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Supplemental Experimental Procedures 
 
Reproducible research 
 

We have provided the raw data and R scripts necessary to reproduce the 
primary MPRA analyses (http://www.bloodgenes.org/RBC_MPRA/). 

 
Identification of relevant tissues and cellular models 
 

We used SNPsea with standard settings to determine tissue- and cell 
type-specific enrichment for gene expression overlapping with LD blocks 
containing the 75 GWAS hits (Slowikowski et al., 2014). Hematopoietic 
expression profiles were downloaded from 
http://www.broadinstitute.org/dmap/data/ (Novershtern et al., 2011). Narrow DHS 
peaks for 53 cell types were downloaded from 
http://www.roadmapepigenomics.org/data/ (Roadmap Epigenomics et al., 2015). 
Adult erythroblast FAIRE-seq data was obtained the gene expression omnibus 
GSE36985 and narrow peaks were called using MACS2 (Xu et al., 2012; Zhang 
et al., 2008). In order to cluster the cell-types by open chromatin, BedTools was 
used to compute the Jaccard correlation statistic (total shared nucleotides 
between two peak sets  / total unique nucleotides in two sets) on the top 50,000 
peaks (Quinlan and Hall, 2010). Clustering was performed with ggdendro 
(http://cran.r-project.org/web/packages/ggdendro/).  
 
Microarrays 
 

We infected K562 cells with an HMD-GATA1 lentiviral vector that 
overexpresses GATA1 as described previously (Ludwig et al., 2014).  RNA was 
isolated 48 hours after infection and cDNA was synthesized as described below.	
  
Microarrays (GeneChip Human Gene 2.0 ST Arrays, Affymetrix) were performed 
on K562 for control (HMD) and GATA1 overexpression (HMD+GATA1). Raw files 
were processed and normalized using the RMA algorithm from the oligo package 
in R 3.2 (Carvalho and Irizarry, 2010). Differential expression analyses were 
conducted using limma (Ritchie et al., 2015). Gene set enrichment analysis 
(GSEA) was performed comparing K562 cells with GATA1 overexpression to 
K562 control cells with gene set permutation (Subramanian et al., 2005). The 
erythroid differentiation signature gene set was derived by identifying the top 200 
genes that were expressed significantly higher in intermediate erythroblasts 
(CD71+/ CD235a+) compared to colony forming unit erythroid cells (CD71+/ 
CD235a-) (Merryweather-Clarke et al., 2011). The GATA1 target gene set was 
determined as previously described (Ludwig et al., 2014). Raw data have been 
deposited to the Gene Expression Omnibus (GEO, 
http://www.ncbi.nlm.nih.gov/geo/) at GSE70531.	
  
 
Design and synthesis of a massively parallel reporter assay 
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 Seventy-five GWAS hits associated with RBC traits were obtained from 
Table 1 in van Der Harst et al. (van der Harst et al., 2012). SNPs in high LD with 
sentinel GWAS hits were identified from the CEU population of the 1000 
Genomes project Phase 1 Version 3 (phase1_release_v3.20101123) using Plink 
with the following options: “--show-tags --tag-r2 0.8 --tag-kb 500 --list-all” 
(Genomes Project et al., 2012; Purcell et al., 2007). All SNPs in high LD with 
rs12150672 were excluded since this resulted in an excessive number of 
constructs. 145 nucleotide constructs were designed by placing, for each of the 
2756 variants, major and minor alleles into the construct such that 1/3, 1/2, and 
2/3 of the total length was 5’ of the variant (Table S1).  
 An oligonucleotide library containing the 145 nucleotide genomic regions 
with fourteen eleven-nucleotide barcodes each, separated by KpnI-XbaI sites 
and flanked by constant primer sites was obtained from Agilent (LeProust et al., 
2010). The oligonucleotide library was then PCR amplified and cloned into the 
pMPRA1 plasmid backbone (Addgene Plasmid # 49349) with a minP-luc2 
(Addgene Plasmid # 49353) insert, as previously described (Melnikov et al., 
2014). The resulting plasmid library was introduced into K562 or K562+GATA1 
cells using a Nucleofector II Device with Cell Line Kit V (Lonza). 48 hours later, 
total RNA was harvested and the barcodes were isolated by RT-PCR, as 
previously described (Melnikov et al., 2014). The barcodes were then sequenced 
and counted using an Illumina HiSeq 2500 sequencer. 
 
