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Supplemental Figures 53	  
 54	  
 55	  
Figure S1. A priori defined region of interest (ROI).  56	  
 57	  

 58	  
 59	  
A. Midbrain (SN/VTA) ROI depicted in blue on a magnetic transfer imaging scan. The SN/VTA 60	  
complex is visible as a light grey band. As adaptive coding effects are likely to be subtle, we 61	  
constructed maximum sensitive ROIs by using a functional ROI that was restricted by anatomical 62	  
boundaries in line with the procedure by Gruber et al. (2014). We traced the SN/VTA complex (light 63	  
grey band) on a normalized magnetic transfer image acquired using the same MRI scanner as the 64	  
functional MR images. Subsequently, we inclusively masked the anatomical ROI with clusters of 65	  
significant prediction error related activation reported in a recent meta-analysis (data provided by 66	  
Garrison et al., 2013). B. Ventral striatal ROI (blue). The ventral striatal ROI was traced on the average 67	  
T1 scan of our participants following the definition of the ventral striatum by Laruelle et al. (Martinez 68	  
et al., 2003). As with the SN/VTA ROI, we inclusively masked this anatomical ROI with prediction 69	  
error related activation reported in a recent meta-analysis (data provided by Garrison et al., 2013).  70	  
 71	  
 72	  
Figure S2. Main model parameters fitted to participants’ behavior for separate SD conditions 73	  
 74	  
A     Bayes  B       RW  C        PH  D       Adaptive PH 75	  

 76	  
A. In the Bayesian model, the free parameter 𝜎" indicated participants’ estimates of the variance 77	  
associated with each SD condition. Here we plot the standard deviation, i.e., the square root of the 78	  
variance. Participants’ estimates of the variance increased in parallel with actual increases in reward 79	  
variance. B. Fitted Rescorla-Wagner (RW) constant learning rates decreased when SD increased, in 80	  
line with behavioral adaptation and the (initial) learning rates estimated for the non-adaptive Pearce-81	  
Hall model (supplemental experimental material). C. The gradual decay in learning rate as described in 82	  
the Pearce-Hall (PH) model did not vary between SD conditions, indicating that the effect of trial 83	  
number did not interact with SD. D. The free parameter 𝜈 indicates the extent to which participants 84	  
scaled their prediction errors in the adaptive PH model (supplemental experimental procedures). A 85	  
parameter value of 0 indicates absence of prediction error scaling, whereas a value of 1 indicates that 86	  
participants divide their value by the log(SD) of reward distributions. * denotes significant; N.S., not 87	  
significant. SD, standard deviation; RW, Rescorla-Wagner; PH, Pearce-Hall; PE, prediction error. 88	  
Boxplots indicate the minimum and maximum parameter estimates excluding outliers, the lower and 89	  
upper quartile and the median (red line).  90	  
 91	  
 92	  
 93	  
 94	  
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 95	  
 96	  
Figure S3. R2 values from linear regressions where modeled predictions from the non-adaptive (Eq. 4) 97	  
and adaptive (Eq. 5) Pearce-Hall models were the independent variables and participants’ predictions 98	  
were the dependent variable. Although the differences between the R2 for the two models are subtle, 99	  
most participants’ predictions were better explained by the adaptive Pearce-Hall model. Indeed, 100	  
predictions generated by the adaptive PH model were a significantly better predictor of participants’ 101	  
predictions than the non-adaptive PH model (T(26) = 2.56, p = 0.0083). Blue/ grey dots represent 102	  
participants whose behavior was best predicted by the adaptive/ non-adaptive Pearce-Hall model. 103	  
 104	  
 105	  
 106	  
 107	  
Supplemental Tables 108	  
 109	  
 110	  
Table S1: Description of free parameters fitted for each model per SD condition.  111	  
 112	  
Model #Φ Parameters 
Bayes 2 𝜎&", σ" 
RW 1 α 
PH 
Adaptive PH  

2 
3 

α, γ 
α, γ, υ 

See Fig. S2 for the main parameter estimates per SD condition.  113	  
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Supplemental Experimental Procedures 135	  
 136	  

