gctttttcatcaatcttttccatcaaaaaatttac tctatcaaaaagcccaatctttactttaaaaaaaaaattgagctgagtgaatataaatcatgtgtggtggtgctataatttccgattacatacctccgaaccggacttctcgccggtta M C G G A I I S D Y I P P N R T S R R L accgctgagttactatggggtcgttccgatctgagtaaaaaatcaaaaaatccaagtaatT A E L L W G R S D L S K K S K N P S N tatcattcaaagcctttgagatctcaaatagttgaccttgacgatgacttcgaggctgatY H S K P L R S Q I V D L D D D F E A D ttt caagagtt taaagattttt cagatgatgaagatgt taaaccatttgctttttctgctF Q E F K D F S D D E D V K P F A F S A cccaaacagtccactggctccaaatctgtaaaatctgctgattcagagaaggatgctgatP K Q S T G S K S V K S A D SEK D A D agttcctctaagagaaagaggaagaatcagtatagggggatcagacagcgaccttggggt S S S K R K R K N Q Y R G I R Q R P W G aagtgggcagctgaaatacgtgacccaagtaaaggtgttcgagtctggcttggaaccttc K W A A E I R D P S K G V R V W L G T F aatactgcagaagaagctgccagagcttatgatgttgaggctagaaggatcagaggcaatN T A E E A A R A Y D V E A R R I R G N KAKVNFP DEAPVPSSRRAVK gtgaatcctcagaaggtccttcctagcctggactctgttcagccagacactactgtgatg V N P Q K V L P S L D S V Q P D T T V M $aac {\tt aacctgaggaatggctattatgattctttgggatttcttgaagagaaacctgtggca}$ N N L R N G Y Y D S L G F L E E K P V A K Q Y G Y E D G G S T S V D I G F D S F A P S A G A D I Y F N S D V G S N S F D tgctctgactttggttggggagagccgtgcaccaggactccagagatatcatctgttcttC S D F G W G E P C T R T P E I S S V L S A A I E S N E A Q F V E D A R P E K K $ctgaaat cagaccccaacaat ccagtagctgatgatgatgaaac \verb+actgtgaacgagctatct+$ L K S D P N N P V A D D G N T V N E L S gaagagctttcagcatttgaatctgagatgaagtttcttcagataccttatctggaggggE E L S A F E S E M K F L Q I P Y L E G aattgggatgcatcagctgataccttcctcaacacaagtgcaactcaggatggtgaaaatN W D A S A D T F L N T S A T Q D G E N gctatggacctctggtcatttgatgatgttccttctttgatgggaggtgtctac*taa*gtc A M D L W S F D D V P S L M G G V Y -gaagttgatccac

Fig. S1. Complete sequence of petunia *PhERF2* cDNA. The cDNA sequence of *PhERF2* possesses an open reading frame (ORF) of 1,137-bp nucleotides encoding a protein of 378 amino acids. The 291-bp fragment used for VIGS construct was marked with solid underline while the 339-bp fragment (fragment 2) used for VIGS confirmation and RNAi construct was marked with dashed underline. The conserved AP2/ERF domain from amino acids 109 to 167 was indicated with bold types shaded in grey.

