objective function
Combining the objective function Eq. (2), the constraints obtained
from the available prior knowledge (Eq. (3) and Eq. (5)), and the
sparsity control constraints of the factor matrices, the optimization
problem can be formulated as

min
U≥0,S≥0,V ≥0

f(U ,S,V ), (6)

where

f(U ,S,V )

=
1

2

(
‖X −USV >‖2W + λU‖U‖21 + λS‖S‖21 + λV ‖V ‖21 +

+ λU0‖U −U0‖2F + λV0‖V − V 0‖2F + λVL tr{V >LV }
)
,(7)

where ‖M‖1 =
∑
i,j |Mij | and {λ·} ≥ 0 are user-specific

regularization coefficients.

2.2 Update rule
To find the optimal solution of Eq. (6), we use the multiplicative
update rule (Lee and Seung, 2001) which is computationally
effective because the multiplicative factor can be easily calculated
based on the gradient information. For example, consider the
gradient of Eq. (6) with respect to V , which can be decomposed
into two positive terms:

∂f

∂V
= −γN + γP , (8)

where

γN = (W ◦X)>US + λVLAV + λV0V 0, (9)

γP = X̂
>
US + λG0V + λVLDV + λV ‖V ‖1E, (10)

where the notation ◦ stands for the Hadamard product (element-
wise multiplication), E ∈ Rm×k2 is a matrix of ones and X̂ =
W ◦ (USV >). Then the multiplicative update rule for the factor
matrix V is of the form

V ← V ◦ [γ
N ]

[γP ]
, (11)

where [·]
[·] is an element-wise division operator. The multiplicative

rule Eq. (11) not only preserves the nonnegativity of parameters
but also guarantees ∂f/∂V = 0 when the algorithm converges.
Similarly, the update rules for all factor matrices, including V , can
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be written in element-wise form:

Uij ← Uij

[
(W ◦X)V S> + λU0U0

]
ij[

X̂V S> + λU0U
]
ij
+ λU‖U‖1

, (12)

Sij ← Sij

[
U>(W ◦X)V

]
ij[

U>X̂V
]
ij
+ λS‖S‖1

, (13)

Vij ← Vij

[
(W ◦X)>US + λVLAV + λV0V 0

]
ij[

X̂
>
US + λG0V + λVLDV

]
ij
+ λV ‖V ‖1

. (14)

2.3 Convergence analysis
We will prove that (convergence) the algorithm converges under the
update rules Eq. (12)-(14) and that (correctness) at convergence its
solution satisfies Karush Kuhn Tucker (KKT) optimality conditions,
i.e., the algorithm converges to a local minima.

To prove the convergence, we will show that alternatively
updating U , S and V will monotonically decrease the objective
function Eq. (6):

f(U0,S0,V 0) ≥ f(U1,S0,V 0) ≥ f(U1,S1,V 0)

≥ f(U1,S1,V 1) ≥ f(U2,S1,V 1) ≥ ..., (15)

where U t is the solution of U at iteration t. We here only prove
for the case of updating V given U and S since the other cases,
updating U or S given the other factors, can be proved in a similar
way. To do this, we will make use of the auxiliary function (Lee and
Seung, 2001): the function Z(V ,V ) is called an auxiliary function
for the function f (whenU and S are fixed) if, for any V and V , it
satisfies

ZV (V ,V ) ≥ f(V ), ZV (V ,V ) = f(V ). (16)

Note that, V corresponds to the current solution of V in our
proof. We also need the following lemma to construct the auxiliary
function for our problem.

LEMMA 1. For a symmetric nonnegative matrixB and a positive
vector b, the matrix, diag

(
[Bb]
[b]

)
− B, is positive semi-definite

(Blondel et al., 2008).

Proof. Note that the operator diag(b) creates a square matrix with
the elements of b on the diagonal. See (Blondel et al., 2008) for the
proof.

THEOREM 1. (Convergence) The objective function Eq. (6) is
monotonically decreasing under the update rules (12)-(14).

Proof. We will show that updating V given U and S with the
update rule (14) monotonically decreases the objective function Eq.
(6). Define v = vec(V >) and vc = vec(V ), where vec is a
vectorization operator which converts a matrix into a column vector.
In addition, letP ∈ Rmk2×mk2 denote the permutation matrix such
that vc = Pv (also v = P>vc since PP> = Imk2 , where Imk2
is an mk2 ×mk2 identity matrix). Then the objective function Eq.