Participants. We recruited twenty-seven healthy volunteers (11 male; 16 female) through 137	  
local advertisements. Participants were between 18 and 41 (mean 24.49, s.e.m. 1.06) years of age; they 138	  
were fluent English speakers and did not have a history of a neurological or psychiatric illness or drug 139	  
abuse.	  This study was approved by the Local Research Ethics Committee of the Cambridgeshire Health 140	  
Authority. After description of the study to the Participants, written informed consent was obtained. 141	  
 142	  

Reward distributions. All reward distributions contained 21 rewards which were drawn 143	  
without replacement, thus ensuring that each participant received the same rewards. Each participant 144	  
completed three task sessions of 10 min each during fMRI data acquisition. Every session used two 145	  
reward distributions drawn pseudo randomly from the six distributions, resulting in 42 trials per session 146	  
(i.e., 21 trials per distribution; 2 distributions per session). The order of rewards within a distribution 147	  
was counterbalanced over participants. Importantly, both the EV and the SD of the two distributions 148	  
within a session were different, and each distribution occurred only once per participant.  Distributions 149	  
were presented in short blocks of 4-6 trials. There were six possible pairs of distributions, of which 150	  
each participant saw three pairs (i.e., 1 pair per session). Fourteen participants were presented with the 151	  
first combination of pairs (SD5 EV35 and SD10 EV65, SD10 EV35 and SD15 EV65, SD15 EV35 and 152	  
SD5 EV65). The remaining thirteen participants performed the second combination (SD 5 EV35 and 153	  
SD15 EV65, SD10 EV35 and SD5 EV65, SD15 EV35 and SD10 EV65). The order of rewards within a 154	  
condition was pseudo-randomized. First, we randomized the rewards within a condition using Matlab. 155	  
Subsequently, we ensured that outliers did not occur in succeeding trials. All distributions had zero 156	  
skewness, no tails and non-significant deviation from normality (Shapiro-Wilk; p = 0.54, 0.89 and 0.92 157	  
for SD's of £5, £10 and £15). However, they were slightly less ‘peaked’ than a true Gaussian 158	  
distribution as indicated by a kurtosis of 2.6 (SD 5), 2.6 (SD 10) and 2.57 (SD 15). 159	  
  160	  

Instructions. We indicated to the participants that rewards were drawn from ‘pots’ (i.e., 161	  
distributions) with a small, medium or large degree of variability as indicated by the bar cues. 162	  
Furthermore, we informed participants that each of the three task sessions required them to 163	  
alternatingly predict from one of two ‘pots’ (distributions) resulting in a total of six different pots 164	  
(small variability N=2; medium variability N=2 and large variability N=2). We explicitly stated that all 165	  
changes in condition would be signalled using the bar cues. Participants were only ignorant about the 166	  
exact parameter values (i.e., the EVs and SDs used as well as the frequency of alternation between the 167	  
two distributions within a session). Debriefing after the experiment revealed that participants believed 168	  
that each of the six distributions had a different EV. We informed the participants that the goal of the 169	  
experiment was to predict the next reward as closely as possible from the past reward history.  As the 170	  
imposed variability would render it unlikely for participants to achieve full accuracy predicting 171	  
upcoming rewards, we instructed participants to minimize their total error over all trials. 172	  

 173	  
Practice sessions. To familiarize participants with a trackball mouse, participants completed a 174	  

short motor task prior to the main task. In each trial (total of 90 trials) participants were required to 175	  
scroll to a specific number on the scale, indicated in green on top of the scale. In addition, participants 176	  
completed two behavioral training sessions prior to the fMRI experiment using rewards drawn from 177	  
distributions with a different SD (i.e., £7 and £14) and EV (i.e., £30 and £60). We proceeded to the 178	  
fMRI experiment if participants were fully aware of all task contingencies except for the exact SDs and 179	  
EVs used. 180	  
 181	  
 Control trials. We pseudo randomly interspersed, unannounced control trials (20% of all 182	  
trials) into the main task to ensure that participants revealed their true reward predictions. Pay-off in 183	  
these control trials depended on performance (|prediction - EV|). Prediction error magnitude within one 184	  
or two SDs of the EV resulted in a pay-off of £7.50 and £5.00, respectively. All other predictions led to 185	  
a pay-off of £2.50. As in the main trials, the monitor displayed the reward drawn by the computer after 186	  
the participant had indicated the prediction. However, the reward was shown in red to signal that in this 187	  
trial prize money/ pay-off depended on participants’ performance. Thus, importantly, there was no 188	  
indication about the control trial at the time the participants stated their predictions, encouraging 189	  
participants to optimize their performance on all trials.  190	  
 191	  

