
The emergence of latent infection in the early evolution of Mycobacterium
tuberculosis

Supplementary material

Rebecca H. Chisholm∗† and Mark M. Tanaka∗†

∗School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia
† Evolution & Ecology Research Centre, University of New South Wales, Sydney 2052, Australia

This supplementary material includes Figures S1–S3, Table S1 and we address the following matters.

A. We outline the details of the computational algorithm.

B. We provide an analysis of the continuum limit of the discrete model that we have simulated,
showing how the integrodifferential equation model emerges under appropriate approximations.

C. We derive a mathematical expression for the basic reproductive number R0

D. We outline the invasion analysis of our model which shows that a strain with the highest R0

drives all other strains to extinction

E. We analyse the topography of R0 which allows us to predict the outcome of an evolution
experiment

F. We discuss our assumptions regarding how the fitness landscape changed due to evolution of
the interaction between M. tuberculosis and human hosts

G. We outline the technical details of our simulations which were performed in Matlab

H. Caption for the electronic supplementary material, movie S1

A. Computational model of M. tuberculosis evolution

The computational algorithm is shown schematically in Figure. S1. Individual agents in the agent-
based computational model represent a human host infected by a particular strain of M. tuberculosis.
Infections are classified as either active or latent, and are further characterised by two characters
x ∈ [0, 1] and y ∈ [0, 1] that represent the infecting strain’s respective level of potential latency and
the probability that the infecting strain enters a latent state upon infection.

Evolution of the system is simulated in discrete time (with time-step length τ). During each time
step, each agent undergoes a random walk in a discretised two-dimensional phenotype space (with
lattice spacing ∆), followed by stochastic switching between classes of infection, and then the birth
and death of agents with phenotype-dependent death rates and phenotype- and density-dependent
transmission rates. The random walk captures stochastic variation in an infecting M. tuberculosis
strain’s phenotype due to genetic mutations or epimutations, while the birth and death of agents
models the introduction of new infections (due to transmission events) and the loss of infections (due
to recovery and host death) from the system.

In the details that follow, i, j and n are integers (where i and j are trait position coordinates
such that x = i∆ and y = j∆, and n is a discrete time point), the random variables Ln(i, j) and
An(i, j) are the respective number of latent agents and active agents of phenotype (x, y) = (i∆, j∆)
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Figure S1: Flow chart describing the decision process for each infection in the agent-based model, with

diamonds representing decisions, green arrows meaning the conditions are satisfied, and red meaning the

condition is not met. First, infecting strains undergo stochastic incremental changes in phenotype at rate µ.

Second, active infections can regress to latency at rate ω or latent infections can reactivate at a rate a. Third,

infections are lost if the host dies or recovers from the infection. This occurs at a rate λ(x) = γ(x) +θ(x) for

latent strains and λ(0) = γ(0) + θ(0) for active strains. Finally, current infections can cause new infections,

with the rate of transmission of a latent infecting strain β(x)Sn/N being dependent on its potential degree

of latency x as well as the fraction of susceptible hosts Sn/N , while the rate of transmission of an active

infecting strain is β(0)Sn/N . A new infection will be either active or latent depending on the phenotype of

the infecting strain y.
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at discrete time n, and the random variable Sn is the total number of susceptible agents in the system
at discrete time n computed as Sn = N −

∑
i

∑
j[Ln(i, j) + An(i, j)], where N ∈ N is the infection

carrying capacity.
In the computational algorithm, infecting strains are first allowed to mutate (or epimutate) which

results in incremental changes to the strain’s character. This is implemented as a random walk on
the phenotype lattice such that (i, j)→ (i+ 1, j), (i, j + 1), (i− 1, j) or (i, j − 1) during a time step
with respective probability µτ/4, so agents actually move with probability µτ and pause instead
with probability 1 − µτ . We constrain the trait variables of each agent x ∈ [0, 1] and y ∈ [0, 1] by
implementing reflecting boundary conditions – if an agent at the boundary of the phenotypic domain
chooses to move outside of the domain then that move is aborted and the agent retains its trait
values for the duration of the time step.

Following this step, active infections regress into the latent state with probability ωτ and latent
infections reactivate with probability aτ .

During the last part of each time step, infections will either

1. cause a new infection due to a transmission event with probability τβ(x)Sn/N for latent infec-
tions and probability τβ(0)Sn/N for active infections (where β(x) and β(0) are the respective
transmission rates of a latent and active infecting strain with phenotype (x, y) in a completely
susceptible host population);

2. be lost due to host recovery or host death with probability τλ(x) = τγ(x) + τθ(x) for latent
infections and probability τλ(0) = τγ(0) + τθ(0) for active infections (where γ(x) and θ(x) are
the respective host-recovery and host-death rates for latent strains with phenotype (x, y) and
γ(0) and θ(0) are the respective host-recovery and host-death rates for all active strains);

3. do nothing with probability 1 − τ [β(x)Sn/N − λ(x)] for latent infections and probability 1 −
τ [β(0)Sn/N − λ(0)] for active infections.”

We make the assumption that new infections always inherit the phenotype (x, y) of the infecting
strain. However, new infections will be initially active with probability 1− y, while with probability
y a new infection will be initially latent. For our simulations we chose a decreasing β(x) since we
expect that more latent infections will always be less transmissible for M. tuberculosis.

Of interest are the values of the population mean trait values, given respectively by

〈xn〉 =
1

N − Sn

∑
i

∑
j

i∆[Ln(i, j) + An(i, j)],

〈yn〉 =
1

N − Sn

∑
i

∑
j

j∆[Ln(i, j) + An(i, j)].

These determine the evolutionary trajectory of the population of infections through time.
Finally, we consider only cases where

a > 0, ω > 0, θ(x) > 0, γ(x) ≥ 0, β(x) ≥ 0, 0 ≤ y ≤ 1. (A.1)

These assumptions correspond to scenarios where there are non-zero activation, regression and host-
death rates, but where the recovery rate and transmission rate can be zero. In the algorithm, τ is
chosen small enough so that quantities interpreted as probabilities fall within the interval (0, 1).
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B. Continuum model of M. tuberculosis evolution

An analysis of the continuum limit of the discrete model that we have simulated is now provided and
shows how the integrodifferential equation model emerges under appropriate approximations.

We denote by I(q, p) an indicator random variable associated with an event q involving a sin-
gle agent, which takes the value 1 with probability p and is zero otherwise. The event q may be
subscripted. In a sum over k involving qk, the events for distinct values of k are assumed indepen-
dent. Even if bearing the same value of the subscript, events appearing in summations with different
dummy indices of summation are also assumed independent (an abuse of notation that avoids ugly
symbolism).

