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1 Gene expression data

For the construction and evaluation of the consensus set-driven subtype predictors only high-quality
Affymetrix arrays were used. This section gives a detailed description of the normalization and qual-
ity control (QC) stages used to process and filter these hybridizations. All analyses were performed using
R/Bioconductor packages.

1.1 Normalization

In order to make the expression data as comparable as possible, we (re)normalized the Affymetrix datasets
by a modified version of the RMA methodology, known as frozen RMA (fRMA) [1]. This methodology
allows one to normalize the intensity data of different arrays individually or in small batches and then
combine the data for analysis. In particular, estimates of probe-specific effects and variances are pre-
computed and frozen [1]. Another important distinction between default RMA and fRMA is the estimation
of the reference distribution. In fRMA the reference distribution is not estimated from the data itself, but
a pre-computed reference distribution is employed. Frozen RMA has the same logistical advantage as
single chip models, in that it enables normalizing arrays one by one, while still having the benefits of
a multi-chip normalization scheme. Our Affymetrix compendium involved two distinct array designs,
i.e. hgul33plus2 and hgul33a arrays. We only considered the 22,215 probesets these designs have in
common, which represent all non-control probesets present on the hgul33a platform. In order to utilize the
common probesets, the hgul33plus2 arrays were first converted to the hgul33a platform using the function
convertPlatform from the frma package. We then masked all control probesets in the arrays and in the
hgul33afrmavecs object containing the frozen parameters, resulting in the desired 22,215 probesets. In
this way all Affymetrix arrays could be normalised using a single reference distribution, i.e. the Affymetrix
hgul33a reference distribution, as constructed by McCall et al. based on 1,000 samples originating from
200 distinct studies [2]. We ran frma in robust weighted average mode [1].

Frozen RMA mainly addresses batch effects at probe level. fRMA-normalized data may therefore still
contain batch effects at probeset level. Our Affymetrix compendium indeed showed clear evidence of
systematic technical variation between arrays from different chip designs after fRMA (Figure S1). This
effect was removed via a robust scaling step (Methods, main text). A drawback of our approach is the loss
of some hgul33plus2 probesets that are part of the gene list of certain subtype predictors. Some of these
are Affymetrix control probesets which, interestingly, are included in the PAM50 gene list.
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Figure S1. Principal component analysis of fRMA-normalized data (combined hgul33plus2 and
hgul33a compendium). Principal component (PC) analysis plot of the fRMA-normalized expression data from
our Affymetrix compendium. Expression data originated from two chip designs, i.e. hgul33plus2 and hgul33a. In
order to reduce systematic technical variation we used the frozen RMA methodology in which both array designs
were normalized via a single reference distribution. A set of 3,400 genes related to breast cancer subtyping was
used to estimate the principal components. This set corresponds to the union of all genes contained in the gene
lists of the classic SSPs, classic SCMs and the CIT subtyping scheme of Guedj et al. [3] for which probesets are
present on the Affymetrix hgul33a design.

1.2 Quality control

Poor hybridizations can have a negative impact on performance [4]. As we used datasets related to a
substantial collection of high-quality publications, one may reasonably expect these hybridizations had
passed quality control. However, after a preliminary QC inspection a sizable number of arrays appeared to
be problematic for one or more well established QC control indicators. Figure S2 provides several examples
of problematic arrays encountered in our compendium. To ensure all hybridizations were of sufficient
quality, an extensive QC analysis was performed aimed at identifying hybridizations that consistently
showed indications of poor quality, either before or after normalization. The QC protocol we followed was
based on six QC indicators: @ = {RLE, NUSE, heatmap, boxplot, MA-plot, GNUSE}. The first five
represent well established QC indicators [4]. The GNUSE statistic was introduced by McCall et al. [5] and
is an fRMA-based single chip alternative to the multi-chip NUSE QC statistic [6]. The NUSE, GNUSE and
RLE QC indicators provide diagnostic information before normalization, while the remaining indicators
provide information after normalization. All QC statistics with the exception of GNUSE were computed
using the arrayQualityMetrics package, while GNUSE values were computed using the frma package. For
a given QC indicator ¢ and array i we used arrayQualityMetrics to obtain a series of QC scores and
thresholds by repeatedly analyzing array ¢ in the presence of B randomly selected arrays from the same
dataset. Higher scores reflect arrays of potentially poor quality, while scores higher than the threshold are
considered outlier arrays. For a given array i and QC indicator ¢ € Q, let Sﬁ , and 72 be the QC score and



threshold, respectively, as determined by arrayQualityMetrics at repeat r. Then, an array was rejected if
it was considered an outlier in at least half of the QC repeats in which it was included. That is, array ¢
was rejected based on QC if there exists a ¢’ € @ for which we have

R
S oIt > Ry2
r=1

where I] is an indicator variable that equals 1if Sf > 7 and 0 otherwise and R is the number of repeats.

We ran the complete QC protocol on all 4,227 Affymetrix hybridizations part of our compendium.
Arrays from different datasets and array designs were processed separately, with a QC batch size of B = 30
and R = 10 repeats. Hence, for each array and QC indicator we obtained 10 QC scores. In total 7.55% of
the arrays (319 out of 4,227) were removed based on QC; 250 arrays (5.91%) showed consistent indications
of poor quality prior to normalization and 182 (4.31%) after normalization; 2.67% (113 out of 4,227) of
the arrays considered showed consistent indications of poor quality both before and after normalization.
Table 1 in the main text provides an overview of the QC results per dataset.