Reward process. The reward 𝑥 on every trial is drawn from a distribution with a Gaussian 192	  
prior 𝑥 ∼ 𝒩 𝜇, 𝜎" . In the main text, we refer to the expected value (EV = 𝜇) and to the standard 193	  
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deviation (SD = 𝜎) of the reward. On trial n, participants predict to receive reward 𝑦6 and they observe 194	  
the prediction error 𝛿6 = 𝑥6 − 	  𝑦6.  195	  
 196	  

Models. We consider cases, in which the participants’ predictions are assumed to result from a 197	  
recursive generative process, 𝑦6 = 𝑦6:; + 𝑘6𝛿6, where 𝑘6 denotes the Kalman gain (i.e., learning 198	  
rate).  199	  

 200	  
1. Bayesian mean tracker. Optimal performance on this task is achieved through accurate estimation of 201	  
the EV of the reward. An optimal estimator of the Gaussian prior 𝜇 is derived from Bayes’ rule. The 202	  
conjugate prior is	  𝜇 ∼ 𝒩 𝜇&, 𝜎&" , and given an observation 𝑋 = 𝑥;	  𝑥"	  . . 𝑥@ , the log-likelihood of the 203	  
posterior 𝜇 ∼ 𝒩 𝜇@, 𝜎@" , is given by: 204	  
 205	  

log 𝑝 𝜇 𝑋 = −
1
2𝜎@"

𝜇 − 𝜇@ " + 𝐾; = −
1
2𝜎@"

𝜇" +
𝜇@
𝜎@"
𝜇 + 𝐾" 206	  

 207	  
From Bayes’ rule, we have 𝑝 𝜇 𝑋 ∝ 𝑝 𝑋 𝜇, 𝜎" 𝑝 𝜇 𝜇&, 𝜎&" , and so:  208	  
 209	  

log 𝑝 𝜇 𝑋 = −
1
2𝜎"

𝑥6 − 𝜇 "
@

6
−

1
2𝜎&"

𝜇 − 𝜇& " + 𝐾I210	  

= −
1
2

1
𝜎&"

+
𝑁
𝜎"

𝜇" +
𝜇&
𝜎&"

+
𝑥6@

6

𝜎"
𝜇 + 𝐾K 211	  

 212	  
where 𝐾L are constant terms. Thus, since: 213	  
 214	  

1
2𝜎@"

=
1
2

1
𝜎&"

+
𝑁
𝜎"

 215	  
 216	  
the posterior variance is: 217	  
 218	  

𝜎@" =
𝜎"𝜎&"

𝑁𝜎&" + 𝜎"
 219	  

 220	  
Similarly, since: 221	  
 222	  

𝜇@
𝜎@"

= 	  
𝜇&
𝜎&"

+
𝑥6@

6

𝜎"
 223	  

the posterior mean is: 224	  
 225	  

𝜇@ =
𝜎"

𝑁𝜎&" + 𝜎"
𝜇& +

𝑁𝜎&"

𝑁𝜎&" + 𝜎"
𝑋 226	  

 227	  
where 𝑁𝑋 = 𝑥6@

6 .  228	  
 229	  
We consider the case, in which participants update the prior after each observation (𝑁 = 1). This 230	  
seems reasonable since a subjective prediction is required in response to every prediction error after 231	  
each reward. 232	  
 233	  

𝜇6 =
𝜎"

𝜎6:;" + 𝜎"
𝜇6:; +

𝜎6:;"

𝜎6:;" + 𝜎"
𝑥6 = 𝜇6:; +

𝜎6:;"