We denote by L‡n(i, j) the number of latent agents with phenotype (i, j) when the agents have just
updated their phenotype due to (epi)mutations (that occur at a rate P = µτ per time step) before
any active/latent subpopulation switching has occurred, and before any transmission or infection-loss
events have occurred. Then

L‡n(i, j) = Ln(i, j) +

Ln(i+1,j)∑
`=1

I(q`, P/4) +

Ln(i−1,j)∑
r=1

I(qr, P/4)

+

Ln(i,j+1)∑
d=1

I(qd, P/4) +

Ln(i,j−1)∑
u=1

I(qu, P/4)−
Ln(i,j)∑
k=1

I(ωk, P ),

where the sum over ` accounts for the movement choices of latent agents at phenotype (i + 1, j)
(who must move left to become of phenotype (i, j)), the sum over r accounts for the movement
choices of agents at phenotype (i − 1, j) (who must move right to become of phenotype (i, j)), the
sum over d accounts for the movement choices of agents at phenotype (i, j + 1) (who must move
down to become of phenotype (i, j)), the sum over u accounts for the movement choices of agents at
phenotype (i, j − 1) (who must move up to become of phenotype (i, j)) and the sum over k accounts
for those agents currently of phenotype (i, j) that mutate. Averaging over many statistically identical
realisations (denoted by angle brackets), we find that

〈L‡n(i, j)〉 = 〈Ln(i, j)〉 − P 〈Ln(i, j)〉
+ P/4{〈Ln(i+ 1, j)〉+ 〈Ln(i− 1, j)〉+ 〈Ln(i, j + 1)〉+ 〈Ln(i, j − 1)〉}. (B.1)

Analogously, if we denote by A‡n(i, j) the number of active agents with phenotype (i, j) when the
agents have just updated their phenotype due to (epi)mutations, before any active/latent subpop-
ulation switching has occurred, and before any transmission or infection loss events have occurred,
then it can be shown that

〈A‡n(i, j)〉 = 〈An(i, j)〉 − P 〈An(i, j)〉
+ P/4{〈An(i+ 1, j)〉+ 〈An(i− 1, j)〉〈An(i, j + 1)〉+ 〈An(i, j − 1)〉}. (B.2)

We now consider the stochastic switching of agents between the active and latent subpopulations.
Latent agents switch to active agents with probability aτ while active agents switch to latent agents
with probability ωτ . If L‡n(i, j) = φ and A‡n(i, j) = ξ then the expected number of latent agents of
phenotype (i, j) that switch to the active subpopulation after the stochastic switching stage at time
n is aτφ, while the expected number of active agents of phenotype (i, j) that switch to the latent
subpopulation after the stochastic switching stage at time n is ωτξ. Hence, if we denote by L∗n(i, j)
the number of latent agents with phenotype (i, j) when the agents have just undergone active/latent
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subpopuation switching, and before any transmission or infection-loss events have occurred, we find
that

〈L∗n(i, j)〉 =
∑
ξ

∑
φ

[
(1− aτ)φ+ ωτξ

]
Pr{L‡n(i, j) = φ,A‡n(i, j) = ξ}.

Analogously, if we denote by A∗n(i, j) the number of active agents with phenotype (i, j) when the
agents have just undergone active/latent subpopuation switching, and before any transmission or
infection-loss events have occurred, we find that

〈A∗n(i, j)〉 =
∑
ξ

∑
φ

[
(1− ωτ)ξ + aτφ

]
Pr{L‡n(i, j) = φ,A‡n(i, j) = ξ}.

Hence we find that

〈L∗n(i, j)〉 = (1− aτ)〈L‡n(i, j)〉+ ωτ〈A‡n(i, j)〉, (B.3)

〈A∗n(i, j)〉 = (1− ωτ)〈A‡n(i, j)〉+ aτ〈L‡n(i, j)〉. (B.4)

We now consider the transmission and infection loss events for current agents. We denote by βn(i)
and λn(i) the respective transmission and infection loss rates for current latent agents at time step n
with phenotype coordinate (i, j). Similarly, we denote by βn(0) and λn(0) the respective transmission
and infection loss rates for current active agents at time step n with phenotype coordinate (i, j). For
each latent agent we assume the agent either:

(i) divides into two latent agents with phenotype (i, j) with probability

τj∆βn(i)S(
∑
i

∑
j

[L∗n(i, j) + A∗n(i, j)]);

(ii) divides into one latent agent and one active agent with phenotypes (i, j) with probability

τ(1− j∆)βn(i)S(
∑
i

∑
j

[L∗n(i, j) + A∗n(i, j)]);

(iii) is lost with probability τλn(i);

(iv) does nothing (and so remains in place) with probability

1− τβn(i)S(
∑
i

∑
j

[L∗n(i, j) + A∗n(i, j)])− τλn(i).

For each active agent we assume the agent either:

(i) divides into two active agents with phenotype (i, j) with probability

τ(1− j∆)βn(0)S(
∑
i

∑
j

[L∗n(i, j) + A∗n(i, j)]);

(ii) divides into one latent agent and one active agent with phenotypes (i, j) with probability

τj∆βn(0)S(
∑
i

∑
j

[L∗n(i, j) + A∗n(i, j)]);
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(iii) is lost with probability τλn(0);

(iv) does nothing (and so remains in place) with probability

1− τβn(0)S(
∑
i

∑
j

[L∗n(i, j) + A∗n(i, j)])− τλn(0).

We remark that
∑

i

∑
j[L
∗
n(i, j) +A∗n(i, j)] is a random variable for which the expected value is taken

as %(t) in the continuum limit, and our primary interest is in the case S(%) = 1− %/N .
If
∑

i

∑
j[L
∗
n(i, j) + A∗n(i, j)] = η, L∗n(i, j) = ν and A∗n(i, j) = ψ then the expected number of

latent agents of phenotype (i, j) at time n+ 1 is

〈Ln+1(i, j)〉 =
∑
η,ψ,ν

(
ν
[
1 + j∆τβn(i)S(η)− τλn(i)

]
+ ψj∆τβn(0)S(η)

)
× Pr{L∗n(i, j) = ν,A∗n(i, j) = ψ,

∑
i

∑
j

[L∗n(i, j) + A∗n(i, j)] = η},

and the expected number of active agents of phenotype (i, j) at time n+ 1 is

〈An+1(i, j)〉 =
∑
η,ψ,ν

(
ψ
[
1 + (1− j∆)τβn(0)S(η)− τλn(0)

]
+ ν(1− j∆)τβn(i)S(η)

)
× Pr{L∗n(i, j) = ν,A∗n(i, j) = ψ,

∑
i

∑
j

[L∗n(i, j) + A∗n(i, j)] = η}.

