
R. Soc. open sci. article template

R. Soc. open sci.

doi:10.1098/not yet assigned

 1

Supplementary material

	

Extracting	
 Hazard	
 Media	
 Mentions	
 from	
 the	
 Web	

	

The collection of media mentions of whether particular events took place in particular locations can be
extracted either from commercial databases, such as Factiva© (business and research information tool from
Dow Jones & Co., accessible by subscribed users and organisations from
http://www.dowjones.com/products/product-factiva/) or with by using data extraction techniques in the
Google Search engine. We used the later method.

Because Google is generally restrictive about access provision to its search results, several methods could be
utilised to extract the sample of the URLs of interest. The complexity of the method can depend on several
factors, specifically, on the level of the researcher’s technical expertise as both manual and automated methods
are possible; on the hardware infrastructure, where RAM is usually a single limiting factor for the number of
search tab results open; operating system (some manual steps are easier to perform on Windows OS as system
PATH can be defined directly to the spreadsheet software), number of search query iterations or modifications
to be performed and depth of analysis (whether there is a need to go past the first page (1-10) results, which is
defined by additional coding in XPath and Javascript).

We used a semi-automated method, consisting of data collection, assembling and mining. Semi-automation
was chosen due to the need to control every single step and perform manual data quality analysis of the
scraped results. Our query was designed to include two sets of parameters, where the first set was performed
for cities in 2014 and another one for 2015. To enable multiple searches at once, we created automated browser
container (code below), into which we pasted 507x2 (complete list of cities, identified in Google Analytics
dataset, for the years 2014 and 2015).

<html>
<head>
<script>
function search()
{
 var queries =
document.getElementsByTagName('textarea')[0].value.split(/[\r\n]/);
 for(var i = 0, j = queries.length; i < j; i++)
 if(queries[i])
 window.open('http://www.google.com/search?q=' + queries[i]);
}
</script>
</head>
<body>
<textarea style="height:50%;width:100%"></textarea>
<input type="button" value="Start!" onclick="search()">
</body>
</html>

Two examples of the query performed for Bristol are presented below. Because the aim of our search was to
collect information about actual floods rather than predicted or expected, we excluded any of the terms
pointing to the probability of the event, e.g., ‘warning’, ‘alert’, ‘risk’, ‘weather forecast’. We also excluded any

*Author for correspondence (Nataliya.Tkachenko@warwick.ac.uk).
†Present address: Warwick Institute for the Science of Cities, University of Warwick, Coventry, CV4 7AL, UK

R. Soc. open sci.

climate-related events or meetings that took place in the locality during the time period of interest and might
be returned with results: e.g., ‘university’, ‘conference’, and ‘workshop’:

‘allintext:flooded bristol 2014 -warning -alert -risk -weather -forecast -
university –conference -workshop’
‘allintext:flooded bristol 2015 -warning -alert -risk -weather -forecast -
university –conference -workshop’

Without getting into coding details, similar results could be obtained using the Multiple Tabs Search extension
for the Google Chrome browser.

Because our analysis didn’t require the complete search results, only the most relevant ones, we collected the
top ten returns (the first page of the Google Results), using the Chrome Extension Data Miner with help of the
following XPath rules:

Name XPath Target
Id //div[@class='g'] Row
Link //div[@class='rc']/h3/a Column
URL //div[@class='rc']/h3/a/@href Column
BasicDescription //div[@class='rc']/div/div/span[@class='st'] Column
Cite //div[@class='rc']/div/div/div/cite Column
Options //div[@class='rc']/div/div/div/div Column
MiscSnippet //div[@class='rc']/div/div Column

Another minimal coding option for extraction of the top URLs from queries that doesn’t involve multiple tabs
is possible using another popular Chrome extension, Linkclump. This tool requires repetitive manual collation
of the highlighted search results into spreadsheet processing software, e.g., Googledocs, Excel or LibreOffice.