𝜎6:;" + 𝜎"
𝑥6 − 𝜇6:;  234	  

 235	  
Therefore, the Kalman gain (i.e., learning rate) for an optimal mean tracker in these experiments is: 236	  
 237	  

𝑘6 =
𝜎6:;"

𝜎6:;" + 𝜎"
 238	  

 239	  
The posterior prediction is 𝑦6 ∼ 𝒩 𝜇6, 𝜎6" , where 𝜎6" = 𝜎6" + 1 − 𝑘6 𝜎6:;" . 240	  
 241	  
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As participants may have differed in their estimates of reward variability, we estimated the most likely 242	  
value of 𝜎" used by each individual participant. Moreover, since we only used two different EVs in the 243	  
main task, participants had the opportunity to build strong priors between sessions. However, the 244	  
participants’ posterior means (i.e., final predictions) in the first session did not show a significant 245	  
positive correlation with the first predictions in the second session (all p > 0.1). Similarly, the final 246	  
predictions in the second session did not show a significant positive correlation with the initial 247	  
predictions in the third session (all p > 0.1). Therefore, we did not include structural priors in the 248	  
Bayesian model.  249	  
 250	  
2. Rescorla-Wagner learning rule (RW; Rescorla and Wagner 1972). The RW model is one of the most 251	  
influential theories of associative learning in human and particularly animal learning theory. In this 252	  
simple associative learning model, individuals are assumed to use a constant learning rate that controls 253	  
how much an observed prediction error will influence new predictions:  254	  
 255	  

𝑘6 = 𝛼 256	  
 257	  
In this case, predictions are assumed to be generated by constant learning.  258	  
 259	  
3. Pearce-Hall (PH; Pearce and Hall, 1980). Although RW may facilitate stable predictions when 260	  
reward magnitude is constant, a fixed learning rate will result in varying predictions when rewards 261	  
fluctuate, i.e., participants persistently ‘chase the prediction error’. Stable predictions may, however, be 262	  
achieved through the use of a decaying learning rate as described in the PH associability model: 263	  
 264	  

	  𝑘6 = 𝛾𝐶 𝛿6:; + 1 − 𝛾 𝑘6:; 265	  
 266	  
where δ  denotes absolute prediction error and 𝐶 is an arbitrary scaling coefficient. We combine the 267	  
PH associability (learning rate) with the recursive generative process described above in line with the 268	  
procedure suggested by Li et al (2011). The recursive process is initialized with the initial learning rate 269	  
𝑘& = 𝛼. In this case, predictions are assumed to be generated under decaying learning rate with the 270	  
decay constant 𝛾. Importantly, learning rates depend on the absolute prediction error and the learning 271	  
rate on the previous trial as well as on the decay constant γ. A critical feature of this model is that it 272	  
allows for the combination of high initial learning rate and exponential decay enabling substantial 273	  
initial updating as well as asymptotically stable later predictions. Moreover, while SD may influence 274	  
the initial learning rate as well as the decay constant, we have previously shown that the effect of SD 275	  
was primarily on the initial learning rate (Diederen and Schultz, 2015). 276	  
 277	  
4. Adaptive Pearce-Hall (Diederen and Schultz, 2015). To account for the potential effect of SD in the 278	  
PH model, we scaled the prediction error relative to log(SD) of the reward distributions. Note that an 279	  
improved fit by this model indicates that non-scaled PH learning rates vary with SD. The rationale for 280	  
scaling the prediction error rather than the learning rate was that previous non-human primate 281	  
electrophysiology studies showed encoding of normalized PEs, not learning rates (Tobler et al., 2005).  282	  
Since scaling compresses the operational range of the learning rate to update predictions, we added an 283	  
arbitrary scaling coefficient D to ensure scaling relative to, but with a quantity smaller than log(SD). In 284	  
addition, as we previously showed individual variation in the degree of prediction error scaling, we 285	  
estimated the extent of prediction error scaling (0 ≤ 𝜈 ≤ 1) per participant (Diederen and Schultz, 286	  
2015): 287	  
 288	  