Analysis of a high-throughput variant screen 
 
 A total of 6 replicates were performed for the MPRA screen in K562 cells 
and 4 replicates in K562+GATA1 cells. Left, middle, and right SWs were 
designed so that 1/3, 1/2, and 2/3 of the total 145 nucleotide construct was 3’ of 
the interrogated variant. A pseudocount of 1 was added to DNA and RNA 
barcode counts that were subsequently normalized to counts per million (CPM) 
and log2 transformed. Barcodes with fewer than 8 transformed counts were 
removed from each replicate. Activity was calculated as the ratio of RNA and 
DNA counts, and the Pearson correlation coefficient was used to compare 
activity across replicates. Replicates were quantile normalized and combined as 
independent observations to increase power for each condition (K562 and 
K562+GATA1). The contribution of barcode bias to activity estimates was 
determined by randomly sorting n barcodes without replacement into two groups, 
where n is an integer between 1 and 7, averaging across replicates, calculating 
correlation coefficients, and using beta regression to estimate the bias for larger 
barcode numbers. ACs were defined as constructs that showed significantly 
higher activity (FDR < 1%, derived on all constructs and SWs) when compared 
with the activity distribution of all other constructs by a one-sided Mann-Whitney-
U test. MFVs were identified by comparing activity between the constructs 
containing the major allele of the variant with constructs containing the minor 
allele using a two-sided Mann-Whitney-U test for K562 and K562+GATA1 
MPRAs separately (FDR < 1%, derived on all constructs and SWs). GATA1-
dosage dependence was determined by comparing the activity across each 



	
   3	
  

construct between K562 and K562+GATA1 cellular models using a two-sided 
Mann-Whitney-U test.  
 
Additional bioinformatics analyses 
 

Manhattan plots were created from summary statistics and plotted using 
qqman (http://cran.r-project.org/web/packages/qqman/). A discriminatory k-mer 
based model was learned using the k-mer SVM webserver using 10-fold cross 
validation, a positive weight of 10 for ACs, and the regularization parameter C set 
to 0.5  (http://kmersvm.beerlab.org) (Lee et al., 2011). The positive training set 
was 555 sequences with high activity and the negative set was the remaining 
11945 sequences. GATA1, TAL1, KLF1, and NFE2 ChIP-seq data in erythroid 
cells were processed and obtained as previously described (Ulirsch et al., 2014). 
Erythroblast raw ChIP-seq data of LDB1 was obtained from GSE52637, and raw 
data for H3K27me3 and H3K27ac were obtained from GSE52924; all data were 
processed similarly as previously described (Pinello et al., 2014; Stadhouders et 
al., 2014; Ulirsch et al., 2014). BedTools and R 3.2 were used to calculate all 
enrichments (Quinlan and Hall, 2010). PhastCons nucleotide conservation 
scores across 46 vertebrates were obtained from the Integrative Genomics 
Browser (IGV), and IGV was used to visualize MFVs and genome-wide 
sequencing data (Siepel et al., 2005; Thorvaldsdottir et al., 2013). Perturbations 
in DNA shape characteristics were calculated using DNAshape (Zhou et al., 
2013). To investigate important measures of regulatory function for the MFVs, we 
compared them to cutting edge predictive algorithms including Eigen (Principal 
Component) (Ionita-Laza et al., 2016), DeepSea (Functional Significance Score) 
(Zhou and Troyanskaya, 2015), gkmer-SVM (Allelic skew, trained on K562 
DNase 1 hypersensitivity) (Ghandi et al., 2014; Lee et al., 2015), and DeepSea 
(Allelic skew, trained on K562 DNase 1 hypersensitivity) (Zhou and Troyanskaya, 
2015). Eigen and DeepSea (FunSig) are not innately directional for the allele, so 
a Mann-Whitney-U test was used to compare means between categories. gkmer-
SVM and DeepSea (Allelic Skew) are directional, so the absolute value of 
predicted changes was compared. In order to identify a background set of SNPs 
for the distribution of tertiary DNA shape changes, we used Plink to identify all 
SNPs with a minor allele frequency > 5% in the CEU population of the 
1000Genomes (Genomes Project et al., 2012; Purcell et al., 2007).  Next, we 
used MACS2 to refine the set of narrow GATA1 peaks (Liu, 2014), and in these 
peaks (+/- 100bps from the center), we used Homer to identify SNPs that were 
within +/- 5bps of a GATA1 or GATA1/TAL1 motif, excluding SNPs that 
overlapped with the core “GATA” (Heinz et al., 2010). We obtained 382 SNPs for 
which we computed the total changes to DNA shape characteristics by summing 
up the absolute differences across each affected nucleotide. DHS skew for 
multiple cell-types was downloaded and analyzed as previously reported 
(Maurano et al., 2015). Allelic skew across erythroid TFs and open chromatin 
was first naively calculated by counting the number of aligned reads, and a 
sensitivity analysis was performed by using WASP (van de Geijn et al., 2015). 
Predicted motif disruptions were determined using both Transcription factor 
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Affinity Prediction Tools and HaploReg v3 with standard options (Thomas-
Chollier et al., 2011; Ward and Kellis, 2012). 