If the coding option is preferred, it is also possible to make use of this Python code below, which uses
BeautifulSoup4. This option may be preferred due to the fact that the rest of the data analysis is performed in
Python.

>>>import bs4, sys, requests, webbrowser
>>>res=requests.get(‘http://google.com/search?q=’ + ‘’.join(sys.argv[1:]))
>>>soup=bs4.beautifulSoup(res.text)
>>>linkElems=soup.select(‘.r a’)
>>>numOpen=min(10, len(linkElems))
>>>def save_to_file(*numOpen):
 with open(‘/path/to/filename.txt’,mode=’wt’,encoding=’utf-8’) as myfile:
 for lines in numOpen:
 myfile.write(‘\n’.join(str(line) for line in lines))
 myfile.write(‘\n’)

The lists of URLs collected were subsequently analysed in order to verify whether any case of flooding had
been recorded in the locality during period from April 2014 to March 2015. For this, we assembled the list of
dates in several formats (e.g., ‘Date Month Year’ or ‘dd-mm-yyyy’) to cover the twelve months period of the
study, and performed iterative data scraping across both lists of URLs (‘2014’ and ‘2015’) collected, having first
extracted the text to which they pointed:

>>>from bs4 import BeautifulSoup
>>>twenty14=BeautifulSoup(html)
>>>twenty14_text=twenty14.get_text()

Finally, we iterated the list of dates over the text datasets in order to code each city according to whether or
not it was flooded on each date:

>>>with open(‘/path/to/twenty14_text.txt’) as f:
 twenty14=f.read()
>>>with open(‘/path/to/Date_Month_Year.txt’) as f:
 for date in (line.strip() for line in f):
 if date in twenty14:
 print(‘1’)
 else:
 print(‘0’)

Combined results from these iterations are presented below.

R. Soc. open sci. article template
3

R. Soc. open sci.

PC1|α≥0.5 PC2|α≥0.5 PC3|α≥0.5 PC4|α≥0.5
Hull ‘1’ Chesterfield ‘0’ Droitwich Spa ‘0’ Cramlington ‘0’
Bournemouth ‘1’ Durham ‘0’ Cwmbran ‘0’ Huddersfield ‘0’
Liverpool ‘0’ Towcester ‘0’ Hedge End ‘0’ Rushden ‘0’
Southampton ‘1’ Oldham ‘0’ Havant ‘0’ Clevedon ‘1’
Cambridge ‘1’ Swindon ‘0’ Brockenhurst ‘0’ Calne ‘0’
Teddington ‘0’ Ilkeston ‘1’ West Malling ‘0’ Runcorn ‘1’
Sheffield ‘1’ Rotherham ‘0’ Haywards

Heath
‘0’ Bradford-on-

Avon
‘0’

Northampton ‘0’ Doncaster ‘1’ Tonbridge ‘0’ Iver ‘0’
Coventry ‘1’ Sleaford ‘1’ Gravesend ‘1’ Scarborough ‘0’
Manchester ‘1’ Birchwood ‘1’ East

Grinstead
‘1’ Pontefract ‘1’

Birmingham ‘1’ Derby ‘1’ Ashford ‘0’ Wigan ‘0’
Loughborough ‘0’ Kingswinford ‘1’ Chinnor ‘0’ Grantham ‘0’
Wrexham ‘1’ Long Eaton ‘1’ Attleborough ‘0’ Barnstaple ‘1’
Blackburn ‘0’ Burton-upon-

Trent
‘1’ Alcester ‘0’ Tamworth ‘0’

Nottingham ‘1’ Louth ‘1’ Hailsham ‘0’ Lancaster ‘0’
Barnstaple ‘1’ Harrogate ‘0’ Hastings ‘0’ Brough ‘0’
Norwich ‘1’ Grimsby ‘1’ Geddington ‘0’ Glossop ‘0’
Leicester ‘1’ Hucknall ‘1’ Horley ‘0’ Lechlade ‘0’
Cardiff ‘1’ Sheffield ‘1’ Sandbach ‘1’ Sittingbourne ‘1’
Grimsby ‘1’ Staplehurst ‘0’ Carmarthen ‘0’ Sutton-in-