A visualization of all computed QC statistics for each dataset is provided on pages 12-23. For each
array and QC indicator separately, a box and whisker plot is shown depicting the distribution of the various
QC scores associated with each array. For each QC indicator a separate row is used. For reference the QC
overview figures also include several other often used Affymetrix QC indicators, i.e. average background,
percentage present, and scaling factor. These, however, were not used to filter the arrays. The centered
string in the top row shows the name of the dataset, the total number of arrays and the total number of
arrays rejected based on QC, taken over all QC indicators. Rejected arrays are indicated by vertical dashed
red lines, see Table S7 for a detailed overview. A short ID is used to indicate an array, the full name is
available in Table S7. For some datasets additional information was available on the processing groups [7],
e.g. the research institute in which the hybridizations were performed. In those instances QC batches were
confined to include arrays from the same processing group only, even if this implied a batch size smaller
than B = 30. Distinct processing groups are separated by green vertical lines and results are displayed per
processing group. Within each processing group arrays are ordered by their median RLE score. Horizontal
blue lines indicate the median QC thresholds. The box and whisker plots clearly illustrate the variability
of the QC statistics, which was the main reason to design the resampling-based QC protocol described
above.



x y ID Dataset Chip GSM

1 1 771 Pawitan hgul33a GSM107151

1 2 1051 Schmidt hgul33a GSM282572

1 3 760 Pawitan hgul33a GSM107140

1 4 813 Pawitan hgul33a GSM107193.

2 1 708 Pawitan hgul33a GSM107087

2 2 670 MSK hgul33a GSM50110

2 3 1813 Wang hgul33a GSM36861

2 4 2343 Bos hgul33plus2 GSM308459

3 1 415  Miller hgul33a GSMT79350

3 2 1648 Symmans (II) hgul33a GSM441336

3 3 1564 Symmans (I) hgul33a GSM441858

3 4 4421 Sabatier hgul33plus2 GSM540319.15744_T7
4 1 4426 Sabatier hgul33plus2 GSM540324_16325_T56
4 2 1845 Wang hgul33a GSM36966

4 3 1218 Shi hgul33a GSM505494

4 4 163  Desmedt hgul33a GSM177952

Table S1. Details on the 16 poor quality arrays from Figure S2. x, y: coordinates of the examples, e.g.
top left chip pseudo-image: x = 1, y = 1, bottom right: x = 4, y = 4; ID: short ID used in the QC
overview figures on pages 12-23 and in Table S7; GSM: accession number in GEO [8].

2 Subtype predictors

This section provides a comprehensive description and references to the literature for the different types
of subtype predictors used in the main manuscript.

2.1 SSP: single sample predictor

The classic single sample predictors are nearest centroid predictors, that is, prototype-driven classification
rules that are completely defined by a set of centroids and a suitable distance function (Figure 1A, main
text) [9]. In line with previously described SSP schemes [10,11], we used the Spearman rank correlation
distance measure. SSPs were constructed using the intrinsic gene lists (IGLs) related to the classic SSPs.
We refer to the IGLs of the SSPs by Sgrlie et al. [12], Hu et al. [10] and Parker et al. [11] as the IGL
S, H and P, respectively. For the classic SSPs we used the following functions from the genefu package:
ssp2003.robust (SSP Serlie), ssp2006.robust (SSP Hu) and pam50.robust (SSP Parker).

2.2 SCM: subtype classification model

As an alternative to SSPs, Desmedt et al. [13] proposed a biology-inspired module-driven approach referred
to as subtype classification models [14] (Figure 1B, main text). Module scores are calculated for three
modules that reflect the activity of several key biological processes: (i) estrogen receptor signaling, (i7)
HER2 signaling and (i) proliferation. Three SCMs have been published previously, based on the same set
of prototypes: the SCM by Desmedt et al. [13], the SCM by Wirapati et al. [15] and more recently the SCM
by Haibe-Kains et al. [14], also known as SCMGENE. We refer to these as the classic SCMs. In addition,
for a given SCM we refer to the list of genes associated with a module as the module gene list (MGL). The
latter can be thought of as the SCM equivalent of an IGL. We refer to the MGLs corresponding to the
SCMs by Desmedt et al. [13], Wirapati et al. [15] and Haibe-Kains et al. [14] as the MGLs D, W and HK,
respectively. For the classic SCMs we used the following functions from the genefu package: scmodl.robust
(SCM D), scmod2.robust (SCM W) and scmgene.robust (SCM HK).

For SCM.cs we used the subtype.cluster function in the Bioconductor package genefu, which for a
given consensus training set and MGL computes the module scores and estimates the parameters of the
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Figure S2. Chip pseudo-images for 16 examples of arrays with consistent indications of poor quality.
Details are provided in Table S1.



Probeset HUGO gene symbol Entrez Gene 1D

202095_s_at BIRC5H 332
202589_at TYMS 7298
202870_s_at CDC20 991
202954 _at UBE2C 11065
209773 _s_at RRM2 6241
214710_s_at CCNB1 891

Table S2. STG proliferation module. The module composition of the 6-gene proliferation module
was based on the intersection of all genes in the AURKA proliferation modules by Desmedt [13] and
Wirapati [15] retrieved from the genefu package and the 11-gene proliferation signature proposed by
Nielsen et al. [18]. The latter signature consists of the HUGO gene symbol entries: CCNB1, UBE2C,
BIRC5, KNTC2, CDC20, PTTG1, RRM2, MKI67, TYMS, CEP55, CDCA1. All probesets had a weight
of +1 in the calculation of the module score.

associated mixture model.

2.3 STG: predictor based on St. Gallen surrogate intrinsic subtypes

In this study, we developed a rule-based predictor (STG) derived from the St. Gallen surrogate intrinsic
subtype definitions which are based on clinical markers of ER, HER2, PGR and KI-67 (proliferation)
status [16]. An STG is fully defined by the over/underexpression status of the markers, which allows
for 16 distinct profiles (Figure 1C, main text). Over/underexpression status of the four markers was
determined by considering module scores. The ER, HER2 and PGR modules consisted of a single probeset.
These correspond to the probesets previously suggested for these processes [17], and for ER and HER2
are identical to those used by SCMGENE. The proliferation module was based on the intersection of
all genes in the AURKA proliferation modules by Desmedt and Wirapati and the 11-gene proliferation
signature proposed by Nielsen et al. [18]. This resulted in a 6-gene proliferation module (Table S2). For
each marker and training set separately, over/underexpression was estimated by fitting a 2-component
Gaussian mixture model on the module scores. For each component i, let u;, o2 and w; be the estimated
mean, variance and mixing proportion, respectively. Assuming equal variances, the following cutoff can be
used to determine the actual over/underexpression status for a new case:

o2 log(12) + 4 (u? — u3)

Up — U2

Cases with a module score larger than or equal to ¢ were considered overexpressed, while the others
were considered underexpressed.