 
Sensitivity and Specificity 
 
Since a gold standard set of positive and negative controls functional GWAS 
variants is not available, the positive predictive value of the MPRA screen was 
estimated by two orthogonal methods. First, we calculated the PICS probability 
score for all variants in the CEU population of the 1000 Genomes (Farh et al., 
2015). We then derived credible sets of variants by greedily summing up the 
highest PICS probabilities at each locus until reaching a cumulative X%, 
assuming only one causal variant per locus. By definition, the X% credible set is 
expected to contain the causal variant X% of the time (Wellcome Trust Case 
Control et al., 2012). We compared the prevalence of all MFVs between the 80%, 
90%, and 95% credible to the prevalence of MFVs in the corresponding non-
credible sets. Since these sets split the variants into reasonably large credible 
and non-credible sets and the enrichments in MFVs were highly similar, we 
subsequently calculated the PPV from this enrichment as (1 – 1 / enrichment). As 
an alternative estimate, the methods DeepSea and gkmer-SVM were trained on 
K562 DNase1 hypersensitivity and used to predict the impact of swapping alleles 
for each variant on regulatory function. Since we expect an agreement between 
the direction of effects for MPRA and these predictive methods of no more than 
50% (assuming a mix of true positive and false positives), an improvement in this 
represents enrichment in functional variants. In order to derive the PPV from this, 
we calculate (observed % agreement - expected % agreement) / (expected % 
agreement) for the set of MFVs. As a control, we also calculate this for 
AC/nMFVs to show that there is little improvement in agreement of directionality 
for variants in active constructs that we did not call as MFVs. Sensitivity was 
subsequently calculated from the PPV and the prevalence of MFVs (using the 74 
tested GWAS associations rather than 75 total) identified by (PPV * count(MFVs) 
/ 74). 
 
Luciferase Reporter Assay 
  
Firefly luciferase reporter constructs (pGL4.24) were generated by cloning the 
variant of interest centered in 300-400 nucleotides of genomic context upstream 
of the minimal promoter using BglII and XhoI sites. The Firefly constructs (500ng) 
were co-transfected with a pRL-SV40 Renilla luciferase construct (50ng) into 
100,000 K562 cells using Lipofectamine LTX (Invitrogen) according to 
manufacturer's protocol. After 48 hours, luciferase activity was measured by 
Dual-Glo Luciferase assay system (Promega) according to manufacturer's 
protocol. For each sample the ratio of Firefly to Renilla luminescence was 
measured and normalized to the empty pGL4.24 construct. 
 
Generation of isogenic clonal deletions 
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The erythroleukemia K562 cell line was cultured in RPMI medium with 
10% FBS, Penicillin/ Streptomycin, and Glutamine. K562 cells were transfected 
with 1µg total of the Cas9 nuclease (pxPR_BRD001) and sgRNA plasmids 
(Table S7) using the Lipofectamine® LTX Plus Reagent in a 1:3 ratio of Cas9 to 
sgRNA. Control clones were obtained by co-transfecting K562 cells with 1 µg 
total of the Cas9 nuclease and pLKO.1-GFP at a 1:3 ratio of Cas9 to plasmid. 
Twenty-four hours after transfection, the cells were treated with puromycin for 48 
hours (2 µg/ml) and isogenic clones were obtained by limiting dilution. Potential 
clones were PCR screened using primer pairs flanking the guide sequence 
(Table S7), and positive clones were Sanger sequenced to map the deletion. 
 
Identification of target genes 
 

RNA was extracted from selected clonal deletions of MFVs using the 
RNEasy® Plus Mini Kit (Qiagen), and cDNA was synthesized using the iScript™ 
cDNA Synthesis Kit (Biorad). RT-qPCR was performed with iQ™SYBR® Green 
Supermix (Biorad) on the CFX96TM Real-Time System (Biorad) (Table S7). 
Quantification was performed using the ΔΔCT method with β-actin as the 
reference gene. 
 
Primary cell culture 
 

Mobilized peripheral blood CD34+ cell culture was performed using a 
three-stage system that has been previously described (Hu et al., 2013). Cells 
were cultured using IMDM containing 2% human plasma, 3% human AB serum, 
200 µg/ml human Holo-transferrin, 3 IU/mL heparin, and 10 mg/mL insulin (Base 
medium). During days 0 to 7, cells were supplemented with IL-3 (1 ng/mL), SCF 
(10ng/ml), and Epo (3 IU/ml). During days 7 to 12, cells were supplemented with 
SCF and Epo. After day 12, cells were supplemented with only Epo, and human 
Holo-transferrin was increased to 1mg/ml. Experiments were performed in 
triplicate using unique donors. 
 