Ashfield
‘0’

Doncaster ‘1’ Nottingham ‘1’ Bridgwater ‘0’ Bognor Regis ‘0’
Frome ‘1’ Wakefield ‘1’ Hereford ‘0’ Stourport-on-

Severn
‘0’

Newcastle-
upon-Tyne

‘0’ Grantham ‘0’ Buntingford ‘0’ Rugby ‘0’

Burton-upon-
Trent

‘1’ Barnsley ‘1’ Lakenheath ‘0’ Darwen ‘0’

Kingswinford ‘1’ Brentford ‘0’ Cardiff ‘1’ March ‘1’
York ‘0’ Runcorn ‘1’ Oldbury ‘1’ Sidmouth ‘1’
Eastbourne ‘1’ Horncastle ‘0’ Royal

Tunbridge
Wells

‘1’ Lenham ‘0’

Long Eaton ‘1’ Bude ‘1’ Bishop’s
Stortford

‘1’ Cleethorpes ‘1’

Belper ‘1’ Pontefract ‘1’ Farnham ‘0’ Horncastle ‘0’
Edwalton ‘0’ Bolton ‘1’ Abergavenny ‘0’ Staplehurst ‘0’
Beverley ‘1’ Stourport-on-

Severn
‘0’ Torquay ‘0’

Preston ‘1’ Loughborough ‘0’ Swansea ‘0’
Clevedon ‘1’ Rugby ‘0’ Worcester ‘0’
Bolton ‘0’ Middlesbrough ‘0’ Bath ‘0’
Tamworth ‘0’ Bradford-on-

Avon
‘0’ Maidstone ‘0’

Gloucester ‘0’ Royal
Leamington
Spa

‘0’ Eastbourne ‘0’

Widnes ‘1’ Hinckley ‘1’ Macclesfield ‘1’
Brough ‘0’ King’s Lynn ‘0’
Glossop ‘0’ Retford ‘1’
Lechlade ‘0’ Brighton ‘1’
Sittingbourne ‘1’ Carlisle ‘1’
Sutton-in-
Ashfield

‘1’

Castleford ‘1’
Lenham ‘1’
Barnsley ‘1’
Wakefield ‘1’
Cleethorpes ‘0’
Bradford-on- ‘0’

R. Soc. open sci.

Avon
Rushden ‘1’
Scunthorpe ‘1’
Oldham ‘0’
Horncastle ‘0’
Swansea ‘1’
Stourport-on-
Severn

‘0’

Swindon ‘0’
Camberley ‘0’
Bristol ‘0’
Staplehurst ‘0’
Farnborough ‘0’
Stroud ‘0’
Retford ‘1’
Leeds ‘0’
Gateshead ‘0’
Peterborough ‘0’
Scarborough ‘0’
Harrogate ‘0’
Sleaford ‘1’
Stafford ‘1’
Brentford ‘1’
Wigan ‘0’
March ‘1’
Grantham ‘0’
Evesham ‘0’
Worthing ‘1’
Towcester ‘0’
Lancaster ‘0’
Luton ‘0’
Worcester ‘0’
Cheltenham ‘0’
Huntingdon ‘0’
Bishop’s
Cleeve

‘0’

Brighton ‘1’
Runcorn ‘1’
Durham ‘0’
Kenilworth ‘0’
Sidmouth ‘1’
Pontefract ‘1’
Ilkeston ‘1’
Louth ‘1’
Hertford ‘0’
Ipswich ‘0’
Lymington ‘0’
Newport ‘0’
Warrington ‘0’
Milton Keynes ‘1’
Huddersfield ‘0’