We now invoke a single probabilistic approximation, which is of the mean-field type frequently
used for the analysis of agent-based systems: in the summands we replace

S(η) = S(
∑
i

∑
j

[L∗n(i, j) + A∗n(i, j)]),

by

S(〈
∑
i

∑
j

[L∗n(i, j) + A∗n(i, j)]〉),

and we note that as

〈
∑
i

∑
j

[L∗n(i, j) + A∗n(i, j)]〉 = 〈
∑
i

∑
j

[Ln(i, j) + An(i, j)]〉 = %

(since the transition from Ln(i, j) to L∗n(i, j) and from An(i, j) to A∗n(i, j) in the simulation does not
change total agent numbers) we have

〈Ln+1(i, j)〉 ≈
[
1 + j∆τβn(i)S(%)− τλn(i)

]
〈L∗n(i, j)〉+ j∆τβn(0)S(%)〈A∗n(i, j)〉, (B.5)

〈An+1(i, j)〉 ≈
[
1 + (1− j∆)τβn(0)S(%)− τλn(0)

]
〈A∗n(i, j)〉+ (1− j∆)τβn(i)S(%)〈L∗n(i, j)〉. (B.6)

If we eliminate 〈L‡n(i, j)〉, 〈A‡n(i, j)〉, 〈L∗n(i, j)〉 and 〈A∗n(i, j)〉 from Eqs (B.1)–(B.6) and take
t = nτ , x = ∆i, y = ∆j, ∆2L(x, y, t) = 〈Ln(i, j)〉 and ∆2A(x, y, t) = 〈An(i, j)〉 we have

L(x, y, t+ τ) =
{

1 + τyβn(i)S(%)− τλn(i)− aτ + aτ
[
τyβn(0)S(%)− yτβn(i)S(%) + τλn(i)

]}
×
{

(1− P )L(x, y, t) + P/4
[
L(x+ ∆, y, t) + L(x−∆, y, t) + L(x, y + ∆, t) + L(x, y −∆, t)

]}
+
{
τyβn(0)S(%) + ωτ + ωτ

[
τyβn(i)S(%)− τλn(i)− yτβn(0)S(%)

]}
×
{

(1− P )A(x, y, t) + P/4
[
A(x+ ∆, y, t) +A(x−∆, y, t) +A(x, y + ∆, t) +A(x, y −∆, t)

]}
,
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A(x, y, t+ τ) =
{

1 + τ(1− y)βn(0)S(%)− τλn(0)− ωτ + ωτ
[
τ(1− y)βn(i)S(%)− (1− y)τβn(0)S(%) + τλn(0)

]}
×
{

(1− P )A(x, y, t) + P/4
[
A(x+ ∆, y, t) +A(x−∆, y, t) +A(x, y + ∆, t) +A(x, y −∆, t)

]}
+
{
τ(1− y)βn(i)S(%) + aτ + aτ

[
τ(1− y)βn(0)S(%)− τλn(0)− (1− y)τβn(i)S(%)

]}
×
{

(1− P )L(x, y, t) + P/4
[
L(x+ ∆, y, t) + L(x−∆, y, t) + L(x, y + ∆, t) + L(x, y −∆, t)

]}
.

Expanding L and A as Taylor series we have

L(x, y, t+ τ) =
{

1 + τyβn(i)S(%)− τλn(i)− aτ + aτ
[
τyβn(0)S(%)− yτβn(i)S(%) + τλn(i)

]}
×
{

(L(x, y, t) +
P∆2

4

[
∂2L

∂x2
+
∂2L

∂y2

]
+ o(∆2)

}
+
{
τyβn(0)S(%) + ωτ + ωτ

[
τyβn(i)S(%)− τλn(i)− yτβn(0)S(%)

]}
×
{
A(x, y, t) +

P∆2

4

[
∂2A

∂x2
+
∂2A

∂y2

]
+ o(∆2)

}
,

A(x, y, t+ τ) =
{

1 + τ(1− y)βn(0)S(%)− τλn(0)− ωτ + ωτ
[
τ(1− y)βn(i)S(%)− (1− y)τβn(0)S(%) + τλn(0)

]}
×
{
A(x, y, t) +

P∆2

4

[
∂2A

∂x2
+
∂2A

∂y2

]
+ o(∆2)

}
+
{
τ(1− y)βn(i)S(%) + aτ + aτ

[
τ(1− y)βn(0)S(%)− τλn(0)− (1− y)τβn(i)S(%)

]}
×
{
L(x, y, t) +

P∆2

4

[
∂2L

∂x2
+
∂2L

∂y2

]
+ o(∆2)

}
.

Hence, writing βn(i) = β(x) and λn(i) = λ(x),

L(x, y, t+ τ)− L(x, y, t)

τ
=
P∆2

4τ

[
∂2L

∂x2
+
∂2L

∂y2

]
+ o
(∆2

τ

)
+ [yβ(x)S(%)− λ(x)− a+ aτyβ(0)S(%)

− ayτβ(x)S(%) + aτλ(x))]×
[
L(x, y, t) +

P∆2

4

[
∂2L

∂x2
+
∂2L

∂y2

]
+ o(∆2)

]
+ [yβ(0)S(%) + ω + ωτyβ(x)S(%)− ωyτβ(0)S(%)− ωτλ(x)]

×
[
A(x, y, t) +

P∆2

4

[
∂2A

∂x2
+
∂2A

∂y2

]
+ o(∆2)

]
,

A(x, y, t+ τ)−A(x, y, t)

τ
=
P∆2

4τ

[
∂2A

∂x2
+
∂2A

∂y2

]
+ o
(∆2

τ

)
+ [(1− y)β(0)S(%)− λ(0)− ω + ωτ(1− y)β(x)S(%)

− ω(1− y)τβ(0)S(%) + ωτλ(0)]×
[
A(x, y, t) +

P∆2

4

[
∂2A

∂x2
+
∂2A

∂y2

]
+ o(∆2)

]
+ [(1− y)β(x)S(%) + a+ aτ(1− y)β(0)S(%)− a(1− y)τβ(x)S(%)− aτλ(0)]

×
[
L(x, y, t) +

P∆2

4

[
∂2L

∂x2
+
∂2L

∂y2

]
+ o(∆2)

]
.

To facilitate the emergence of a sensible continuum limit we assume that

lim
∆,τ→0

P∆2

4τ
= D,

and so

∂L

∂t
= D∇2L+

[
−a+ lim

∆,τ→0

(
yβ(x)S(%)− λ(x)

)]
L+

[
ω + lim

∆,τ→0

(
yβ(0)S(%)

)]
A,

∂A

∂t
= D∇2A+

[
−ω + lim

∆,τ→0

(
(1− y)β(0)S(%)− λ(0)

)]
A+

[
a+ lim

∆,τ→0

(
(1− y)β(x)S(%)

)]
L,

7



where

%(t) =

∫ ∞
−∞

∫ ∞
−∞

[L(x, y, t) + A(x, y, t)]dxdy. (B.7)

For our simulations
S(%) = 1− %/N

and we arrive at the system of integrodifferential equations

∂L

∂t
= L(x, y, t)

(
yβ(x)S(%)︸ ︷︷ ︸

transmission from
latent infection

− γ(x)︸︷︷︸
recovery

− θ(x)︸︷︷︸
host

death

− a︸︷︷︸
reactivation

)

+ A(x, y, t)
(

yβ(0)S(%)︸ ︷︷ ︸
transmission from
active infection

+ ω︸︷︷︸
regression

)
+D∇2L(x, y, t),︸ ︷︷ ︸

stochastic variation
in phenotype

∂A

∂t
= A(x, y, t)

(
(1− y)β(0)S(%)︸ ︷︷ ︸

transmission from
active infection

− γ(0)︸︷︷︸
recovery

− θ(0)︸︷︷︸
host

death

− ω︸︷︷︸
regression

)

+ L(x, y, t)
(

(1− y)β(x)S(%)︸ ︷︷ ︸
transmission from
latent infection

+ a︸︷︷︸
reactivation

)
+D∇2A(x, y, t).︸ ︷︷ ︸

stochastic variation
in phenotype

(B.8)

The preceding analysis should be performed on the finite domain (x, y) ∈ [0, 1]2, with τ chosen
small enough so that quantities interpreted as probabilities fall in the interval (0, 1). We have found
that a close quantitative correspondence between simulations of the agent-based model on the finite
phenotypic domain (x, y) ∈ [0, 1]2 and numerical solutions of the integrodifferential equation model
(B.7)–(B.8) can be found by imposing zero-Neumann boundary conditions (compare Panels A, C
and E in Figure 2 with those in Figure S2) and choosing a lattice spacing ∆ = 0.01 and time step
τ = 0.01. Although the link between the agent-based and continuum models requires ∆ → 0+ and
τ → 0+.