3 Consensus sets

This section gives an overview of a number of additional experiments, characterizing the consensus set
samples in more detail.

3.1 Consensus set subtype identification by hierarchical clustering

In breast cancer literature SSP construction has almost always been linked to unsupervised learning via
hierarchical clustering (HC) [3,10-12]. Instability of hierarchical clustering is a well-known problem [19,20].
Haibe-Kains et al. [14] reported very low levels of concordance for HC-based SSP predictors when clustering
complete sample cohorts. We investigated to what extent the subtype labels of the consensus sets could
have been identified by HC alone and to what degree their identification is influenced by the presence of
additional samples during clustering. Importantly, for any given dataset concordance was always measured
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Figure S3. CS subtype identification by hierarchical clustering. For each of the training sets
used to construct the five consensus sets (Table 2, main text) and for each of the IGLs S, H and P, four
hierarchical clusterings were performed, labeled CS, CS+, CS++ and All (indicated on the z-axis for
each panel). These respectively represent clusterings on the CS samples and three supersets of the
consensus set. CS+: all samples for which PAM50 and all three SCMs are concordant, i.e. samples for
which the St. Gallen criteria were left out of the CS inclusion criteria; CS++: all samples for which all
three SCMs were concordant, i.e. samples for which the St. Gallen and the PAMS50 CS inclusion criteria
were not taken into account; All: the complete training set, i.e. when all CS inclusion criteria were
dropped. Depicted are concordance percentage (cc) and kappa statistics between subtype assignments
based on hierarchical clustering and the CS subtype labels. For a given set of samples concordance
measures were always calculated on the CS samples only. The intrinsic.cluster.predict function from the
genefu package was used to build a dendrogram (correlation distance, average linkage) and cut the
dendrogram so as to obtain four clusters with a minimum of five samples per cluster [14]. Concordance
between the cluster labels and the consensus set subtype labels was determined by mapping clusters to a
subtype label using the matchClasses function (method=“exact”) from the R package e1071. This
function computes all possible permutations between rows and columns of the confusion matrix between
two vectors of labels and selects the mapping such that as many cases as possible are in a matched pair.
See Table S3 for a detailed numerical summary.

over the CS samples only. When we only cluster CS samples, in all but one case almost perfect levels of
concordance were obtained (Figure S3). However, it becomes increasingly more difficult to identify the
CS subtype labels by HC when the training set becomes larger (and more heterogeneous). Furthermore,
similar to Pusztai et al. [21], results strongly depended on the selected IGL. For the IGL P in nearly all
cases almost perfect levels of concordance were obtained, however, not when clustering the CS samples in
the presence of all additional samples. Concordance for the IGLs H and S was notably lower, especially
when clustering CS samples in the presence of additional samples. Lowest concordance was observed for
the luminal B subtype, whose concordance with CS subtype labels decreased strongly in the presence of
additional samples.

3.2 Bimodality status of individual modules

Module scores are a core ingredient of both SCMs and STGs (Section 2). For a module score that is
unimodally distributed, it is difficult to estimate a sensible cutoff for determining the over /underexpression
status of the module for individual cases. The bimodality status of a module score, therefore, provides a
good indication of the performance of SCM and STG subtyping schemes. We used the bimodality index
(BMI) [17] to assess bimodality of the distribution of the module scores related to ER, HER2, and PGR
signaling and proliferation on the five consensus sets (Table S4). In most instances all modules showed
strong indications of bimodality (BMI>1.5). However, the level of bimodality depended on both the dataset
and module composition. Furthermore, in some cases modules were only weakly bimodal (BMI>1.1) or



Subset cc (all, %) & (all) & (basal) & (HER2) & (lumA) & (lumB)

CS 96.23 0.946 1.000 0.950 0.949 0.896
CS+ 92.59 0.896 1.000 0.898 0.844 0.786
CS++ 77.45 0.674 1.000 0.824 0.620 0.196
All 72.84 0.610 0.963 0.500 0.659 0.207

Table S3. CS subtype identification by hierarchical clustering. Numerical details of Figure S3:
median percentage of concordant samples (cc) and median kappa statistics.

even not bimodal at all (BMI<1.1), in particular for the HER2-related module of Desmedt. Even though
the module scores are not always strongly bimodal, the results provide solid ground for fitting the mixture
models and cutoff values associated with SCM- and STG-based predictors.

3.3 Concordance of CS-based predictors on consensus sets

An important distinction between our approach and previous subtyping efforts is that our CS-based predic-
tors were specifically designed to be highly concordant at the individual sample level. We first investigated
the resubstitution performance, i.e. the ability of a CS-based predictor to correctly predict the subtype
labels of the CS samples on which it was constructed. As expected, the resubstitution performance showed
almost perfect levels of overall and subtype-specific concordance (Table S5).