𝑦6 = 𝑦6:; + 𝑘6𝛿6/𝜔 289	  
𝑘6 = 𝛾𝐶 𝛿6:; 𝜔 + 1 − 𝛾 𝑘6:; 290	  

        𝜔 = 1 − 𝜈 + 	  𝜈 log SD 𝐷  291	  
 292	  
Here, 𝜈 indicates the extent of prediction error scaling. The form of this update rule ensured that the 293	  
model could return both the absence of scaling (𝜈 = 0) as well as scaling by the log(SD) (𝜈 = 1).  294	  
 295	  

Model fitting. For each model, we fit the free parameters 𝛷 to the subjective predictions 𝑌 by 296	  
maximizing the likelihood 𝑝 𝑌 𝛷 = 𝑝 𝑦Y 𝛷Z

Y , where	  𝑝 𝑦Y 𝛷 = 𝒩 𝑦Y, 𝜎"  and 𝑌 =297	  
𝑦;	  𝑦"	  . . 𝑦Z  is the subjective predictions. We used a combination of nonlinear optimization algorithms 298	  

implemented in MATLAB to estimate the free parameters to each participant’s full data set over the 299	  
trials of all conditions. Since SD is a key parameter of the Bayesian model, we fit this model separately 300	  
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for each SD condition and compared the resulting fits to similarly obtained fits for the RW and the PH 301	  
model. In addition, as the main difference between the PH models is the SD-dependent change in 302	  
learning rate (implemented using a single scaling parameter), we used model fits across SD conditions 303	  
to compare the adaptive PH model to the non-adaptive models.  304	  
  305	  

Functional MRI. FMRI data were obtained at the Wolfson Brain Imaging Center, Cambridge, 306	  
using a Siemens Trio 3T MRI scanner. We acquired 240 multiecho gradient-echo echo planar 𝑇"∗-307	  
weighted images depicting blood oxygenation level-dependent (BOLD) contrast for each session of the 308	  
task (Poser et al., 2006). Imaging at multiple echo times has the potential to increase sensitivity in brain 309	  
regions that are typically subject to strong image distortions (Poser et al., 2006). Each participant 310	  
completed 3 task sessions, resulting in 720 volumes per participant. We used the following parameters 311	  
for obtaining BOLD images: 30 axial slices (3.78 mm slice thickness), repetition time (TR) 2100 ms, 312	  
echo times (TEs): 12/ 27.91/43.82/ 59.73 ms, flip angle 82°, field of view (FOV) 14.4x14.4 cm, matrix 313	  
64x64, in-plane resolution 3.75x3.75 mm. This resolution facilitated the detection of BOLD responses 314	  
on whole-brain level. Whole brain coverage was of particular importance to investigate the alternative 315	  
hypothesis that behavioral adaptation to reward variability is reflected in the coding of SD-dependent 316	  
learning rates as learning rates are coded in frontal and occipital areas (Krugel et al. 2009; Payzan-317	  
LeNestour et al. 2013; Vilares et al. 2012). To improve localization of the functional data a high 318	  
resolution anatomical scan was acquired during the same scan session (𝑇;; MPRAGE; TR/TE 319	  
2.98/2300 ms, 1x1 voxels, slice thickness 1 mm, flip angle 9°, FOV 24x25.6 mm, 176 slices).  320	  

Statistical parametric mapping (SPM8; Wellcome Department of Cognitive Neurology, 321	  
London, UK) and MATLAB (MathWorks, Natick, MA) served to analyze and preprocess functional 322	  
MRI data. Preprocessing included within-subject image realignment, voxelwise weighted echo 323	  
combination (summation based on local 𝑇"∗ measurements) (Poser et al., 2006), coregistration of 324	  
functional images with the 𝑇;-weighted anatomical scan, spatial normalization to the Montreal 325	  
Neurological Institute (MNI) template as present in SPM8 (Ashburner and Friston, 2005) and spatial 326	  
smoothing using an 8mm full width at half maximum Gaussian kernel. To increase anatomic 327	  
specificity, we repeated our preprocessing using a 6 mm smoothing kernel. The time-series in each 328	  
session were high-pass filtered (1/180Hz) and serial autocorrelations were estimated using an AR(1) 329	  
model. 330	  
 331	  
 332	  
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