Of interest are the values of the average population mean trait values, given respectively by

〈x(t)〉 =
1

%(t)

∫ 1

0

∫ 1

0

x[L(x, y, t) + A(x, y, t)]dxdy,

〈y(t)〉 =
1

%(t)

∫ 1

0

∫ 1

0

y[L(x, y, t) + A(x, y, t)]dxdy.

It can be shown that A(·, ·, t) + L(·, ·, t) remains bounded in our model. We assume A(x, y, t = 0)
and L(x, y, t = 0) are non-negative functions with compact support in L1 ∩ L∞(Ω), zero-Neumann
boundary conditions, the parameter functions β(·), γ(·) and θ(·) are sufficiently smooth, and there
exists some non-negative real constants β, β, γ, γ, θ and θ such that

0 ≤ β ≤ β(·) ≤ β <∞, 0 ≤ γ ≤ γ(·) ≤ γ <∞, 0 < θ ≤ θ(·) ≤ θ <∞.

In our model, A and L are non-negative. If we sum the two PDE equations in the model (B.8)
together to obtain

∂(L+ A)

∂t
= L[β(x)S(%)− γ(x)− θ(x)] + A[β(0)S(%)− γ(0)− θ(0)] +D∇2(L+ A),
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and substitute the definition

S(%) := 1− %(t)

N
with %(t) =

∫ ∫
Ω

[
L(x, y, t) + A(x, y, t)

]
dxdy,

into the above equation we achieve

d%

dt
=

∫ ∫
Ω

{
L
[
β(x)

(
1− %

N

)
− γ(x)− θ(x)

]
+ A

[
β(0)

(
1− %

N

)
− γ(0)− θ(0)

]}
dxdy,

Because of the non-negativity of A and L, we have

d%

dt
≤
∫ ∫

Ω

[
Lβ(x)

(
1− %

N

)
+ Aβ(0)

(
1− %

N

)]
dxdy −

(
γ + θ

)
%.

Hence, if %(t) = N ,
d%(t)

dt
≤ −(θ + γ) %(t) < 0.

The above differential inequality allows us to conclude that %(t) ≤ N for all t > 0 andA(·, ·, t) + L(·, ·, t)
is bounded in L1(Ω) for all t ≥ 0.

C. Derivation of the basic reproductive number R0

The next generation method [1] is used to derive the basic reproductive number R0 when the
phenotype-space length scale of the discrete stochastic model approaches zero ∆ → 0+. This tech-
nique is suitable for models where there are more than one class of infectives.

Following the method outlined in [1], we define FL(L(x, y), A(x, y)) to be the rate of appearance
of new individual infections in the latent population with phenotype (x, y), and FA(L(x, y), A(x, y))
to be the rate of appearance of new individual infections in the active population with phenotype
(x, y) so that

FL(L(x, y), A(x, y)) = yβ(x)L(x, y) + yβ(0)A(x, y)

FA(L(x, y), A(x, y)) = (1− y)β(x)L(x, y) + (1− y)β(0)A(x, y).

We also define

VL(L(x, y), A(x, y)) := V −L (L(x, y), A(x, y))− V +
L (L(x, y), A(x, y)),

where V +
L (L(x, y), A(x, y)) is the rate of transfer of individual infections into the latent population

with phenotype (x, y) by all other means and V −L (L(x, y), A(x, y)) is the rate of transfer of individual
infections out of the latent population with phenotype (x, y). Similarly, we define

VA(L(x, y), A(x, y)) := V −A (L(x, y), A(x, y))− V +
A (L(x, y), A(x, y)),

where V +
A (L(x, y), A(x, y)) is the rate of transfer of individual infections into the active population

by all other means and V −A (L(x, y), A(x, y)) is the rate of transfer of individual infections out of the
active population so that

VL(L(x, y), A(x, y)) = L(x, y)[λ(x) + a+ µ]− ωA(x, y)

− µ

4
[L(x+ ∆, y) + L(x−∆, y) + L(x, y + ∆) + L(x, y −∆)],

VA(L(x, y), A(x, y)) = A(x, y)[λ(0) + ω + µ]− aL(x, y)

− µ

4
[A(x+ ∆, y) + A(x−∆, y) + A(x, y + ∆) + A(x, y −∆)].
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Figure S2: The basic reproductive number R0 of a pathogen acts as a heuristic for predicting evolu-
tionary trajectories. When R0 has the form shown in Eq. (1) either active disease is favoured (A); an
intermediate level of latency is favoured with slow progression (C); or latency is favoured with slow pro-
gression, (E). Panels B, D, and F display a density plot of the equilibrium phenotype distribution (i.e.,
L(x, y, 2000) +A(x, y, 2000)) for the cases corresponding to the respective fitness landscapes shown in Pan-
els A, C and E. Panels A, C and E also display the trajectories of the average population mean trait values
computed from numerical solutions of the integrodifferential equation model (Eq. (2)) as coloured dotted
lines superimposed over the associated density plot of R0. The initial population mean trait values of the
populations are indicated by their respective coloured “s”. The integrodifferential equation model cannot
capture extinction. Therefore all of the average population mean trait values of the pathogen populations
stabilise in the region of the global maximum of R0. The black lines indicate the contour R0 = 1. The forms
of parameters as functions of potential latency x and other parameter values are provided in Section G.
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Here, λ(·) = γ(·) + θ(·). Expanding L and A as Taylor series we have

VL(L(x, y), A(x, y)) = L(x, y)[λ(x) + a+ µ]− ωA(x, y)

− µ

4
[4L(x, y) + ∆2∂

2L

∂x2
(x, y) + ∆2∂

2L

∂y2
(x, y) + o(∆2)],

VA(L(x, y), A(x, y)) = A(x, y)[λ(0) + ω + µ]− aL(x, y)

− µ

4
[4A(x, y) + ∆2∂

2A

∂x2
(x, y) + ∆2∂

2A

∂y2
(x, y) + o(∆2)].

When we take the limit ∆→ 0+ we see that

VL(L(x, y), A(x, y)) = L(x, y)[λ(x) + a]− ωA(x, y),

VA(L(x, y), A(x, y)) = A(x, y)[λ(0) + ω]− aL(x, y).