A prerequisite for concordance over large validation cohorts is that predictors view each others training
data in a consistent way. We, therefore, also considered the ‘internal CS’ validation performance, i.e.
the ability of a CS-based predictor to predict the labels of all 812 CS samples, minus its own consensus
training samples. Also in terms of internal CS validation performance, the CS-based predictors showed
almost perfect levels of overall and subtype-specific concordance. The SCM.cs predictors showed the
strongest levels of concordance (median £=0.966, median cc=97.54%, Table S6), closely followed by the
SSP.cs predictors (median £=0.940, median cc=95.66%), with equally strong subtype-specific levels of
concordance. These results demonstrate that CS-based predictors are highly concordant on the individual
sample level on training data.
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Bos 245 226 209 1.76 128 226 197 140 1.08 124 1.36
expO 311 1.94 1.94 140 1.14 1.72 1.71 1.78 1.65 1.57 1.52
Guedj 2.87 191 1.90 124 086 1.67 195 1.79 1.71 1.64 1.61
Li 3.63 239 222 1.16 1.09 1.52 193 186 161 168 1.64
Sabatier 2.90 255 262 144 094 153 198 1.87 1.52 1.70 1.63
BMI (median) 2.90 226 209 140 1.09 1.67 195 1.79 161 164 1.61
Nr.BMI> 1.1 5 5 5 5 2 5 5 5 4 5 5
Nr.BMI> 15 5 5 5 1 0 5 5 4 4 4 4

Table S4. Bimodality indices (BMI) of individual modules on consensus sets. Wang et al. [17]
characterize a distribution as being bimodal if BMI > 1.1 and strongly bimodal if BMI > 1.5. The first

row indicates the various modules used to measure ER, HER2, PGR and proliferation (Section 2).
Proliferation was measured by the AURKA proliferation modules by Haibe-Kains et al. [14] (HK),

Desmedt et al. [13] (D) and Wirapati et al. [15] (W) and the proliferation module (Proliferation)

described in Table S2. BMI values are listed for each consensus set. The last three rows provide the
median BMI value over all five consensus sets, the number of times the module was bimodal and the
number of times the module was strongly bimodal, respectively.

Subset cc (all, %) & (all) & (basal) & (HER2) & (lumA) £ (lumB)
All 98.80 0.983 1.000 1.000 0.991 0.983
SCM.cs 99.57 0.994 1.000 1.000 1.000 1.000
SSP.cs 97.65 0.967 0.945 0.987 0.983 0.954
SCM.cs HK 99.57 0.994 1.000 1.000 1.000 0.991
SCM.cs D 99.06 0.987 1.000 1.000 1.000 0.982
SCM.cs W 100.0 1.000 1.000 1.000 1.000 1.000
SSP.cs S 95.68 0.939 0.945 0.987 0.920 0.904
SSP.cs H 97.65 0.967 0.927 0.987 0.991 0.954
SSP.cs P 98.59 0.980 0.962 0.983 0.991 0.985

Table S5. Resubstitution performance of CS-based predictors. Median percentage of
concordant samples (cc) and median kappa statistics for CS-based predictors used to predict the subtype

labels of their own consensus training set, i.e. to predict the associated CS labels. Subset: indicates the

set of CS-based predictors over which the results were computed. Note that we report median values, it

may therefore happen that for each individual subtype the median kappa statistic is equal to 1 but the

overall median is not (2" row).
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Subset cc (all, %) & (all) & (basal) & (HER2) & (lumA) £ (lumB)

All 96.91 0.957 0.948 0.990 0.953 0.938
SCM.cs 97.54  0.966 0.991 0.996 0.951 0.948
SSP.cs 95.66  0.940 0.931 0.983 0.956 0.902
SCM.cs HK 97.55  0.966 1.000 0.997 0.949 0.941
SCM.cs D 96.99  0.958 0.945 0.996 0.943 0.937
SCM.cs W 98.44 0.978 0.991 0.996 0.967 0.959
SSP.cs S 94.63  0.926 0.933 0.988 0.887 0.870
SSP.cs H 96.77  0.955 0.882 0.984 0.971 0.932
SSP.cs P 97.55  0.966 0.955 0.972 0.970 0.960

Table S6. Internal CS validation performance of CS-based predictors. Median percentage of
concordant samples (cc) and median kappa statistics for CS-based predictors used to predict the subtype
labels of the union of all 812 CS samples, minus its own consensus training samples. Subset: indicates the
set of CS-based predictors over which the results were computed.
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Index 1D CEL NUSE GNUSE RLE MA-plot Boxplot Heatmap
1 12 GSM177896.cel.gz 3 5 0 0 0 0
2 22 GSM177906.cel.gz 5 0 9 0 7 8
3 26 GSM177910.cel.gz 5 0 10 0 3 0
4 60 GSM177944.cel.gz 0 0 0 0 0 5
5 68 GSM177952.cel.gz 10 10 5 0 9 0
6 78 GSM177962.cel.gz 0 0 10 0 4 7
7 86 GSM177970.cel.gz 7 0 2 0 2 2
8 94 GSM177978.cel.gz 8 0 1 0 4 0
9 104 GSM177988.cel.gz 3 0 0 0 0 10

