Comparative metabolomics in primates reveals the effects of diet and

gene regulatory variation on metabolic divergence

Ran Blekhman?2*, George H. Perry3, Sevini Shahbaz?, Oliver Fiehn*, Andrew G. Clark>, Yoav

Gilad®”

1. Department of Genetics, Cell Biology, and Development, University of Minnesota,
Minneapolis, MN, 55455

2. Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN,

55108

Department of Biology, Penn State University, University Park, PA, 16802

UC Davis Genome Center, University of California, Davis, CA, 95616

Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853

Department of Human Genetics, University of Chicago, Chicago, IL, 61637

oUW

* Corresponding Authors: Ran Blekhman (blekhman@umn.edu), Yoav Gilad (gilad@uchicago.edu)

Supplementary Information

Includes Supplementary Methods, Supplementary Tables S2-S6, and

Supplementary Figures S1-S10



Supplementary Methods

Sample preparation

For this analysis we used 18 liver samples from three primate species (human,
chimpanzee, and rhesus macaque), with 6 individuals from each species. Liver samples
from non-human primates were collected at necropsy, within four hours of death, by the
Yerkes primate center, the Southwest Foundation for Biomedical Research, and MD
Anderson Cancer Center. Additional primate tissues were given to us by Anne Stone. In all
cases, we collected liver tissue samples from adult chimpanzees and rhesus macaques that
died of natural causes (such as accidents or fights) or were euthanized due to an illness
unrelated to liver. The human adult liver samples were collected for us by the National
Disease Research Interchange (NDRI), and by the pathology department at Yale University
(with IRB approval). Detailed information about all samples is available in Table S2.

Tissue samples were immediately frozen and maintained at -80C. From each liver
sample, we excised three small tissue pieces, each ~100 mg, from different sections of the

original, larger sample. This step was conducted on dry ice to avoid thawing the samples.

Metabolomics methodology

To quantify metabolite levels in liver samples, we have applied gas
chromatography/time-of-flight mass spectrometry (GC-TOF MS), as this technique yields
the largest overview over metabolites smaller than approximately 500 Da, especially the
diversity of carbohydrates (mono-, di- and trisaccharides), sugar alcohols, hydroxyl acids

(including intermediates of the tricarboxylic acid cycle), amino acids, aromatics, free fatty



acids, and ranges of miscellaneous compounds such as purines and pyrimidines. While
there is overlap in metabolite coverage with complementary techniques such as liquid
chromatography/mass spectrometry, GC-TOF MS is superior in separating isomeric
compounds such as fructose and glucose and has better command over data processing
software such as mass spectral deconvolution, data processing algorithms [1] and mass
spectral libraries [2]. As every other metabolomic technique, GC-TOF MS is limited in
scope; for example, complex lipids such as phosphatidylcholines or thermodegradable

metabolites like ATP cannot be analyzed this way.

Metabolomics data acquisition

2 mg liquid-nitrogen frozen liver tissue samples were homogenized at 25 Hz with 3
mm i.d. steel balls for 30 s and immediately placed back into liquid nitrogen, afterwards.
Samples were taken out one by one and 1 ml of a carefully degassed -20°C cold
isopropanol/acetonitrile/water mixture (3:3:2, v/v/v) were added and shaken for 5 min
at 4°C to extract metabolites and simultaneously precipitate proteins. After centrifugation
at 12,800 x g for 2 min, 90% of the supernatant was removed, separated into two equal
aliquots, transferred to a 1.5 ml Eppendorf tube and concentrated to dryness in a vacuum
concentrator. Samples were cleaned up by adding 500 ul of a degassed acetonitrile/water
mixture (1/1, v/v), vortexing, centrifugation, decanting the supernatant and drying in a
speed vac concentrator. This step removes triglycerides and most of the complex lipids,
but not phytosterols or free fatty acids and is needed because otherwise, the involatile
matrix lipids would interfere with the derivatization reaction of primary amines and

amino acids.