We form the next generation matrix operator FV −1 from the matrices of partial derivatives of
FL, FA, VL and VA:

F =

[
∂LFL ∂AFL
∂LFA ∂AFA

]
=

[
yβ(x) yβ(0)

(1− y)β(x) (1− y)β(0)

]
,

V =

[
∂LVL ∂AVL
∂LVA ∂AVA

]
=

[
λ(x) + a −ω
−a λ(0) + ω

]
.

and then calculate R0 as the largest eigenvalue of the matrix FV −1. We find that

R0(x, y) =
{β(x)[λ(0)y + ω] + β(0)[a+ (1− y)λ(x)]}

aλ(0) + λ(x)[ω + λ(0)]
. (C.1)

To interpret the meaning of R0, we rewrite Equation (C.1) in the following form:

R0(x, y) = (1− y)︸ ︷︷ ︸
probability a new
infection is active

{
β(0)

λ(0) + ω
(

λ(x)
λ(x)+a

)
︸ ︷︷ ︸

expected number of secondary
cases due to an active infection

+

(
ω

λ(0) + ω

)
︸ ︷︷ ︸

probability of
regression

× β(x)

λ(x) + a
(

λ(0)
λ(0)+ω

)
︸ ︷︷ ︸

expected number of secondary
cases due to a latent infection

}
,

+ y︸︷︷︸
probability a new
infection is latent

{
β(x)

λ(x) + a
(

λ(0)
λ(0)+ω

)
︸ ︷︷ ︸

expected number of secondary
cases due to a latent infection

+

(
a

λ(x) + a

)
︸ ︷︷ ︸

probability of
activation

× β(0)

λ(0) + ω
(

λ(x)
λ(x)+a

)
︸ ︷︷ ︸

expected number of secondary
cases due to an active infection

}
, (C.2)

where, the terms
λ(x)

λ(x) + a
,

λ(0)

λ(0) + ω
,

can be interpreted as the respective probabilities that latent infections do not reactivate, and active
infections do not regress to latency. Contributions to the basic reproductive number can be sepa-
rated into those coming from active infections [top line of Equation (C.2)] and those coming from
latent infections [bottom line of Equation (C.2)]. We see that the active infection contribution is
proportional to the probability a new infections is active and a quantity that is made up the expected
number of secondary cases due to an active infection, plus the probability of regression multiplied
by the expected number of secondary cases due to a latent infection. Similarly, the latent infection
contribution is proportional to the probability a new infections is latent and a quantity that is made
up the expected number of secondary cases due to a latent infection, plus the probability of activation
multiplied by the expected number of secondary cases due to an active infection.
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D. Invasion analysis

To study the long-term dynamics of our model, we perform an invasion analysis. We are interested in
determining the fate of a resident strain once a mutant strain appears in the population of infections.

We consider a resident strain and mutant strain with respective phenotypes (x1, y1) and (x2, y2).
A1 and L1 represent the respective number of active and latent infections of the resident strain, while
A2 and L2 denote the respective number of active and latent infections of the mutant strain.

In this setting, resident strains have a transmission rate β1 = β(x1), recovery rate γ1 = γ(x1) and
host-death rate θ1 = θ(x1). Similarly, mutant strains have a transmission rate β2 = β(x2), recovery
rate γ2 = γ(x2) and host-death rate θ2 = θ(x2). For convenience we define β0 = β(0), θ0 = θ(0),

γ0 = γ(0), λ0 = θ0 + γ0, λ1 = θ1 + γ1, λ2 = θ2 + γ2, R
(1)
0 = R0(x1, y1) and R

(2)
0 = R0(x2, y2) (where

R0 is defined as in Equation (C.1)).
The dynamics are governed by the following system of equations:

dA1

dt
= A1

{
(1− y1)β0 [1− (A1 + A2 + L1 + L2)/N ]− λ0 − ω

}
+ L1

{
(1− y1)β1 [1− (A1 + A2 + L1 + L2)/N ] + a

}
, (D.1)

dL1

dt
= L1

{
y1β1 [1− (A1 + A2 + L1 + L2)/N ]− λ1 − a

}
+ A1

{
y1β0 [1− (A1 + A2 + L1 + L2)/N ] + ω

}
, (D.2)

dA2

dt
= A2

{
(1− y2)β0 [1− (A1 + A2 + L1 + L2)/N ]− λ0 − ω

}
+ L2

{
(1− y2)β2 [1− (A1 + A2 + L1 + L2)/N ] + a

}
, (D.3)

dL2

dt
= L2

{
y2β2 [1− (A1 + A2 + L1 + L2)/N ]− λ2 − a

}
+ A2

{
y2β0 [1− (A1 + A2 + L1 + L2)/N ] + ω

}
. (D.4)

Consistent with the stochastic computational model outlined in Section A [conditions (A.1)], we
consider only the cases where

N > 0, a > 0, ω > 0, λi > 0 for i = 0, 1, 2, β0 > 0, βi ≥ 0 for i = 1, 2, 0 ≤ yi ≤ 1 for i = 1, 2.
(D.5)

We determine the conditions which allow the resident strain to survive and drive the mutant
strain to extinction by considering the stability of the critical point

(A1, L1, A2, L2) = (A,L, 0, 0), with A > 0 and L > 0. (D.6)

First of all we obtain expressions for A and L based on the parameters of the problem, by substituting
Equation (D.6) into Equations (D.1)–(D.4) with dA1

dt
= 0, dL1

dt
= 0, dA2

dt
= 0 and dL2

dt
= 0 to obtain

0 = A
{

(1− y1)β0 [1− (A+ L)/N ]− λ0 − ω
}

+ L
{

(1− y1)β1 [1− (A+ L)/N ] + a
}
, (D.7)

0 = A
{
y1β0 [1− (A+ L)/N ] + ω

}
+ L

{
y1β1 [1− (A+ L)/N ]− λ1 − a

}
. (D.8)

Adding together Equations (D.7) and (D.8), we see that

1− A+ L

N
=
λ0A+ λ1L

Aβ0 + Lβ1

. (D.9)
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Combining Equations (D.7) and (D.9) we obtain

A = L

(
a+ λ1(1− y1)

λ0y1 + ω

)
. (D.10)

Combining Equations (D.10) and (D.9) we arrive at

1− A+ L

N
=

λ0(a+ λ1) + λ1ω

β0[a+ λ1(1− y1)] + β1(λ0y1 + ω)
=

1

R
(1)
0

. (D.11)

Since we are interested in the case where A > 0 and L > 0, Equation (D.11) implies that

1 > 1− A+ L

N
=

1

R
(1)
0

⇒ R
(1)
0 > 1.

After some algebra the following expressions determine the critical point

A = N

(
1− 1

R
(1)
0

)(
a+ λ1(1− y1)

λ0y1 + ω + a+ (1− y1)λ1

)
,

L = N

(
1− 1

R
(1)
0

)(
ω + λ0y1

λ0y1 + ω + a+ (1− y1)λ1

)
. (D.12)

We see that when the conditions (D.5) hold, this critical point is non-trivial only when R
(1)
0 > 1.