10 106 GSM177990.cel.gz 5 0 0 0 0 0
11 139 GSM178023.cel.gz 8 5 7 0 5 2
12 179 GSM178063.cel.gz 0 0 1 0 6 0
13 193 GSM178077.cel.gz 10 0 0 0 0 0
14 203 GSM26870.CEL.gz 10 1 0 0 0 0
15 242 GSM26909.CEL.gz 0 0 0 0 6 0
16 247 GSM26914.CEL.gz 3 4 2 0 8 0
17 269 GSM79172.CEL.gz 10 10 0 0 0 0
18 284 GSM79231.CEL.gz 0 0 6 0 3 0
19 304 GSM79314.CEL.gz 9 10 0 0 0 0
20 312 GSM79331.CEL.gz 1 6 1 0 1 0
21 313 GSM79337.CEL.gz 6 9 1 0 10 0
22 320 GSM79350.CEL.gz 10 10 10 0 10 0
23 325 GSM79355.CEL.gz 0 0 4 0 0 6
24 352 GSM79147.CEL.gz 0 0 10 0 3 4
25 380 GSM79194.CEL.gz 10 10 10 0 10 6
26 391 GSM79209.CEL.gz 0 0 7 0 1 1
27 439 GSM79270.CEL.gz 0 0 0 0 0 6
28 440 GSM79271.CEL.gz 0 0 0 0 0 9
29 446 GSM79278.CEL.gz 2 0 2 0 5 0
30 447 GSM79279.CEL.gz 9 4 2 0 4 0
31 464 GSM79303.CEL.gz 0 5 0 0 0 0
32 471 GSM79313.CEL.gz 3 8 0 0 3 0
33 483 GSM79334.CEL.gz 10 10 10 0 10 9
34 492 GSM79356.CEL.gz 0 0 0 0 0 7
35 556 GSM50091.CEL.gz 5 0 0 0 0 0
36 573 GSM50108.CEL.gz 10 10 3 0 9 7
37 575 GSM50110.CEL.gz 9 9 0 0 7 2
38 577 GSM50112.CEL.gz 0 0 4 0 3 10
39 578 GSM50113.CEL.gz 0 0 5 0 4 3
40 579 GSM50114.CEL.gz 10 10 0 0 0 0
41 583 GSM50118.CEL.gz 0 0 8 0 7 10
42 597 GSM50132.CEL.gz 10 10 3 0 10 7
43 600 GSM107074.CEL.gz 5 0 1 0 0 2
44 612 GSM107086.CEL.gz 2 4 6 0 10 0
45 613 GSM107087.CEL.gz 2 3 9 0 5 1
46 638 GSM107112.CEL.gz 6 10 0 0 0 0
47 654 GSM107129.CEL.gz 9 10 0 0 3 0
48 665 GSM107140.CEL.gz 10 10 0 0 5 1
49 676 GSM107151.CEL.gz 10 10 10 0 10 9
50 691 GSM107166.CEL.gz 4 0 7 0 2 10
51 714 GSM107189.CEL.gz 8 9 0 0 0 0
52 718 GSM107193.CEL.gz 5 10 10 0 7 3
53 720 GSM107195.CEL.gz 0 0 0 0 0 6
54 723 GSM107198.CEL.gz 0 0 0 0 0 9
55 729 GSM107204.CEL.gz 0 0 0 0 0 7
56 743 GSM107218.CEL.gz 3 0 0 0 0 6
57 754 GSM107229.CEL.gz 0 0 8 0 0 6
58 756 GSM107231.CEL.gz 0 0 6 0 3 0
59 769 GSM282385.CEL.gz 6 0 0 0 0 3
60 771 GSM282387.CEL.gz 6 5 0 0 0 0
61 781 GSM282397.CEL.gz 8 10 0 0 0 0
62 782 GSM282398.CEL.gz 8 5 0 0 1 6
63 793 GSM282409.CEL.gz 10 10 0 0 0 4
64 811 GSM282427.CEL.gz 0 0 0 0 0 5
65 813 GSM282429.CEL.gz 0 6 0 0 0 0
66 868 GSM282484.CEL.gz 0 9 3 0 1 0
67 902 GSM282518.CEL.gz 1 0 10 0 6 3
68 911 GSM282527.CEL.gz 5 3 4 0 7 2
69 919 GSM282535.CEL.gz 0 0 0 0 2 5
70 921 GSM282537.CEL.gz 0 0 9 0 3 0
71 928 GSM282544.CEL.gz 10 10 0 0 2 0
T2 949 GSM282565.CEL.gz 9 10 0 0 0 9
73 950 GSM282566.CEL.gz 2 7 1 0 6 1
T4 954 GSM282570.CEL.gz 8 7 0 0 0 1
75 955 GSM282571.CEL.gz 10 10 0 0 0 0
76 956 GSM282572.CEL.gz 10 10 9 0 5 7
T 1017 GSM505388.23678_-AB01542166-24636.CEL.gz 0 0 7 0 1 2
78 1026 GSM505397.23678_AB01562100-26133.CEL.gz 1 1 5 0 0 4
79 1091 GSM505462_29539_AB01833522_35706.CEL.gz 6 1 0 0 0 0
80 1095 GSM505466_-29539_AB01833699_.35605.CEL.gz 0 0 2 0 3 7
81 1099 GSM505470-29539_AB01833733.35649.CEL.gz 10 10 6 0 4 9
82 1108 GSM505479_29539_AB01833780_35612.CEL.gz 2 0 0 0 3 5
83 1118 GSM505489_FL398-PERU53.CEL.gz 2 2 8 0 5 5
84 1120 GSM505491-FL454-713.CEL.gz 1 1 6 0 2 5
85 1121 GSM505492_.U133A_FL112.US120-10-13.05.CEL.gz 5 5 10 0 8 9
86 1122 GSM505493_.U133A_FL136-US123.11.14.05.CEL.gz 10 10 9 0 10 10
87 1123 GSM505494_U133A_FL137.US134.11.14.05.CEL.gz 7 8 0 0 0 1
88 1124 GSM505495.U133A_FL15.03.17.05.CEL.gz 5 T 10 0 10 10
89 1125 GSM505496_U133A_FL151.US129.12_08_05.CEL.gz 1 4 10 0 4 5
90 1126 GSM505497_U133A_FL161.US125.01.10_.06.CEL.gz 4 8 10 0 8 10
91 1127 GSM505498_U133A_FL175.US147.01.13.06_2.CEL.gz 7 9 10 0 10 10
92 1128 GSM505499_U133A_FL32-US2.05.19.05.CEL.gz 6 7 10 0 8 10
93 1129 GSM505500_.U133A_FL46-314_07_08_05.CEL.gz 1 2 8 0 5 9
94 1130 GSM505501_U133A_FL78_US92.09.01.05.CEL.gz 0 0 9 0 4 8
95 1131 GSM505502-U133A_FL80-US97.09-01.05.CEL.gz 2 1 8 0 6 7
96 1248 GSM441637.CEL.gz 0 0 4 0 0 7
97 1296 GSM441685.CEL.gz 0 0 8 0 3 5
98 1297 GSM441686.CEL.gz 10 6 3 0 4 5
99 1299 GSM441688.CEL.gz 10 3 6 0 5 0
100 1301 GSM441690.CEL.gz 8 1 3 0 6 1
101 1361 GSM441750.CEL.gz 7 0 0 0 0 1

