Observing Metal-catalyzed Chemical Reactions in situ using Surface-enhanced Raman Spectroscopy on Pd-Au Nanoshells

Kimberly N. Heck, Benjamin G. Janesko, Gustavo E. Scuseria, Naomi J. Halas, Michael S. Wong

Supplementary Information

Description of DFT calculations on chemisorbed 1,1-DCE

All calculations were performed with a development version of the Gaussian electronic structure program ¹. Calculations use the B3LYP ²⁻⁵ density functional, with (unless noted otherwise) the LANL2DZ basis set and effective core potential ⁶⁻⁸ on Pd and the 6-31+G(d,p) basis on other atoms. Calculations use "Tight" convergence criteria for SCF iterations and geometry optimizations, and a pruned (99,590) "UltraFine" integration grid. No solvent model is included. All systems are assumed to be in the lowest possible spin state, and singlet calculations are spin-restricted. Spatial symmetry is ignored except where noted. Calculated vibrational frequencies are scaled by a factor of 0.98 as recommended in Ref. 9. Table S1 compares experimental (CCCBDB, Ref. 12) and calculated vibrational frequencies for 1,1-DCE evaluated using various basis sets. The 6-31+G(d,p) basis provides a reasonable compromise between accuracy and efficiency, with a mean absolute error (MAE) of 26 cm⁻¹ versus experiment. This is deemed sufficient for the desired semiquantitative interpretations of experiment.

Table S1: Calculated (B3LYP) and experimental vibrational frequencies of 1,1-DCE, and assignments.

Symm	Assignment	Exptl	LANL2DZ	6-31+G(d,p)	6-311++G(3df,3pd)
A1	C-H symmetric stretch	3035	3127	3123	3109
A1	C-C stretch	1627	1635	1635	1627
A1	CH ₂ bend	1400	1396	1380	1383
A1	C-Cl symmetric stretch	603	533	585	588
A1	CCl ₂ bend	299	276	296	295
A2	CH ₂ twist	686	675	676	686
B1	CH ₂ wag	875	931	875	897
B1	CCl ₂ wag	460	428	463	471
B2	C-H antisymmetric stretch	3130	3236	3219	3203
B2	C-C-H bend, C-Cl stretch	1095	1079	1073	1080
B2	C-Cl antisymmetric stretch	800	706	755	756
B2	Cl-C-C bend	372	357	373	374
MAE			44	26	23

Table S2 presents calculated frequencies of the Raman-active C-C stretch and CH_2 bend vibrational modes of 1,1-DCE and various substitution products bound to Pd clusters. These vibrational modes are marked in bold in Table S1. (All calculated modes involve some coupling between C-C stretching and CH_2 bending, and are tabulated based on the dominant contribution.) The calculated Raman activities (not shown) are always appreciable for both modes. The C-C stretch frequency has previously been shown to provide a sensitive probe of ethylene adsorption geometry 10 . We find that the C-C stretch frequency dramatically decreases as DCE goes from free, to π -bound, to di- σ -bound, while the CH_2 bend frequency is not significantly affected. The intense SERS peaks seen experimentally below ~1200 cm $^{-1}$ are most consistent with di- σ -coordinated DCE.

The calculated vibrational frequencies of a mono-dechlorinated product obtained by replacing one Cl atom with Pd are rather strongly dependent on the cluster model.

Neutral 1-chloro-1-palladio-ethylene is a radical with a Cl-C-Pd angle (121°) close to the

Cl-C-Cl angle in 1,1-DCE (114°), and with C-C stretch and CH₂ bend frequencies similar to π-bound DCE. In contrast, the corresponding closed-shell cation has a much smaller Cl-C-Pd angle (93°), and C-C stretch and CH₂ bend frequencies similar to gas-phase DCE. The calculated Raman spectra (not shown) have several other intense peaks below 1000 wavenumber, suggesting that the mono-dechlorinated product may be rather uncommon in the experimental spectra. Calculations on monodechlorinated DCE on larger Pd cluster models tended to converge to geometries with dissociated C-Cl bonds, providing additional evidence that the monodechlorinated product is unstable.

The vibrational spectrum of fully dechlorinated vinylidene (C=CH₂) bound to Pd also shows some dependence on the binding motif. A neutral two-atom Pd cluster gives neutral, closed-shell 1,1-di-palladio-ethylene, with calculated C-C stretch and CH₂ bend frequencies comparable to 1,1-DCE. We also explored vinylidene bound to atop, bridge, and threefold sites of a neutral tetrahedral Pd₄ cluster. The threefold site is most energetically stable, as seen by Clotet and coworkers ¹¹, with bridge and atop sites calculated 12 and 45 kcal/mol higher in energy. The calculated C-C stretch frequency is significantly reduced for the threefold site, and significantly increased for the atop site. These calculations suggest that the Raman-active C-C stretch vibration of chemisorbed vinylidene may occur between 1350 and 1700 cm⁻¹, with the lower end corresponding to more highly coordinated (and presumably more realistic) models. The calculations also suggest that high-frequency modes 1800-2000 cm⁻¹ may correspond to CH₂ bending vibrations of surface-bound vinylidene.

Table S2: Selected vibrational frequencies calculated for adsorbates on Pd cluster models.

1
nd

Figure S1. SEM images of (a) Au NSs and (b) Pd/Au NSs, and (c) EDS of Pd/Au NSs (Inset: Pd region).

Figure S2. Schematic of flow chamber.

Figure S3. Waterfall plot of chemisorption of 254.4 μ M 1,1-DCE followed by the addition of 81 mM H₂ in H₂O: (a) 1,1-DCE solution injected at t=0, H₂ in H₂O added after 30 minutes, and (b) series of SERS spectra before and after addition of H₂ in H₂O.

Figure S4. Waterfall plot of chemisorption of 254.4 μ M 1,1-DCE followed by the addition of N₂ saturated water. 1,1-DCE solution injected at t=0, N₂ saturated water added after 30 minutes.

Figure S5. Waterfall plot of chemisorption of 254.4 μM 1,1-DCE over Au NSs.

References

- 1. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., et al., Gaussian Development Version, Revision F.02, Gaussian, Inc.: Wallingford CT, 2006.
- 2. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J., *J. Phys. Chem.* **1994,** 98, 11623.
- 3. Becke, A. D., *J. Chem. Phys.* **1993**, 98, 5648.
- 4. Lee, C. T.; Yang, W. T.; Parr, R. G., *Phys. Rev. B* **1988**, 37, 785.
- 5. Vosko, S. H.; Wilk, L.; Nusair, M., Can. J. Phys. 1980, 58, 1200.
- 6. Hay, P. J.; Wadt, W. R., J. Chem. Phys. 1985, 82, 270.
- 7. Hay, P. J.; Wadt, W. R., J. Chem. Phys. **1985**, 82, 284.
- 8. Hay, P. J.; Wadt, W. R., J. Chem. Phys. 1985, 82, 299.
- 9. Cardini, G.; Muniz-Miranda, M.; Pagliai, M.; Schettino, V., *Theor. Chem. Acc.* **2007,** 117, 451.
- 10. Stuve, E. M.; Madix, R. J., *J. Phys. Chem.* **1985**, 89, 3183.
- 11. Clotet, A.; Ricart, J. M.; Pacchioni, G., *J. Mo/. Struct. (THEOCHEM)* **1999,** 458, 123.
- 12. NIST Computational Chemistry Comparison and Benchmark DataBase, NIST Standard Reference Database Number 101, Release 14, September 2006, Editor: Russell D. Johnson III, http://srdata.nist.gov/cccbdb