Next we determine the Jacobian matrix J for our system at the critical point given by Eq. (D.6):

J =
(1− y1)(β0/R

(1)
0 − Z)− λ0 − ω a+ (1− y1)(β1/R

(1)
0 − Z) −(1− y1)Z −(1− y1)Z

y1(β0/R
(1)
0 − Z) + ω −a+ y1(β1/R

(1)
0 − Z)− λ1 −y1Z −y1Z

0 0 (1− y2)β0/R
(1)
0 − λ0 − ω (1− y2)β2/R

(1)
0 + a

0 0 y2β0/R
(1)
0 + ω y2β2/R

(1)
0 − a− λ2

 ,

(D.13)

where

Z =
Aβ0 + Lβ1

N
=

(R
(1)
0 − 1)[λ0(a+ λ1) + λ1ω]

λ0y1 + ω + a+ (1− y1)λ1

.

Notice that Z > 0 when R
(1)
0 > 1. The eigenvalues of this matrix E1, E2, E3, E4 can inform us about

the stability of the critical point. In this case they take the form

E1 =
1

2

(
−c1 +

√
c2

1 − 4c2

)
, E2 =

1

2

(
−c1 −

√
c2

1 − 4c2

)
, (D.14)

and

E3 =
1

2

(
−c3 +

√
c2

3 − 4c4

)
, E4 =

1

2

(
−c3 −

√
c2

3 − 4c4

)
, (D.15)

where

c1 = Z + a+ λ0 + λ1 + ω − 1

R
(1)
0

[β0(1− y1) + β1y1]

c2 = Z[a+ y1λ0λ1(1− y1) + ω]− 1

R
(1)
0

[aβ0 + y1β1λ0 + (1− y1)β0λ1 + β1ω] + λ1(λ0 + ω) + aλ0,

c3 = a+ λ0 + λ2 + ω − 1

R
(1)
0

[β0(1− y2) + β2y2],

c4 = − 1

R
(1)
0

[aβ0 + y2β2λ0 + (1− y2)β0λ2 + β2ω] + λ2(λ0 + ω) + aλ0.
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If the the real part of each eigenvalue is negative, then the critical point is linearly stable. If c2 < 0,
<[E1] > 0 and if c4 < 0, <[E3] > 0. Therefore, a necessary condition for stability is that c2 > 0 and
c4 > 0. After some algebra, it can be shown that

• c2 > 0 always hold true when our model conditions (D.5) hold and when R
(1)
0 > 1, which it

must for the critical point to remain nontrivial;

• c4 > 0 when R
(1)
0 > R

(2)
0 .

Furthermore, it can also be shown that

• c1 > 0 always holds true when our model conditions (D.5) hold;

• if R
(1)
0 > R

(2)
0 , c3 > 0 when our model conditions (D.5) hold.

When c1 > 0, c2 > 0, c3 > 0 and c4 > 0, the real part of each eigenvalue E1, E2, E3, E4 is negative.
Therefore, the critical point given by Eq. (D.6) is nontrivial when R

(1)
0 > 1, and stable when

R
(1)
0 > R

(2)
0 . As we expected, the resident strain survives and drives the mutant strain to extinction

when its basic reproductive number is greater than that of the mutant strain.

E. Analysis of the basic reproduction number R0

In the analysis that follows, we assume the model conditions (A.1) hold true.
Internal stationary points of R0 [given by Eq. (C.1)] occur when ∇R0 = 0, i.e., when

β′(x)λ(x)− λ′(x)β(x) = a[β(0)λ′(x)−β′(x)λ(0)]
ω+λ(0)

, (E.1)

β(x)λ(0) = β(0)λ(x). (E.2)

Here, λ(·) = γ(·) + θ(·). These conditions require β(·) and λ(·) to be C1 in the domain x ∈ [0, 1]
and correspond respectively to the cases ∂xR0 = 0 and ∂yR0 = 0. Since there is no y dependence in
either condition, if an internal stationary point exists it will be a line x = x∗ where 0 < x∗ < 1. If,
on the other hand, no internal stationary points exist, then the Global Maximum of R0 (GMR) will
occur along the boundary of the phenotypic domain. Hence, to determine the GMR, we only need
to consider R0 along the edges y = 0 and y = 1. We note that Eq. (E.2) is always satisfied at x = 0.
Therefore, R0 is always constant along the line x = 0.

If a stationary point exists at (x, y) = (x∗, y∗), it will be a local maximum if ∂xxR0(x∗, y∗) < 0,
which occurs when

β′′(x∗) < β′(x∗)λ′′(x∗)/λ′(x∗). (E.3)

If Conditions (E.1)–(E.3) hold for an x∗ such that 0 < x∗ < 1 (which requires β(·) and λ(·) to be
twice differentiable at x = x∗), then the GMR will occur along the line x = x∗. However, when
Eq. (E.2) holds, R0(0, 0) = R0(x∗, 0). Hence, for this case, a GMR can only occur along the line
x = x∗ if x = 0 is also a GMR.

If any of the Conditions (E.1)–(E.3) are not satisfied, then the GMR will occur somewhere along
the edges y = 0 or y = 1, and to determine its position will require comparing the values of R0(0, 0),
R0(0, 1), R0(1, 0), R0(1, 1), R0(x∗, 0) and R0(x∗, 1), where x∗ gives the position of any local maxima
along either edge that satisfy Eq. (E.1) for 0 < x∗ < 1, as well as Condition (E.3).
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Evaluating R0 at the corner positions of the phenotypic domain reveals that:

R̂0(1, 1) > R̂0(1, 0) > R̂0(0, 1) = R̂0(0, 0), if β(1)
λ(1)

> β(0)
λ(0)

, (E.4)

R̂0(1, 1) = R̂0(1, 0) = R̂0(0, 1) = R̂0(0, 0), if β(1)
λ(1)

= β(0)
λ(0)

, (E.5)

R̂0(0, 1) = R̂0(0, 0) > R̂0(1, 0) > R̂0(1, 1), if β(1)
λ(1)

< β(0)
λ(0)

. (E.6)

Therefore, for the case when @ x∗ : 0 < x∗ < 1 that satisfies Conditions (E.1) and (E.3), we see that
if

1. (E.4) holds true, the GMR occurs at (x, y) = (1, 1);

2. (E.5) holds true, the GMR occur at x = 1 and x = 0;

3. (E.6) holds true, the GMR occurs at x = 0;

When ∃ x∗ : 0 < x∗ < 1 that satisfies Conditions (E.1) and (E.3), local stationary points occurs at
x∗ along the edges y = 0 and y = 1. In this case we see that

R̂0(x∗, 1) > R̂0(x∗, 0), if β(x∗)
λ(x∗)

> β(0)
λ(0)

, (E.7)

R̂0(x∗, 1) = R̂0(x∗, 0), if β(x∗)
λ(x∗)

= β(0)
λ(0)

, (E.8)

R̂0(x∗, 1) < R̂0(x∗, 0), if β(x∗)
λ(x∗)

< β(0)
λ(0)

. (E.9)

There are nine possible ways to combine Conditions (E.4)–(E.9) when ∃ x∗ : 0 < x∗ < 1 that satisfies
Conditions (E.1) and (E.3). In this case, we see that if

1. (E.4) and (E.9) also hold true, the GMR occurs at (x, y) = (1, 1) (as R0(0, 0) > R0(x∗, 0) when
(E.9) holds);