(6) can be rewritten in terms of v with the fixed U and S:

f(v) =

c− v>vec
(
(US)>(W ◦X) + λV0V

>
0

)
+

1

2
v>Hv,(17)

where c is a constant irrelevant to V , andH is the Hessian matrix:

H = blockdiag(
m∑
i=1

Wi1ziz
>
i , ...,

m∑
i=1

Winziz
>
i )

+ λVLP
>(Ik2 ⊗L)P + λV0Imk2 + λV 11>, (18)

where zi ∈ Rk2 is the ith row vector of the matrix (US), i.e.,
zi = ([US]i,:)

>, blockdiag constructs a block diagonal matrix
from given block matrices and 1 is a mk2-vector consisting of
all 1s. It is convenient to rewrite the Hessian matrix H as a sum
of the term involving the Laplacian matrix and the other terms,
i.e., H = H\L + λVLP

>(Ik2 ⊗ L)P . To define the auxiliary
function for the function f , we first consider its Taylor expansion at
v (, vec

(
V
>)

):

f(v) = f(v)

+ (v − v)> 5 f(v) +
1

2
(v − v)>H(v − v). (19)

Then we define the following function ZV (v,v) in vectorial form
and show that it is the auxiliary function for the function f :

ZV (v,v) = f(v) + (v − v)> 5 f(v)

+
1

2
(v − v)>Γ(v)(v − v), (20)

where the diagonal matrix Γ(v) is set to

Γ(v) = diag
([(H\L + λVLP

>(Ik2 ⊗D)P
)
v
]

v

)
. (21)

It is obvious that ZV (v,v) = f(v), and one can show that
ZV (v,v) ≥ f(v) for any positive vector v using Lemma 1 (to
showH\L is positive semi-definite) and the fact that

v>
(

diag
([P>(Ik2 ⊗D)Pv

]
v

)
− P>(Ik2 ⊗L)P

)
v

= v>c (Ik2 ⊗A)vc ≥ 0. (22)

For simplicity, we define H̃ =H\L + λVLP
>(Ik2 ⊗D)P .

Now, we need to find a global minimum, v̂, of ZV (v,v):

v̂ = argmin
v

ZV (v,v). (23)

From the definition of the auxiliary function in Eq. (16), it is obvious

f(v) = ZV (v,v) ≥ ZV (v̂,v) ≥ f(v̂). (24)

Thus we can confirm that the solution v̂ monotonically decreases
the function f . On the other hand, the minimum solution is found
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by solving ∂ZV (v,v)
∂v = 0:

v̂ = v − Γ−1
V (v)5 f(v) (25)

= v − diag
( [v]

[H̃v]

)
5 f(v) (26)

= v ◦ [H̃v −5f(v)]
[H̃v]

. (27)

We can rewrite the above update equation in matrix form exactly the
same as our update rule (14):

V̂ = V ◦ [(W ◦X)>US + λVLAV + λV0V 0]

[X
>
US + λG0V + λVLDV + λV ‖V ‖1E]

,(28)

where X = W ◦ (USV
>
). Thus we can conclude that the

objective function (when U and S are given) is monotonically
decreasing under the update rule (14).

THEOREM 2. (Correctness) At convergence, the solution satisfies
the KKT optimality conditions.

Proof. It is straightforward based on the nature of the
multiplicative rule (preserving the positivity of parameters) and the
definitions of our update rules (see Eq. (11)).

2.4 Inadmissible zero avoidance
There is still a computational issue in implementing the proposed
algorithm. The multiplicative rules might lead to the inadmissible
zero problem (Chi and Kolda, 2012): an entry in the factor matrices
is stuck at zero when it becomes zero although the zero value does
not satisfy stationarity conditions. In practice, the inadmissible zero
often appears due to the finite precision of machines. To solve this
problem, one can examine the KKT conditions for the solution in
each update and then replace the inadmissible zero entries with a
small positive number κ as in (Chi and Kolda, 2012; Seung-Jun
et al., 2012). We here present only an avoidance method of the
inadmissible zero for the factor V since its extension for the factor
matrices is straightforward.