Α		
PhERF2 PhERF3 NtCEF1 CaPF1 StRAP2.12 PSERF2a MdRAP2.12 NnRAP2.12 AtRAP2.12 AtRAP2.12 AtRAP2.12 AtRAP2.2 PhERF3 NtCEF1 S1JERF1 CaPF1 StRAP2.12 PSERF2a MdRAP2.12 NnRAP2.12	MCGGA I ISDY IPPNRTSRRLTAELLWGRSDLSKKSKNPSNYHS-KPLRSQIVDLDDDFEADFQDFSDDEDVKPFAFSAPKQSTGSKSV- MCGGA I ISDLVPPSRTSRRLTADLWGSSDLKKNPSNYHSKPLRSSKF IDLDDEFEADFQDFSDDEDVQVDVKPFAFSASKSNVEGSKSV- MCGGA I ISDLVPPSRTSRRLTADFLWGTSDLSNKKKNPSNYHS-KPLRSQVVDLDDFEADFQDFKDFSDDEDVQ	90AA 74AA 96AA 82AA 84AA 91AA 92AA 93AA 88AA 97AA 182AA 167AA 182AA 167AA 188AA 174AA 184AA 184AA 184AA 184AA 185AA
AtRAP2.2	IYLVGSAYAKKTVESAEQAEKSSKRKRKNOYRGIRQRPWGKWAAEIRDPRKGSREWLGTFDTAEEAARAYDAAARRIRGTKAKVNFPEEKNPSVVSQKRPSAKTNN	203AA
PhERF2 PhERF3 NtCEF1 S1JERF1 CaPF1 StRAP2.12 PSERF2a MdRAP2.12 AtRAP2.12 AtRAP2.2	PQKVLP—SLDS—VQPDTT——VMNNLRNGYVDSLGFLEEKPVAKQYGYEDGGSTSVDIGFDSFAPSAGAD-IYFNSDVGSNSFDCSDFGWGEPCRTPEISSV PQKVEESSNT—VQLNTN——FCNNLDSGCYDSLGFLEEKPVIKGFCEDGSSASGDTGFGSFAPSAGTD-IYFNSDVGSNSFDCSDFGWGEPCARTPEISSV PQKVLPKEILDS—VQPNTT——YISNLDGGSDDSFGFEEKPAKQYGFENVSFTAVDMGLGSVSPSAGTD-YYFNSDVGSNSFDCSDFGWGEPCARTPEISSV PQKALREETLNT—VQPNTT——YISNLDGGSDDSFGFFEEKPAKQYGFENVSFTAODMGLGSVSPSAGTN-VYFSSDGSNTFDCSDFGWGEPCARTPEISSV PQKALREETLNT—VQPNTT——YINNLDGSDDSFGFFEEKPAKQYGFENVSFTAODMGLGSVSPSAGTN-VYFSSDGSNTFDCSDFGWGEPCRTPEISSV PQKULPESLDS—LQSDSA——INM—SDHYDSFGFFEEKPAKQYGYENVSFTAODMCLGSVSPSAGTN-VYFSSDGSNSFDCSDFGWGEPCRTPEISSV -QKMLPKTNMNA—IQPNLNQNINFVHDPNQDYYNAMGFLDEKPATNDFGFMSTFPANGEVVLKSSAPSDAVP-LYFSSDQGSNSFDCSDFGWGEPCSTPEISSV PQKULSKSVFSNT—VNDSSEDTYSALGFLDEKPTNNNFRYNSTFPANGEVVLKSSAPSDAVP-LYFSSDQGSNSFDCSDFGWGEQGSKTPEISSV -QKMLPKTNMNA—IQPNLNQNINFVHDPNQDYYSALGFLDEKPTNNNFRYNSTFPANGEVVLKSSVPSENAP-FYFSSDQGSNSFDCSDFGWGEQGSKTPEISSV PQVVLSKPNS-——-VSEHSFNFTNNPDANFYDTMGFVEKTSIKGSGYUSSFPUG———VPAEFKP-FAFNSDQGSNSFDCSDFGWGEQGSKTPEISSV LQKVVAKPNP———NPSPALVQNSNISFEN—MCFMEEKHQVSNNNNNGGMTNS——VDAG-CNGYQYFSSDQGSNSFDCSEFGWSDAPATPISS- LQKSVAKPNKSVTLVQQPTHLSQQYCNNSFDNSFGDMSFMEEKPQMYNN—QFGLTNS——FDAGGNNGYQYFSSDQGSNSFDCSEFGWSDHGPKTPEIS— * :*::* * * * * * * * * * * * * * * * *	279AA 264AA 287AA 273AA 276AA 280AA 286AA 288AA 272AA 284AA 298AA
PhERF2 PhERF3 NtCEF1 S1JERF1 CaPF1 StRAP2.12 NnRAP2.12 NnRAP2.12 AtRAP2.12 AtRAP2.2	LSAAIESNEAQFVEDAR-PEKKLKSDPNNPVADDGNTVNELSEELSAFESEMKFLQIPYLEGNWDASADTFLNTSATQDGENAMDLWSFDDVPSLMGGVY- LSAVAEONGTQFDEDAS-PAKRLKSCTNNSVQDDGNTVDKLSEELSAFESQMKFLQIPYLEGNWDASADTLNADATQEVCNAMDLWSFDDVPSLMGGVY- LSAVIESNESQVEDDTSPWKKLKSSPNDVPSLLGGVF- LSEVLETNETHFDDDSR-PEKKLKSCSNSSLTVDGNTVNTLSEELSAFESQMKFLQIPYLEGNWDASVDAFLNTSATQDGONAMDLWSFDDVPSLMGGAY- LSEVLECNGTQSDEDAR-PEKKLKSCSNSLPDEDNTVHTLSEELSAFESQMKFLQIPYLEGNWDASVDAFLNTSATQDGONAMDLWSFDDVPSLMGGAY- LSEVLECNGTQSDEDAR-PEKKLKSCSNSLPDEDNTVHTLSEELSAFESQMKFLQIPYLEGNWDASVDAFLNTSA	378AA 363AA 387AA 372AA 369AA 379AA 381AA 386AA 372AA 358AA 379AA
В	Difference Difference	