2. (E.6) and (E.7) also hold true, the GMR occurs at (x, y) = (x∗, 1) (as R0(x∗, 1) > R0(0, 1)
when (E.7) holds);

3. (E.6) and (E.9) also hold true, the GMR occurs at x = 0 (as R0(0, 0) > R0(x∗, 0) when (E.9)
holds);

4. (E.4) and (E.7) also hold true, and
(

a
λ(0)+ω

)
{λ(0)[β(1)− β(x∗)] + β(0)[λ(x∗)− λ(1)]} < β(x∗)λ(1)− λ(x∗)β(1), (x, y) = (x∗, 1) is the GMR;(

a
λ(0)+ω

)
{λ(0)[β(1)− β(x∗)] + β(0)[λ(x∗)− λ(1)]} = β(x∗)λ(1)− λ(x∗)β(1), (x, y) = (1, 1), (x∗, 1) are GMR;(

a
λ(0)+ω

)
{λ(0)[β(1)− β(x∗)] + β(0)[λ(x∗)− λ(1)]} > β(x∗)λ(1)− λ(x∗)β(1), (x, y) = (1, 1) is the GMR;

5. (E.4) and (E.8) also hold true, the GMR occurs at (x, y) = (1, 1) (as R0(0, 0) = R0(x∗, 0) when
(E.8) holds);

6. (E.6) and (E.8) also hold true, the GMR occur at x = 0 and x = x∗ (as R0(0, 0) = R0(x∗, 0)
when (E.8) holds);

7. (E.5) and (E.7) also hold true, the GMR occurs at (x, y) = (x∗, 1) (as R0(x∗, 1) > R0(0, 1)
when (E.7) holds);
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8. (E.5) and (E.9) also hold true, the GMR occur at x = 0 and x = 1 (as R0(0, 0) > R0(x∗, 0)
when (E.9) holds);

9. (E.5) and (E.8) also hold true, the GMR occur at x = 0, x = x∗ and x = 1 (as R0(0, 0) =
R0(x∗, 0) when (E.8) holds);

From the above analysis we can conclude that there are three main types of possible GMR and
that these can occur at (x, y) = (1, 1), (x, y) = (x∗, 1) or x = 0. If a GMR exists at x = 0 then it is
also possible to have additional global maxima at x = x∗ and/or x = 1. It is also possible to have
multiple concurrent GMR at (x, y) = (1, 1) and (x, y) = (x∗, 1).

If we view R0 as an M. tuberculosis fitness landscape, then these results correspond to the following
evolutionary scenarios. Either:

• latency is favoured with slow progression;

• an intermediate degree of latency is favoured with slow progression;

• active disease is favoured and the speed of progression is not under selection;

• active disease and either full or intermediate degrees of latency are equally favoured with no
selective pressure on the speed of progression;

• active disease, intermediate degrees of latency and full latency are equally favoured with no
selective pressure on the speed of progression;

• intermediate degrees of latency and full latency are equally favoured with slow progression.

Therefore, slow progression (y = 1) is favoured when some degree of latency is the optimal persis-
tence strategy. Intuitively this makes sense as it is not logical for a pathogen to cause active disease
in a newly infected host when latency is favoured. However, if active disease is favourable, then
there is no selective pressure on the speed of progression, since the potential degree of latency of an
adapted pathogen will be very close to its realised infection phenotype in the active state. In this
case, the fitness cost of leaving the active state will be minimal.

We can also conclude that Condition (E.4) corresponds to a necessary (but not sufficient) condition
for latency to be uniquely favoured, Condition (E.9) corresponds to a necessary (but not sufficient) for
fully active infection to be uniquely favoured, and Condition (E.7) is a necessary (but not sufficient)
condition for intermediate latency of degree x = x∗ to be uniquely favoured.

A reasonable assumption to make for a typical pathogen is that the transmission rate is a de-
creasing function of latency: β′(·) < 0. In this case, the conditions for an internal maxima of R0 at
x = x∗ [Conditions (E.1)–(E.3)] can only be satisfied if λ′(x∗) < 0. Furthermore, if λ′′(x∗) < 0, then
β′′(x∗) < 0 must also hold true. In this scenario, the necessary condition for full latency (x = 1) to be
favoured [Condition (E.4)] will only hold true if λ(1) < λ(0), while the necessary condition for partial
latency (x = x∗, 0 < x∗ < 1) to be favoured [Condition (E.7)] can only be satisfied if λ(x∗) < λ(0).

Now we determine the conditions under which the GMR exists at phenotype coordinates which
make survival possible for a pathogen. Persistence (or sustained transmission) is only possible if the
GRM is greater than unity. If the GMR occurs at (x∗, 1), then R0 > 1 when β(x∗) > λ(x∗). If the
GMR occurs at (1, 1), then R0 > 1 when β(1) > λ(1). Finally, if the GMR occurs at x = 0, then
R0 > 1 when β(0) > λ(0).

From Eq. (C.1) it is clear that R0 varies linearly in y. For a given value of potential latency x,
the gradient of R0 in the y direction is determined by the transmission and loss functions β(·) and
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λ(·):

∂R0

∂y
=

λ(0)β(x)− β(0)λ(x)

aλ(0) + (λ(0) + ω)λ(x)
. (E.10)

∂xR0 has a more complicated form:

∂R0

∂x
=

[λ(0)y + ω] [β′(x)(aλ(0) + (λ(0) + ω)λ(x))− λ′(x)(aβ(0) + (λ(0) + ω)β(x))]

[aλ(0) + (λ(0) + ω)λ(x)]2
. (E.11)

However, it is straightforward to see that for a given probability y that an infecting strain enters a
latent state upon infection, the gradient of R0 in the x direction is always steepest when y = 1 since

∂R0

∂x
(x, y) =

∂R0

∂x
(x, 1)

(
ω + yλ(0)

ω + λ(0)

)
. (E.12)

Furthermore, active strains (x = 0) will initially incur a fitness cost if they adapt a more latent
phenotype (i.e., ∂xR0(0, y) < 0) when

β′(0)λ(0) < λ′(0)β(0).

However, Eq. (E.12) tells us that this cost is minimised for strains which always transmit in an active
state (y = 0) and if λ(0)� ω.

Therefore, if adopting latency properties initially comes at a cost to active strains, then those
strains which are mostly causing active disease and which have very low rates of regression relative to
their infection loss rate, will be able to accumulate latency properties and avoid the negative effects
of selection which would otherwise significantly affect their fitness.

F. Dynamic fitness landscape

To study the evolution of tuberculosis latency, we consider two alternative possible fitness landscapes
for different periods in the history of TB in human populations: 1. when M. tuberculosis can be
considered as an emerging infectious disease with a short history of association with human hosts
(landscape 1); 2. when M. tuberculosis can be considered as a specialised human pathogen with a
long history of association with human hosts (landscape 2). We assume that the second landscape
evolves from the first landscape due to evolution of the interaction between host and M. tuberculosis
precursor that affects the ability of a host with a latent infection to recover from (or clear) the
infection.

