Supporting Information

Photocatalytic Oxygenation of Substrates by Dioxygen with Protonated Manganese(III) Corrolazine

Jieun Jung,[†] *Heather M. Neu*,[‡] *Pannee Leeladee*,[‡] *Maxime A. Siegler*,[‡] *Kei Ohkubo*,[§] *David P. Goldberg*,^{*‡} *and Shunichi Fukuzumi*^{*†,§,||}

[†]Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea

[‡]Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States

[§]Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan

^{II}Faculty of Science and Engineering, Meijo University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-0073, Japan

E-mail: fukuzumi@chem.eng.osaka-u.ac.jp, dpg@jhu.edu

Figure S1. Plot of $(\Delta Abs.)^{-1}$ vs $[HOTf]^{-1}$ to determine the second binding constant ($K_2 = [[Mn^{III}(OTf)(H_2O)(TBP_8Cz(H_2))][OTf]]/[Mn^{III}(OTf)(TBP_8Cz(H))][H^+])$ upon addition of HOTf (0.0 – 1.0 × 10⁻² M) into the solution of Mn^{III}(OTf)(TBP_8Cz(H)) (1.0 × 10⁻⁵ M) in PhCN.

Figure S2. (a) UV–vis spectrum of crystalline [Mn^{III}(OTf)(TBP₈Cz(H))] dissolved in PhCN (2.0 mL) at 23 °C.

400 500 600 700 800 900 Wavelength (nm) Figure S3. (a) UV-vis spectrum of crystalline [Mn^{III}(OTf)(TBP₈Cz(H))] dissolved in CH₂Cl₂ (2.0 mL) at 23 °C.

Figure S4. (a) UV–vis spectrum of crystalline $[Mn^{III}(OTf)(H_2O)(TBP_8Cz(H)_2)][OTf]$ dissolved in CH₂Cl₂ (2.0 mL) at 23 °C.

Figure S5. UV–vis spectral change of Mn^{III}(OTf)(TBP₈Cz(H)) (1.0×10^{-5} M) during photocatalytic oxidation reaction [black: 0 h, blue: 2 h, green: 4 h, and orange: 6 h] of HMB (0.3 M) in the presence of 4.0×10^{-5} M of HOTf under photoirradiation (white light) in an O₂–saturated PhCN solution at room temperature.

Figure S6. Time profiles of the amount of produced pentamethylbenzyl alcohol for photocatalytic oxidation reaction of HMB (0.3 M) by $(\text{TBP}_8\text{Cz})\text{Mn}^{\text{III}}$ (1.0 × 10⁻⁵ M) (a) in the presence of 4.0 × 10⁻⁵ M of HOTf or (b) in the presence of 5.0 × 10⁻³ M of HOTf under photoirradiation (white light) in an O₂-saturated PhCN solution at room temperature.

Figure S7. Time profiles of the amount of products [methylphenylsulfoxide (blue) and methylphenylsulfone (red)] for photocatalytic oxidation reaction of thioanisole $(2.0 \times 10^{-2} \text{ M})$ by Mn^{III}(TBP₈Cz) $(1.0 \times 10^{-5} \text{ M})$ (a) in the presence of HOTf $(2.0 \times 10^{-5} \text{ M})$ and (b) in the absence of HOTf under photoirradiation (white light) in an O₂–saturated PhCN at room temperature.

Figure S8. Time profiles of the amount of methylphenylsulfoxide for (a) photocatalytic reaction of thioanisole $(2.0 \times 10^{-2} \text{ M})$ in the presence of HOTf $(2.0 \times 10^{-5} \text{ M})$ under photoirradiation (white light) in O₂-saturated PhCN at room temperature and (b) the reaction of thioanisole $(2.0 \times 10^{-2} \text{ M})$ by Mn^{III}(TBP₈Cz) $(1.0 \times 10^{-5} \text{ M})$ in the presence of HOTf (2.0 $\times 10^{-5} \text{ M})$ without photoirradiation in O₂-saturated PhCN at room temperature.

Figure S9. (a) UV-vis spectral changes from $Mn^{V}(O)(TBP_{8}Cz)$ (black line, 1.0×10^{-5} M) to $[Mn^{IV}(OH)(TBP_{8}Cz^{+})](OTf)$ in the presence of HOTf (blue line, 2.0×10^{-4} M) in PhCN at room temperature.

Figure S10. UV-vis spectral changes from $Mn^{V}(O)(TBP_8Cz)$ (blue line, 1.0×10^{-5} M) with HMB (2.0×10^{-2} M) to $Mn^{III}(OTf)(TBP_8Cz(H))$ (red line) (a) in the absence of HOTf and (b) upon addition of HOTf (2.0×10^{-5} M) in a PhCN solution for 1 h at room temperature.

Figure S11. Plots of formed Mn^{III}(OTf)(TBP₈Cz(H)) ($\lambda_{max} = 725$ nm) versus time and best-fit lines to give pseudo-first-order rate constant (k_{obs}) of the reduction reaction of [Mn^{IV}(OH)(TBP₈Cz⁺)](OTf) (1.0 × 10⁻⁵ M) with HMB (2.0 × 10⁻² M) in PhCN containing (a) 20 µM, (b) 40 µM, (c) 80 µM, and (d) 90 µM of HOTf.

Figure S12. Plots of formed Mn^{III}(OTf)(TBP₈Cz(H)) ($\lambda_{max} = 725$ nm) versus time and best-fit lines to give pseudo-first-order rate constant (k_{obs}) of the reduction reaction of [Mn^{IV}(OH)(TBP₈Cz⁺)](OTf) (1.0 × 10⁻⁵ M) with HOTf (3.0 × 10⁻⁵ M) in PhCN containing (a) 2 mM, (b) 4 mM, (c) 6 mM, and (d) 8 mM of HMB.

Figure S13. Difference Fourier map of $Mn^{III}(OTf)(TBP_8Cz(H))$ at 110(2) K drawn on the plane of the corrolazine core. N5 is the identified protonated site.

Figure S14. Difference Fourier map of $[Mn^{III}(OTf)(H_2O)(TBP_8Cz(H)_2)][OTf]$ at 110(2) K drawn on the plane of the corrolazine core. N1 and N5 are the identified protonated sites.