Note that, the KKT conditions for the factor matrix V to the
problem (6) can be written in element-wise form:

Vij ≥ 0, γPij − γNij ≥ 0, Vij
(
γPij − γNij

)
= 0. (29)

The KKT condition states that if Vij > 0, the multiplicative
factor should be equal to 1; otherwise it should be less than
or equal to 1. Thus we just replace the zero entry whose
corresponding multiplicative factor is greater than 1 with κ to
prevent the inadmissible zero from occurring. The NTriPath
algorithm, including the update rules with the inadmissible zero
avoidance methods, is summarized in Table 1.

3 SIMULATION ANALYSIS
We performed experiments using synthetic datasets to evaluate the
performance of NTriPath to discover cancer-type-specific pathways
and new member genes in the pathways.

Algorithm 1 NTriPath
1: procedure NTRIPATH(X ,λU ,λU0 ,λS ,λV ,λV0 ,λVL )
2: Set κ > 0, κtol > 0 and ε > 0 to small values.
3: Set U ← min{U0, κ}, V ← min{V 0, κ} and fill all

entries of S with one. Initialize {α, Ũ} ← 0n×k1 , {β, S̃} ←
0k1×k2 and {γ, Ṽ } ← 0m×k2 .

4: while not converged do
5: X̂ ←W ◦ (USV >)

6: αij =

[
(W ◦X)V S>

+ λU0
U 0

]
ij[

X̂V S>
+ λU0

U
]
ij

+ λU‖U‖1 + ε

7: Ũij =

{
κ if Uij < κtol and αij > 1
0 otherwise

8: U ← (U + Ũ) ◦α.
9: X̂ ←W ◦ (USV >)

10: βij =

[
U>(W ◦X)V

]
ij[

U>X̂V
]
ij

+ λS‖S‖1 + ε

11: S̃ij =

{
κ if Sij < κtol and βij > 1
0 otherwise

12: S ← (S + S̃) ◦ β.
13: X̂ ←W ◦ (USV >)

14: γij =

[
(W ◦X)>US + λVL

WV + λV0
V 0

]
ij[

X̂
>
US + λG0

V + λVL
DV

]
ij

+ λV ‖V ‖1 + ε

15: Ṽij =

{
κ if Vij < κtol and γij > 1
0 otherwise

16: V ← (V + Ṽ ) ◦ γ.
17: end while
18: return U , S, V .
19: end procedure

3.1 Data preparation
We first generated the mutation matrix X containing 250 patient
samples and 1000 genes (see Fig. 1). U represents five patient
subgroups (e.g., A, B, C, D, and E) and V 0 represents 10 pathways
consisted of 100 genes per pathway. Each subgroup included
between 1-7 altered pathways. We introduced different mutation
rates (e.g., subgroup C has a higher mutation rate compared to
other subgroups) to investigate whether different mutation rates
for each subgroup would affect the performance of NTriPath to
discover cancer-type-specific altered pathways. We generated the
gene-gene interaction networks A and used it as prior knowledge.
The member genes in the pathway are densely connected in the
gene-gene interaction networks.

3.2 Experiments
We ran NTriPath using a synthetic dataset with λV = 0.1, λV0 =
0.1, λVL = 0.1, λS = 0.001. We set Wij for non zero entries
to 1 and for zero entries to 0.1 in all the experiments. Fig. 2
shows the plot of the objective function over iterations for a typical
run of the NTriPath on the synthetic data. We found that the
algorithm converged well and almost reached the minimum value
at iteration 20. Thus we set the maximum iteration to 20 in all the
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experiments. The results of NTriPath are shown in Fig. 1. LearnedS
indicates that NTriPath could accurately identify subgroup-specific
altered pathways. For example, there are four pathways associated
with subgroup A (e.g., A1, A4, A5, and A10) and learned S
indicated that NTriPath accurately identified subgroup A-specific
altered pathways. X̃ which represents the reconstructed matrix X
based onUSV > indicates that NTriPath could reconstruct original
matrixX . We performed additional experiments using the synthetic
dataset to access NTriPath for discovering new member genes in
the pathways. We introduced a set of mutated genes into subgroups
A and C along with 10th pathway into the mutation matrix X
(See the red box in the mutation matrix X in Fig. 3). In addition,
the newly added mutated genes interact with the member genes
in the 10th pathway through the gene-gene interaction networks
(See the red box in the gene-gene interaction networks in Fig. 3).
The initial pathway information V 0 does not include those genes
as member genes in the 10th pathway (See the red box in the
mutation matrix V 0 in Fig. 3). The purpose of this experiment is
to investigate whether NTriPath can correctly identify new member
genes. We ran NTriPath with all the same parameters used in
the previous experiments. Results indicated that NTriPath could
accurately identify the new member genes in the 10th pathway (See
the blue box in the pathway information V in Fig. 3).

iteration

0 20 40 60 80 100 120 140 160 180 200

f(
U

,S
,V

)

×10
4

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

Fig. 2. Plot of objective function over iterations for a typical run of NTriPath
on the synthetic data described in Fig. 1. One can see that the method almost
reached the minimum value at iteration 20.