Lentiviral vector production and transduction 
 

shRNA constructs targeting RBM38 were obtained from the Mission 
shRNA collection (Sigma-Aldrich), and constructs were in a pLKO.1-puro 
lentiviral vector Table S7). For the production of lentivirus, 293T cells were 
transfected with the appropriate viral packaging and genomic vectors (pVSV-G 
and pDelta8.9) using FuGene 6 reagent (Promega) according to the 
manufacturer's protocol. The next day, media was replaced with Base medium, 
and 24 hours later the lentiviral supernatant was collected and filtered using a 
0.45 µm filter. On day 2 of primary cell culture, CD34+ cells were infected with 
lentiviral supernatants by spinfection. Between 150,000-500,000 cells were 
infected with viral supernatant in the presence of polybrene (8µg/ml) in a 6-well 
plate. Cells were spun at 2,000 r.p.m for 90 min at 22 °C and left in viral 
supernatant overnight. Media was replaced the morning after infection, and cells 
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were selected with 1 µg/ml puromycin 24 hours after infection. Puromycin 
selection was discontinued 48 hours later and cells were cultured as described 
above. For HMD-GATA1, we infected 500,000 K562 cells per well of a 6-well 
plate with 1.9ml of viral supernatant in the presence of polybrene (8µg/ml). Cells 
were spun at 2,500 rpm for 90 min at 22 °C and incubated overnight in the viral 
supernatant. Media was replaced 24 hours after infection, and 3 days later the 
cells were checked for GFP expression by flow cytometry to assess for infectivity, 
which was typically around 90%. 
 
Flow cytometry analysis 
 

Cells were washed in PBS and stained with human CD235a (GlyA), 
CD71, CD11b, CD41a, CD49d antibodies (Table S7). Propidium iodide (PI) was 
used as a dead cell marker. FACS analysis was conducted on a BD Bioscience 
LSR II and a BD LSR Fortessa. Data was analyzed using FlowJo X (TreeStar). 
 
May-Giemsa staining 
 

Approximately 100,000 – 200,000 cells were harvested, washed once at 
300 x g for 5 minutes, resuspended in 130uL of FACS Buffer, and spun onto 
poly-L-lysine coated microscope slides with a Shandon 4 cytocentrifuge (Thermo 
Scientific) at 300 rpm for 4 min. Visibly dry slides were transferred into May-
Grünwald solution (Sigma-Aldrich) for 5 minutes, rinsed 4 times for 30 seconds in 
water, and transferred to Giemsa solution (Sigma-Aldrich) for 15 min. Slides were 
washed as described above and mounted with coverslips. Images were taken 
with AxioVision software (Zeiss) at 63X oil magnification. 
 
Western blot Analysis 

 
Twenty-four hours after puromycin selection, cells were lysed in RIPA 

buffer and quantitated using DC Protein Assay (BioRad) according to 
manufacturer recommendations. To measure RBM38 knockdown, a western blot 
was performed on 20µg protein lysate using RBM38 antibody (C-19, sc-85873, 
Santa Cruz) and GAPDH (6C5; sc-32233, Santa Cruz) antibodies.  
 
RNA-seq 
 

RNA-seq was performed by the IDDRC Core Next-Gen Sequencing 
Facility of Boston Children’s Hospital and Harvard Medical School in 
collaboration with Axeq Technologies. RNA was extracted at day 16 of culture 
using the RNEasy® Plus Mini Kit (Qiagen). An on-column DNase (Qiagen) 
digestion was performed according to the manufacturer's instructions. 
Approximately 1 µg of RNA from each sample was used to generate cDNA 
libraries for sequencing using the TruSeq RNA Sample Prep Kit v2 (Illumina, Inc., 
San Diego, CA). Sequencing of 101 nucleotide paired-end reads was performed 
on an Illumina HiSeq 2000 instrument. Adapters were removed with trimmomatic 
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using the following options: “PE -phred33 ILLUMINACLIP:TruSeq2-PE-
2.fa:2:30:10 HEADCROP:5 LEADING:10 TRAILING:10 SLIDINGWINDOW:4:20 
MINLEN:36”. Trimmed reads were aligned to the genome using Tophat2 and 
expression in FPKM was determined by using the Tuxedo suite as previously 
described (Trapnell et al., 2012; Ulirsch et al., 2014). RNA-seq from normal 
human erythropoiesis was obtained and processed as previously described (An 
et al., 2014; Li et al., 2014; Ulirsch et al., 2014). Percent spliced in (PSI) was 
determined for exon skipping events using SUPPA (Alamancos et al., 2015) on 
the gene transfer file (GTF) obtained by using Cuffmerge to create a single set of 
transcripts from both RNA-seq datasets created here as well as previously for 
normal human erythropoiesis. Differentially spliced exons were defined as exon 
skipping events with a >20% change in PSI between conditions (RBM38 sh1 and 
sh2 v. shLuc and pairwise OrthoE and PolyE v. ProE, eBasoE, and lBasoE). Gviz 
was used to create sashimi plot visualizations. 
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