Table S7. Overview of the 319 hybridizations rejected based on QC. Continued on next page.
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Index 1D CEL NUSE GNUSE RLE MA-plot Boxplot Heatmap
102 1371 GSM441760.CEL.gz 0 0 8 0 0 7
103 1382 GSM441771.CEL.gz 0 0 7 0 0 2
104 1395 GSM441784.CEL.gz 0 0 9 0 0 4
105 1400 GSM441789.CEL.gz 0 [¢] o] [¢] [¢] 5
106 1403 GSM441792.CEL.gz 2 0 8 0 0 10
107 1418 GSM441807.CEL.gz 0 0 7 0 2 4
108 1424 GSM441813.CEL.gz 0 0 3 0 0 7
109 1425 GSM441814.CEL.gz 0 0 10 0 0 7
110 1438 GSM441827.CEL.gz 10 10 10 0 10 10
111 1457 GSM441846.CEL.gz 0 0 9 0 3 7
112 1460 GSM441849.CEL.gz 6 0 0 0 0 0
113 1469 GSM441858.CEL.gz 7 4 0 0 0 0
114 1491 GSM441880.CEL.gz 0 3 1 0 9 1
115 1496 GSM441885.CEL.gz 10 10 10 0 10 10
116 1503 GSM441892.CEL.gz 6 9 2 0 9 3
117 1511 GSM441900.CEL.gz 1 0 0 0 9 3
118 1524 GSM441913.CEL.gz 2 1 0 0 7 2
119 1541 GSM441356.CEL.gz 0 0 10 0 8 0
120 1548 GSM441363.CEL.gz 0 10 10 0 10 10
121 1553 GSM441336.CEL.gz 10 0 0 0 0 0
122 1575 gsm65878.cel.gz 6 0 0 0 0 0
123 1601 gsm65849.cel.gz 0 6 0 0 0 0
124 1606 gsm65852.cel.gz 0 [0 0 9 0 9
125 1676 gsm65794.cel.gz 9 6 1 0 4 0
126 1687 gsm65805.cel.gz 0 7 o] [¢] 0 0
127 1698 gsm65816.cel.gz 0 o] o] 0 0 9
128 1709 GSM36835.CEL.gz 5 0 1 0 0 1
129 1718 GSM36861.CEL.gz 10 10 0 0 0 0
130 1725 GSM36875.CEL.gz 4 5 0 0 0 0
131 1731 GSM36900.CEL.gz 10 10 0 0 0 4
132 1732 GSM36901.CEL.gz 0 0 0 0 0 8
133 1750 GSM36966.CEL.gz 0 0 5 0 9 5
134 1753 GSM36969.CEL.gz 0 0 5 0 0 1
135 1757 GSM36991.CEL.gz 0 0 9 0 1 0
136 1758 GSM36992.CEL.gz 0 [¢] 10 [¢] 6 4
137 1759 GSM36993.CEL.gz ] [¢] 7 [¢] 10 1
138 1769 GSM36879.CEL.gz 0 o] 5 ] 4 o]
139 1779 GSM36905.CEL.gz 0 0 0 0 0 6
140 1813 GSM36997.CEL.gz 10 10 0 0 0 0
141 1824 GSM37030.CEL.gz 7 0 0 0 0 0
142 1836 GSM37052.CEL.gz 5 1 0 0 0 0
143 1848 GSM36778.CEL.gz 9 7 3 0 5 1
144 1849 GSM36787.CEL.gz 7 0 0 0 2 0
145 1858 GSM36813.CEL.gz 2 0 0 0 8 0
146 1873 GSM36811.CEL.gz 9 6 1 0 0 0
147 1925 GSM36984.CEL.gz 0 ] 5 [¢] [¢] 6
148 1949 GSM36933.CEL.gz 0 o] o] 0 7 0
149 1959 GSM36795.CEL.gz 2 o] 4 [¢] 0 5
150 1980 GSM37044.CEL.gz 0 0 9 0 6 0
151 1999 GSM120659.CEL.gz 2 1 5 0 2 0
152 2001 GSM120661.CEL.gz 10 10 10 0 10 10
153 2004 GSM120665.CEL.gz 1 0 0 0 0 5
154 2013 GSM120670.CEL.gz 10 10 5 0 10 10
155 2024 GSM120683.CEL.gz 0 0 8 0 4 2
156 2027 GSM120686.CEL.gz 4 0 0 0 0 6
157 2075 GSM308285.CEL.gz 0 0 0 0 0 5
158 2098 GSM308308.CEL.gz 5 6 ] [¢] 0 [¢]
159 2108 GSM308319.CEL.gz 5 ] o] ] 0 ]
160 2128 GSM308339.CEL.gz 0 o] o] ] 0 6
161 2147 GSM308358.CEL.gz 10 2 4 0 1 0
162 2151 GSM308362.CEL.gz 0 0 3 0 6 0
163 2153 GSM308364.CEL.gz 2 2 0 0 0 10
164 2154 GSM308365.CEL.gz 9 4 0 0 0 0
165 2171 GSM308382.CEL.gz 6 5 0 0 0 0
166 2195 GSM308406.CEL.gz 10 10 8 0 7 1
167 2197 GSM308408.CEL.gz 6 1 0 9 0 1
168 2201 GSM308412.CEL.gz 7 0 0 0 0 3
169 2213 GSM308424.CEL.gz 0 o] 9 [¢] 3 o]
170 2218 GSM308429.CEL.gz 2 0 5 0 6 1
171 2246 GSM308457.CEL.gz 5 0 8 0 9 2
172 2248 GSM308459.CEL.gz 7 1 0 0 1 0
173 2251 GSM519723.CEL.gz 6 0 0 0 0 0
174 2275 GSM519747.CEL.gz 2 0 3 0 2 5
175 2288 GSM519760.CEL.gz 0 0 1 0 0 10
176 2299 GSM519772.CEL.gz 5 0 10 0 10 3
177 2314 GSM519787.CEL.gz 0 0 6 0 1 0
178 2329 GSM519802.CEL.gz 10 4 9 0 3 5
179 2333 GSM519806.CEL.gz 10 7 10 0 1 10
180 2352 GSM38062.CEL.gz 0 o] 5 [¢] 0 o]
181 2365 GSM46891.CEL.gz 0 0 6 0 4 2
182 2383 GSM46908.CEL.gz 10 2 4 0 1 0
183 2407 GSM53034.CEL.gz 8 3 8 0 8 9
184 2411 GSM53109.CEL.gz 9 6 7 0 7 9
185 2429 GSM76613.CEL.gz 7 2 8 0 5 8
186 2491 GSM138035.CEL.gz 2 0 7 0 3 1
187 2492 GSM138028.CEL.gz 3 1 9 0 6 8
188 2493 GSM138031.CEL.gz 3 2 8 0 3 2
189 2494 GSM137950.CEL.gz 5 2 0 0 0 0
190 2495 GSM137943.CEL.gz 6 4 5 [¢] 4 5
191 2496 GSM137944.CEL.gz 5 5 4 0 2 1
192 2529 GSM179932.CEL.gz 10 4 0 0 0 1
193 2548 GSM231887.CEL.gz 0 0 6 0 1 0
194 2566 GSM152569.CEL.gz 2 0 0 0 5 0
195 2570 GSM53161.CEL.gz 5 0 1 0 3 0
196 2571 GSM53147.CEL.gz 10 10 9 0 10 10
197 2572 GSM53131.CEL.gz 10 10 0 0 0 2
198 2676 GSM231918.CEL.gz 10 8 1 0 2 6
199 2678 GSM277707.CEL.gz 10 9 0 0 0 0
200 2747 FB.1214.U133.2.CEL 0 0 0 0 0 9
201 2757 RLi-74.U133_2.CEL 3 [¢] 1 o] 2 8
202 2764 FB_3562_U133_2.CEL 0 o] 5 ] 0 0
203 2802 HdT_1025_.U133_2.CEL 5 0 4 0 4 3