When the pathogen has a relatively short history of association with the host (landscape 1), we
assume that x, the degree of latency of a latent infection, has an inverse relationship to the pathogen’s
growth rate, so that the host will more easily recover from a latent infection than an active infection.
As the association between the host and pathogen continues, we propose that the pathogen’s ability
to manipulate the host immune response in the latent state and the host’s ability to contain the
infection evolve so that the clearance rate for latent infections begins to decrease. This continues
until the host recovery rate in the latent state becomes less than that in the active state (landscape
2). In this case x becomes a measure of the degree of manipulation of the host immune response.

For our simulations, we modelled this evolution with the following functional form of the host-
recovery rate:

γ(x; η, ε) = ε

(
1 +

η

1 + e−20(x−0.3)

)
, ε ≥ 0, −1 ≤ η ≤ 1. (F.1)
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Figure S3: Fitness landscape modification due to evolution of host-pathogen interactions. Evolution is
modelled as a decrease in η which modifies the shape of the host recovery rate [Eq. (F.1)] as shown in Panel
A. Panels B–F display the fitness landscape for η = 1, 0.5, 0,−0.5,−1 respectively with ε = 0.05 and the
black lines indicate the contour R0 = 1. If evolution of the interaction progresses far enough, active infection
stops being the optimal persistence strategy for M. tuberculosis. Instead, an intermediate degree of latency
is favoured, although a valley in the fitness landscape may interfere with active infections adopting latency
properties. The forms of parameters as functions of potential latency x and other parameter values are
provided in Section G.

For η > 0, γ(x) is increasing and x is inversely related to a latent pathogen’s growth rate. Evolution
of the host-pathogen interaction is modelled as a decrease in η. When η < 0, γ(x) is decreasing and x
is a measure of the degree of manipulation of the host immune response by a latent infection. These
ideas are illustrated in Figure S3 where we plot the evolving fitness landscape as η decreases from 1
to −1 for a given value of ε.

We modelled landscapes 1 and 2 using the extreme values η = 1 and η = −1, while for both
periods in the history of association between M. tuberculosis and humans we choose a decreasing
β(·) and decreasing θ(·), since we expect that, in general, more latent infections will always be less
transmissible and less virulent for M. tuberculosis.

Today, tuberculosis is considered a life-long disease. However, the M. tuberculosis precursor
that first encountered humans likely caused only sporadic infection in its human hosts much like
opportunistic environmental mycobacteria today [2]. Environmental mycobacteria tend to infect
immunocompromised hosts more so than immunocompetent hosts [3]. Therefore, we assume that
recovery from infection by the M. tuberculosis precursor was possible, and choose an ε with the same
order of magnitude as the other epidemiological parameters. However, if we were to model the future
evolution of tuberculosis we should consider γ′(·) < 0 with ε� 1.
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G. Details of simulations

Numerical computations were performed in Matlab. We selected a uniform discretisation on the
interval (x, y) ∈ [0, 1]2 as the phenotype domain (lattice spacing ∆ = 10−2), and the interval t ∈ [0, T ]
as the time domain (time-step length τ = 10−2 years). The values of all other parameters and func-
tional forms used in the agent-based computational model and the integrodifferential equation model
are listed below. Time is considered here in units of years, while all rates (β, θ, γ, µ, a and ω) have
units year−1, e.g., a = 0.01 represents a reactivation rate of 0.01 infections per year.

Figure 2 and Figure S2. S0 = N − 20, T = 2× 103, (a)–(b) β(x) = 0.55/(1 + e8(x−0.3)), γ(x) =
0.1 + 0.1/(1 + e−20(x−0.3)), θ(x) = 0.02 + 0.3/(1 + e20(x−0.4)), ω = 0.3, a = 0.01, µ = 1, N = 1000;
(c)–(d) β(x) = 0.2/(1 + e10(x−0.6)), γ(x) = 0.25/(1 + e−5(x−0.9)), θ(x) = 0.02 + 0.3/(1 + e7(x−0.1)),
ω = 0.2, a = 0.01, µ = 3/

√
10, N = 100; (e)–(f) β(x) = 0.05 + 0.21/(1 + e2(x−0.95)), γ(x) = 0.05,

θ(x) = 0.02 + 0.2/(1 + e7(x−0.6)), ω = 0.2, a = 0.01, µ = 1, N = 200; (b) γ̄(x) = 0.1/(1 + e20(x−0.3))
(grey dash-dot line).

Figure 3. a = 0.01, µ = 1, N = 105, S0 = N − 20, T = 5× 103, β(x) = 0.55/(1 + e8(x−0.3)),
γ(x) = 0.1/(1 + e20(x−0.3)), θ(x) = 0.02 + 0.3/(1 + e20(x−0.4)). (a) ω = 0.3; (b) ω = 0.05.

Figure S3. β(x) = 0.55/(1 + e8(x−0.3)), γ(x) = 0.05(1 + η/(1 + e−20(x−0.3))), θ(x) = 0.02 + 0.3/(1 +
e20(x−0.4)), a = 0.01, ω = 0.3, (a) η ∈ {1, 0.5, 0,−0.5,−1}; (b) η = 1; (c) η = 0.5; (d) η = 0; (e)
η = −0.5; (f) η = −1.

Movie S1. a = 0.01, µ = 1, N = 105, S0 = N − 20, T = 5× 103, β(x) = 0.55/(1 + e8(x−0.3)),
γ(x) = 0.1/(1 + e20(x−0.3)), θ(x) = 0.02 + 0.3/(1 + e20(x−0.4)), ω = 0.05.
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Table S1: Values of model parameters used in the simulations of the emergence of latency shown in Figure 3.
Parameter Symbol Value Source

Mutation rate µ 1 per year¶ [4]
Activation rate a 0.01 per year [5]
Regression rate ω 0.30 per year† [5, 6, 7]
Host death rate with active infection θ(0) 0.32 per year∗ [8]
Host natural death rate θ(1) 0.02 per year‡,∗ [5, 7]
Host transmission rate in active state β(0) 0.50 per year∗ chosen so R0(x, y) > 1 for x = 0
Host transmission rate in latent state β(1) 0 per year∗ assume no transmission from latent hosts
Host recovery rate with active infection γ(0) 0.10 per year∗ [9]
Host recovery rate with latent infection (short history of association) γ(1) 0.20 per year∗

Host recovery rate with latent infection (long history of association) γ(1) 0 per year∗ assume life-long infection for latent hosts
Maximum susceptible host population size§ N 105 [10]
Phenotype length scale ∆ 0.01 arbitrary choice

¶ Roughly the rate of single nucleotide polymorphisms per genome
† ω = 0.05 per year for the case where latency emerges
‡ Same as latently-infected host death rate
∗ These values are rounded for display, all other values are exact.
§ Calculated as 10 × effective size of hunter-gatherer populations



H. Caption for electronic supplementary material, movie S1

One simulation of the model showing how active pathogens can cross a fitness valley to reach a
higher peak at latency by cryptically accumulating costly latency properties. Here, the population
of infections is superimposed over the density plot of the fitness landscape R0. A red dot represents
one active infection, a blue represents one latent infection and infection phenotypes are indicated by
their positions on the landscape.
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