C08-C30 fatty acid methyl esters in chloroform were added as internal retention
index (RI) markers. Subsequently, metabolites were derivatized by adding 10 ul of a
solution of 20 mg/ml of 98% pure methoxyamine hydrochloride (CAS number 593-56-6,
Sigma-Aldrich) in pyridine for 90 min at 28°C. Afterwards 90 ul of N-methyl-N-
trimethylsilyltrifluoroacetamide (MSTFA, Sigma-Aldrich) was added for
trimethylsilylation of acidic protons and shaken at 37°C for 30 min. The reaction mixture
was transferred to a 2 ml clear glass auto-sampler vial with micro-insert (Agilent) and
closed using a 11 mm T/S/T crimp cap (MicroLiter). A Gerstel automatic liner exchange
system with a MPS2 dual rail multi-purpose sampler was used in conjunction with a
Gerstel CIS cold injection system. For every 10 samples, a fresh multi-baffled liner was
inserted (Gerstel #011711-010-00). Before and after each injection, the 10 ul injection
syringe was washed three times with 10 ul ethyl acetate. 1 ul sample was filled using 39
mm vial penetration at 1ul sec-1 filling speed, injecting 0.5 ul at a 10 ul s-1 injection speed
at an initial temperature of 50°C which was ramped by 12°C sec-1 to a final temperature of
250°C and held for 3 min. The injector was operated in split-less mode, opening the split
vent after 25 sec. Samples were injected between 2-24 h after derivatization using
randomized sequences controlled by the laboratory information management and
database system. An Agilent 6890 gas chromatograph was used with a 30 m long, 0.25 mm
internal diameter Rtx-5Sil MS column with 0.25 Im 95% dimethyl/5%diphenyl
polysiloxane film and an additional 10 m integrated guard column was used (Restek).
Separation was achieved by 99.9999% pure helium with built-in purifier (Airgas) at a
constant flow of 1 ml min-1. The oven temperature was held constant at 50°C for 1 min,

and then ramped at 20°C min-1 to 330°C, and held constant for 5 min. The transfer line



temperature was set to 280 °C. After 290 s solvent delay, filament 1 was turned on at an
ion source temperature of 250 °C. Electron ionization mass spectra were acquired at 70
eV with mass resolving power R = 600 from m/z 85-500 at 20 spectra s-1 and 1850 V
detector voltage without turning on the mass defect option. Recording ended after 1200 s.
The instrument performed auto-tuning for mass calibration using FC43 (perfluorotributyl-

amine) before starting analysis sequences.

Metabolomics data processing

Chromatogram acquisition, data handling, automated peak deconvolution, and
export of spectra was automatically performed by the Leco ChromaTOF software (v2.32).
Peak picking was achieved in ChromaTOF (v2.32) at signal/noise levels of 10:1
throughout the chromatogram with baseline subtraction just above the noise level, no
smoothing, 3 s default peak widths, automatic mass spectral deconvolution and peak
detection and export of result spectra as *.csv files in addition to export of raw data in
open-access *.cdf formats. Data were further processed using the algorithms implemented
in the open-source BinBase metabolome database [3]. This algorithm used the settings:
validity of chromatogram (<10 peaks with intensity >10"7 counts sec-1), unbiased
retention index marker detection (MS similarity >800 and exceeding thresholds for ion
ratio abundances for high m/z marker ions), retention index calculation by 5th order
polynomial regression. Spectra were cut to 5% base peak abundance, and matched to
database entries from most- to least-abundant spectra using the following matching
filters: retention index window *2000 units (equivalent to about *2 sec retention time),

validation of unique ions and apex masses (unique ion must be included in apex masses



and present at >3% of base peak abundance), mass spectrum similarity that must fit
criteria dependent on peak purity and signal/noise ratios, optional ion ratio settings to
distinguish peaks with high similarity, and a final isomer filter (annotating the isomer
spectrum with the closest RI fit). Novel spectra not yet included in BinBase were
automatically entered as new database entries if their signal-to-noise ratio >25, purity
<1.0 and presence in the biological study design class was >80%. This filter ensured that
(i) signals were reported that had never been detected previously in any other sample, but
(ii) only signals were reported that can be assumed to be biologically relevant using
relatively abundant and pure signals and ensuring that these are positively detected in
most of the biological replicates. Signal intensities were reported as peak heights using the
unique ion as default, unless an alternative quantification ion was manually set in the
BinBase administration software Bellerophon. All known artifact peaks such as internal
standards, column bleed, plasticizers or reagent peaks were assigned by BinBase but not
exported for further statistical calculations. Metabolites were identified using the Fiehnlib
libraries consisting of over 1,200 authentic compounds and referenced using PubChem
identifiers [2]. Daily quality controls were used comprising method blanks and five-point
calibration curve samples of 31 pure reference compounds which were repeatedly
analyzed over the full analytical sequence in addition to injection of one QC sample for
every 10 biological samples. A quantification report table was produced for all database
entries that were positively detected in more than 50% of the samples of a study design
class. This procedure results in 10-30% missing values, which could be caused by true
negatives (compounds that were below the detection limit in a specific sample) or false

negatives (compounds that were present in a specific sample but that did not match



quality criteria in the BinBase algorithm). A subsequent post-processing module was
employed to automatically replace missing values from the *.cdf files with the following
parameters: for each positively detected metabolite, the average retention time was
calculated for the day of analysis. Subsequently, for each chromatogram and each missing
value, the intensity of the quantification ion at this retention time was extracted by
seeking its maximum value in a retention time region of + 1 s and subtracting the
minimum (local background) intensity in a retention time region of +5 s around the peak

maximum. The resulting report table therefore did not have any missing values.