Table S7. Overview of the 319 hybridizations rejected based on QC. Continued on next page.
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Index 1D CEL NUSE GNUSE RLE MA-plot Boxplot Heatmap
204 2803 HdT_10324.U133.2.CEL 0 1 7 0 3 2
205 2804 HdT-10381.U133.2.CEL 4 3 8 0 7 7
206 2820 DB.73.U133.2.CEL 9 10 8 0 7 10
207 2832 DB_9941.U133_2.CEL 7 5 6 0 6 8
208 2835 DB_9077.-U133_2.CEL 5 0 3 0 1 3
209 2842 DB_9983_U133_2.CEL 7 9 1 0 0 1
210 2912 071213-18.CEL 7 5 0 0 0 0
211 2914 071213-20.CEL 8 5 0 0 0 4
212 2945 090806-07.CEL 6 5 0 0 2 3
213 2956 040706-22.CEL 0 0 3 0 0 6
214 2970 071213-04.CEL 6 7 0 0 0 0
215 2977 071213-01.CEL 9 6 0 0 3 0
216 3033 HdT_9913.U133_2.CEL 0 0 T 0 1 6
217 3043 DB.69-U133.2.CEL 5 5 0 0 0 0
218 3052 HdT_3411.U133.2.CEL 6 0 1 0 9 5
219 3055 HAT_9911_.U133_2.CEL 7 6 9 0 9 10
220 3062 DB_56_.U133_2.CEL 2 0 6 0 6 2
221 3063 DB_57_.U133_.2.CEL 1 0 0 0 0 6
222 3064 DB_58_.U133_.2.CEL 1 1 6 0 4 3
223 3078 HdT-3311.U133.2.CEL 5 4 0 0 3 1
224 3079 HdT_3296-U133.2.CEL 1 1 0 0 5 0
225 3084 DB_40-U133.2.CEL 10 10 0 0 1 1
226 3085 DB_42.U133.2.CEL 10 8 2 0 10 6
227 3099 HdT_3139.U133.2.CEL 1 1 2 0 0 8
228 3121 250706-15.CEL 0 0 0 0 0 9
229 3158 DB_11442_U133_.2.CEL 0 0 2 0 0 10
230 3159 HAT_2570.U133_2.CEL 10 10 0 0 4 0
231 3165 HAT_2377_.U133_.2.CEL 3 4 5 0 2 1
232 3170 DB_11651_U133_2.CEL 9 7 0 0 0 1
233 3172 DB-11614-U133-2.CEL 7 2 7 0 5 7
234 3176 DB-17-U133.2.CEL 10 10 0 0 2 1
235 3209 DB-10797-U133-2.CEL 5 4 2 0 0 5
236 3242 GSM519129.CEL.gz 2 0 4 0 1 8
237 3251 GSM519138.CEL.gz 6 0 10 0 10 0
238 3257 GSM519144.CEL.gz 2 0 5 0 4 0
239 3270 GSM519157.CEL.gz 0 0 5 0 0 0
240 3281 GSM519168.CEL.gz 0 0 5 0 2 0
241 3296 GSM519183.CEL.gz 0 0 3 0 1 5
242 3300 GSM519187.CEL.gz 5 0 7 0 0 5
243 3301 GSM519188.CEL.gz 4 0 0 0 0 8
244 3303 GSM519190.CEL.gz 4 0 6 0 2 7
245 3337 GSM519224.CEL.gz 5 0 3 0 8 0
246 3350 GSM519237.CEL.gz 6 6 1 0 0 9
247 3379 GSM519266.CEL.gz 0 0 5 0 1 1
248 3381 GSM519268.CEL.gz 3 10 0 0 0 0
249 3394 GSM519281.CEL.gz 0 0 0 0 0 5
250 3400 GSM519287.CEL.gz 0 1 1 0 8 0
251 3476 GSM519363.CEL.gz 0 0 0 0 9 0
252 3499 GSM519386.CEL.gz 0 0 3 0 7 0
253 3502 GSM519389.CEL.gz 0 0 4 0 7 0
254 3529 GSM519416.CEL.gz 7 3 2 0 4 1
255 3531 GSM519418.CEL.gz 5 0 1 0 1 0
256 3532 GSM519419.CEL.gz 6 0 9 0 6 0
257 3535 GSM519422.CEL.gz 8 0 1 0 5 0
258 3542 GSM519429.CEL.gz 9 1 0 0 0 0
259 3543 GSM519430.CEL.gz 10 T 0 0 0 0
260 3544 GSM519431.CEL.gz 10 10 0 0 0 0
261 3545 GSM519432.CEL.gz 10 1 0 0 0 0
262 3547 GSM519434.CEL.gz 10 9 0 0 0 0
263 3548 GSM519435.CEL.gz 6 8 0 0 0 0
264 3552 GSM519439.CEL.gz 6 0 0 0 0 0
265 3553 GSM519440.CEL.gz 2 9 0 0 0 0
266 3554 GSM519441.CEL.gz 10 10 0 0 0 0
267 3555 GSM519442.CEL.gz 1 10 0 0 0 0
268 3556 GSM519443.CEL.gz 3 10 0 0 1 0
269 3559 GSM491177.CEL.gz 1 0 1 0 0 5
270 3581 GSM491199.CEL.gz 0 0 3 0 9 4
271 3587 GSM491205.CEL.gz 2 6 0 0 0 0
272 3594 GSM491212.CEL.gz 0 0 3 0 6 0
273 3608 GSM491226.CEL.gz 0 0 0 0 7 0
274 3664 GSM491282.CEL.gz 0 0 0 0 7 0
275 3675 GSM124997.CEL.gz 7 2 1 0 0 5
276 3698 GSM125020.CEL.gz 2 0 5 0 10 4
277 3705 GSM125027.CEL.gz 7 4 0 0 0 0
278 3802 GSM85476.CEL.gz 0 0 6 0 0 0
279 3807 GSM85481.CEL.gz 0 0 0 0 7 0
280 3808 GSM85482.CEL.gz 0 0 10 0 10 9
281 3810 GSM85484.CEL.gz 0 0 5 0 7 0
282 3823 GSM85497.CEL.gz 0 0 6 0 9 0
283 3865 GSM467542.CEL.gz 7 2 0 0 0 0
284 3867 GSM467544.CEL.gz 8 0 0 0 0 0
285 3868 GSM467545.CEL.gz 8 0 0 0 0 0
286 3870 GSM467547.CEL.gz 8 6 0 0 0 0
287 3885 GSM467562.CEL.gz 9 1 8 0 10 8
288 3889 GSM467566.CEL.gz 10 8 0 0 6 1
289 3898 GSM467575.CEL.gz 10 10 10 0 10 10
290 3902 GSM467579.CEL.gz 4 8 0 0 0 0
291 3914 GSM467591.CEL.gz 10 T 0 0 0 3
292 3930 GSM540108-160306-23.CEL.gz 10 9 10 0 9 10
293 3931 GSM540109-060406-05.CEL.gz 10 10 10 0 10 10
294 3932 GSM540110-200406-16.CEL.gz 10 9 10 0 10 10
295 3938 GSM540116.160302-01.CEL.gz 2 0 5 0 2 0
296 3952 GSM540130-160302-02.CEL.gz 1 0 0 0 0 10
297 3961 GSM540139.080414-04.CEL.gz 8 9 10 0 10 10
298 3963 GSM540141-090905-02.CEL.gz 10 10 10 0 10 10
299 3970 GSM540148-090205-23.CEL.gz 0 0 1 0 1 8
300 4009 GSM540187-080318-06.CEL.gz 0 0 6 0 0 0
301 4016 GSM540194-270905-10.CEL.gz 1 5 0 0 0 0
302 4017 GSM540195-260106-08.CEL.gz 5 4 1 0 1 6
303 4023 GSM540201-260106-07.CEL.gz 0 0 0 0 0 7
304 4036 GSM540214.260106-06-2nd_scan_taches.CEL.gz 10 10 10 0 9 9
305 4053 GSM540231.071205-05.CEL.gz 10 10 10 0 10 10