0.2

Fig. S2. Amino acid sequence analysis of petunia PhERF2. (A) Alignment of deduced PhERF2 amino acid sequence and other similar proteins from *Petunia* × hybrida PhERF3 (ADP37418), Nicotiana tabacum NtCEF1 (AAP40022), Solanum lycopersicum SIJERF1 (NP_001234513), Capsicum annuum CaPF1 (AAP72289), Solanum tuberosum StRAP2.12 (XP_006342909), Prunus salicina PsERF2a (ACM49847), Nelumbo nucifera NnRAP2.12 (XP_010273830), Malus domestica MdRAP2.12 (NP_001280975), Arabidopsis AtRAP2.12 (NP_175794) and AtRAP2.2 (NP_566482). Identical amino acids are shown with asterisks. AP2/ERF domain is indicated in square. (B) Phylogenetic tree of petunia PhERF2 aligned with Arabidopsis group VII ERFs and homologs from other plant species. Phylogenetic relationship of PhERF2 with Arabidopsis AtRAP2.12 (NP_175794), AtRAP2.2 (NP_566482), AtERF71 (NP_182274), AtRAP2.3 (NP_188299), AtERF73 (NP_001077812), Petunia × hybrida PhERF3 (ADP37418), Solanum lycopersicum SlJERF1 (NP_001234513), Capsicum annuum CaPF1 (AAP72289), Nicotiana tabacum NtCEF1 (AAP40022), Solanum tuberosum StRAP2.12 (XP_006342909), Prunus salicina PsERF2a (ACM49847), Nelumbo nucifera NnRAP2.12 (XP_010273830), Malus domestica MdRAP2.12 (NP_001280975). PhERF2 is highlighted with doubled underlines. PhERF3, one paralog of PhERF2 in petunia, was used for VIGS control in this study and marked with a dashed line. The tree was constructed using the neighbor-joining method with MEGA software (version 4.0.2). Arabidopsis AtERF1 (NP_567530), one member of group IX ERFs, was used as the out-group. Boot-strap values were generated with 1000 replicates and shown at corresponding branch nodes.

Fig. S3. A proposed model for the roles of PhERF2 in antiviral RNA silencing. Expression of *PhERF2* is induced by multiple factors, including ethylene, SA, MeJA, ABA, cold, high salinity and water deficit. PhERF2 positively influences RDR2, RDR6, DCL2, AGO2 expressions to improve siRNAs accumulation and enhance RNA silencing, which may trigger a broad resistance to TRV and CMV infections.