Finally, we ran experiments to evaluate the performance of
how accurately NTriPath identified subgroup-specific pathway
associations in genome-wide scale settings. We generated synthetic
datasets containing 250 patients with five subgroups (e.g., 50
patients per subgroup) and 12,000 genes with 120 pathways. Each
pathway consisted of 100 genes. Each subgroup included between
5-15 altered pathways. In addition, we generated the gene-gene
interaction networks, where member genes in the same pathway
were densely connected. We considered different sparsity levels of
the mutation data matrix for each patient subgroup using probability
P . For example, P = 0.10 indicates that Xij is set to 1 if
the random number sampled from a uniform distribution on the
interval [0, 1] is less than and equal to P . A higher value of
P indicates a higher mutation rate, and a lower value of P
indicates a lower mutation rate in the mutation matrix X . We ran

NTriPath on these synthetic datasets with different values of P and
repeated 50 times for each P . We used all the same parameter
setting in the previous experiments. To evaluate the accuracy of
the subgroup-pathway association S, we used ROCArea (Joachims,
2005), which is a widely used performance measure for ranking-
based classification algorithms, such as ranking-SVM (Joachims,
2002). In the main paper, we identified cancer-type-specific altered
pathways by ranking the ith row elements in the S matrix for
the ith cancer type. We used the same strategy to identify the
altered pathways for each subgroup. Thus to make the predictions
correct, the elements in the matrix S corresponding to the altered
pathways for each subgroup should be higher (i.e., more highly
ranked) than those of the other pathways. Denote posi by a set of
the altered pathways for the ith subgroup and negi by the remain
pathways. Then the ROCArea for the ith subgroup is defined based
on the number of the incorrectly predicted pairs between positive
labels (pathways in posi) and negative labels (pathways in negi)
(Joachims, 2005):

ROCAreai = 1− #SwappedPairsi
#posi ·#negi

(30)

where

SwappedPairsi

= {(j, l)|(j ∈ posi, l ∈ negi) and (Sij < Sil)}, (31)

where #posi is the number of elements in the set posi. The closer
the ROCArea value is to 1, the more accurate the method is. All
the results are summarized in Table 1, where the ROCArea values
were averaged among 50 trials, and the mean and standard deviation
values were reported. Although the ROCArea of the method slightly
decreased as the sparsity level of the data matrix, X , increases
(or as P decreases), the results reconfirm that the NtriPath could
accurately identify subgroup-pathway associations in most cases.

Table 1. Experiments with genome-wide scale synthetic datasets for
subgroup-pathway association identification. The ROCArea values were
averaged among 50 trials, and the mean values and their standard deviation
values (in the parentheses) were reported. The first column shows the
index for the subgroup and the number of the pre-defined pathways for the
corresponding subgroup in the parentheses. For example, subgroup 1 has 10
altered pathways and subgroup 3 has 14 altered pathways.

P = 0.10 P = 0.07 P = 0.04 P = 0.01

1 (10) 1.000(0.000) 0.987(0.013) 0.940(0.015) 0.890(0.041)
2 (10) 1.000(0.000) 0.986(0.014) 0.934(0.017) 0.882(0.045)
3 (14) 1.000(0.000) 0.981(0.014) 0.942(0.010) 0.874(0.040)
4 (9) 1.000(0.003) 0.975(0.020) 0.923(0.018) 0.874(0.044)
5 (11) 1.000(0.000) 0.996(0.008) 0.964(0.012) 0.919(0.027)
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Fig. 3. Simulation on new pathway member gene identification. We introduce additional mutated genes into subgroup A and C along with member genes of
10th pathway. Newly added mutated genes are connected with member genes in the 10th pathway through the networks A. The initial pathway information
V 0 does not include those genes as member genes in the 10th pathway. After running NTriPath, learned V indicates that NTriPath could accurately identify
newly introduced mutated genes as new member genes of 10th pathway.
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