Table S7. Overview of the 319 hybridizations rejected based on QC. Continued on next page.
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306 4139 GSM540317-15719-T1.CEL.gz 8 10 10 0 10 0
307 4140 GSM540318-15724.T2.CEL.gz 7 10 8 0 2 0
308 4141 GSM540319-15744_T7.CEL.gz 6 9 10 0 10 0
309 4143 GSM540321.15765-T9.CEL.gz 0 8 3 0 1 0
310 4144 GSM540322.15986_T24.CEL.gz 9 10 10 0 9 0
311 4145 GSM540323.16137_T39.CEL.gz 6 9 10 0 9 0
312 4146 GSM540324.16325_T56.CEL.gz 4 10 10 0 10 0
313 4147 GSM540325.17231_T125.CEL.gz 2 7 10 0 8 3
314 4154 GSM540332-090115-08.CEL.gz 6 6 0 0 9 0
315 4165 GSM540343.090129-01.CEL.gz 0 0 1 0 2 10
316 4198 GSM441382.CEL.gz 0 0 0 0 0 10
317 4214 GSM441366.CEL.gz 10 0 0 0 0 0
318 4216 GSM441368.CEL.gz 0 10 8 0 10 0
319 4220 GSM441372.CEL.gz 0 0 1 0 9 0

Table S7. Overview of the 319 hybridizations rejected based on QC. ID: short array identifier used in
the QC overview figures, pages 12-23; CEL: the original CEL file name. This frequently equates to the
GSM accession number from GEO extended with ‘.CEL.gz’. The remaining six columns indicate in how
many of R = 10 QC repeats the array was flagged for each of the six QC indicators NUSE, GNUSE,
RLE, MA-plot, boxplot and heatmap.
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