Primer name	Accession no.	5'—3'	Product size
vigsPhERF2(F1)	HQ259596	GGTGGTGCTATAATTTCCGATTA	291bp
vigsPhERF2(R1)		AGCATCCTTCTCTGAATCAGCAG	
vigsPhERF2(F2)	HQ259596	AACCTGAGGAATGGCTATTATGA	339bp
vigsPhERF2(R2)		GTTTCCATCATCAGCTACTGGAT	
vigsPhERF3(F1)	HQ259597	GAATTTGAAGCTGACTTTCAGGA	246bp
vigsPhERF3(R1)		ATAAGCTCTGGCAGCTTCTTCTG	
PDS(F1)	AY593974	CAGTGCTTCTTGATCGCTTTGAA	138bp
PDS(R1)		TCTGACTTGGCCACCTTTTGACT	
PDS(F2)	AY593974	CGAATAAGAAAGATCGAGCTGAA	130bp
PDS(R2)		CAGGCAAAAGAAGCTTGAAAATA	
CHS(F1)	X14599	ACCATTGGGCATTTCTGACTGGA	197bp
CHS(R1)		ATGAAGCCTTTCTCATTTCATCC	
CHS(F2)	X14599	CTTGGATAGTTTGGTTGGACAAG	202bp
CHS(R2)		AGGAACATCTTTGAGCAAGTGAA	
TRV1(F1)	AF406990	CAGTCTATACACAGAAACAGA	463bp
TRV1(R1)		GACGTGTGTACTCAAGGGTT	
TRV2(F1)	AF406991	GGTTACTAGCGGCACTGAATAGA	225bp
TRV2(R1)		TAGTACTCCCTTGGTTCGTCGTA	
TRV2(F2)	AF406991	ACGGACGAGTGGACTTAGATTC	Depending on the inserted fragment
TRV2(R2)		GTTTAATGTCTTCGGGACATGC	
RDR1(F1)	CV299561	TCATGATGTCACAATTGAGGAAG	271bp
RDR1(R1)		TTCGGAGTGATAGGTTGTCTTGT	
RDR2(F1)	FN008007	ACGATATGGTGGTTACAAAGGTG	190bp
RDR2(R1)		ATCCTCCACTCCCAAAGTAGAAA	
RDR6(F1)	GT007757	TTTGCTGATCGGGAACTATTAAA	277bp
RDR6(R1)		CATATGACTTTCTTGCCACTTCC	
DCL1(F1)	FN028672	GGAGAAAGTTGAACAGGATGATG	412bp
DCL1(R1)		CAACATCGACATCCAATACAATG	
DCL2(F1)	FN020290	TGGAACCTCTGACATCGTAGAAT	322bp
DCL2(R1)		ATATTCTGGAGGAAGAAGCCATC	
DCL3(F1)	GBDQ010379 61	GGAGACTTGTAAATTCTACGATC	206bp

 Table S1. Primers used for semi-quantitative and real-time quantitative RT-PCR.

DCL3(R1)		TTTCAAGGCAACACAATATCTTT	
DCL4(F1)	FN002500	AGGATATGATGAAACACCCTGTG	222bp
DCL4(R1)		TAGCCTTTGAACCTGCATTAGAG	
AGO1(F1)	CV298592	TCTATCAAAGTATCCGCCCTACA	246bp
AGO1(R1)		CTTGAGATGTTAAACCCGAGATG	
AGO2(F1)	FN018838	GTTCATCGGAGCTGATGTTAATC	371bp
AGO2(R1)		GAAATAGCCGTGTATGGTGTCTC	
AGO4(F1)	FN031884	GGAGGGTCCTAGATAGAGTGCAT	368bp
AGO4(R1)		ATGCTGCCTCAAGATTATATCCA	
rnaiPhERF2(F1)	HQ259596	ATACTAGTGGCGCGCCAACCTGAGGAA TGGCTATTA	371bp
rnaiPhERF2(R1)		ATGGATCCATTTAAATGTTTCCATCATCA GCTACTG	
oePhERF2(F1)	HQ259596	ATCTCGAGATGTGTGGTGGTGCTATAAT	1159bp
oePhERF2(R1)		ATGAGCTCTTAGTAGACACCTCCCATCA	
CMVcp(F1)	EU315691	ACTGGTTTATCAGTACGCTGCAT	150bp
CMVcp(R1)		ACTAACTCGTCTGTCTCGAGTGC	
26S rRNA(F1)	AF479174	AGCTCGTTTGATTCTGATTTCCAG	185bp
26S rRNA(R1)		GATAGGAAGAGCCGACATCGAAGG	

	Flower longevity (days ±SD)	
Wild-type	6.94 ± 0.58	
PhERF2-RNAi (#1)	6.88 ± 0.65	
PhERF2-RNAi (#4)	6.81±0.56	
PhERF2-OE (#C)	7.06±0.46	
PhERF2-OE (#D)	6.94 ± 0.68	
PhERF2-OE (#I)	7.00±0.43	

Table S2. The longevity of attached flowers from WT, *PhERF2*-RNAi and -overexpressing (OE) lines.

Ten flowers from three individual plants for each line were used for studying flower longevity. The time from anthesis to completed wilting of the corolla was recorded. No differences among all the lines tested were observed.