Metabolomics data normalization and statistics

Result files were normalized by calculating the sum intensities of all structurally
identified compounds for each sample (i.e. those signals that had been positively identified
in the data pre-processing schema outlined above), and subsequently dividing all data
associated with a sample by the corresponding metabolite sum. The resulting data were
multiplied by the average sum of all identified metabolites detected in the study (total
average metabolome transformation), disregarding unknown metabolites as these might
potentially also comprise artifacts. Intensities of identified metabolites with more than
one peak (e.g. for the syn- and anti-forms of methoximated reducing sugars, or amino
acids with different derivatization status of amine groups) were summed to only one value
in the transformed data set. The original non-transformed data set was retained for
retrospective analysis. When comparing classes of samples with biologically different sum
concentrations of identified metabolites (p<0.05), these class averages were used for

mean transformations. The final metabolomics data consists of three replicates for each



sample, for a total of 54 (3*6*3) measurements for each metabolite, and is available as a
separate data file (Dataset S1). The dataset included information for 399 metabolites
detected in all samples, of which 177 had an associated name, and 153 were also found in

the KEGG database.

Expression data

We used expression data that we previously collected and analyzed [4]. Briefly, the
data was collected using a multi-species microarray, containing orthologous probes from
three primate species: human, chimpanzee, and rhesus macaque. The array contains
probes for 18,109 genes (368,678 probes in total). The data includes gene expression
estimates from six individuals from three tissues (liver, kidney cortex and heart muscle),
from each of the three species. Complete information on sample collection, study design,
array hybridizations, low-level analysis, and quality control is available in Blekhman et al.

(2008).

Low-level analysis and quality control of the metabolite data

First, we normalized the metabolite data using the quantile normalization
approach, with the normalize.quantiles function in the R library preprocessCore version
1.8. To assess to quality of the data, we performed principal component (PC) analysis on
the normalized data, using the princomp function in R. and plotted the first vs second
principal components (figure S1C). We note that the PCs separate the samples based on
the batch (replicate) in which it was run, with PC1 splitting the first batch from the rest,

and PC2 separating the second and third batches. Since this variation is technical, and



could lead to spurious results, we decided to remove this effect and correct for it before
moving on with the analysis. We also note that PC3 does not correspond to any expected
biological division of data, while PC4 separates the samples based on their species (see
figure S1D). Since the species effect is expected to be the main factor explaining the
variance between samples, we concluded that PC3 is a technical effect, and decided to
correct for this unexplained effect as well.

To do so, we analyzed the normalized data with a metabolite-wise linear model
including the replicate and third PC as factors. We generated the corrected data by
summing the intercept and residuals for each metabolite, thus regressing out the model
factors, namely the batch and the third PC.

In addition to correcting for non-biological variance, we also used the PC analysis,
together with a heatmap plot of sample pairwise correlations, to identify outliers in the
metabolite data. We found three outlying samples that did not cluster with their other two
replicates: (1) human sample 56720 replicate 2 (can be clearly seen in figure S1C), (2)
human sample 56655 replicate 3, and (3) rhesus macaque sample YN05-349 replicate 3.
After excluding these samples from the data, we repeated the PC analysis, and found no
visible confounding effect and outliers (figure S1A and S1C). Moreover, we see the species
as the first and second PCs. In addition, a heatmap plot of the normalized, corrected,

outlier-excluded data shows a clear separation (figure S2).

Metabolic pathway data
All metabolic pathway information was downloaded from KEGG [5] via the ftp site

at http://www.genome.jp/kegg/download on February 2011. The tables that were



downloaded are ‘rpair’, ‘reaction’, ‘enzyme’, and ‘compound’. Of the 177 metabolites with
known name in our dataset, 153 also had a KEGG ID. We extracted from the ‘compound’
table information for these metabolites, including the pathways they each metabolite is
included in, and the names of enzymes associated with each metabolite. To get
information on pairs of metabolites involved in the same reaction, as well as the KEGG
enzyme controlling each reaction, we used the ‘rpair’ table. We found 133 such metabolite
“pairs” where both metabolites are included in our dataset.

We then matched the gene symbols of the genes represented on our expression
array to the KEGG enzyme names, and found a KEGG enzyme record for 2,626 of the
17,231 genes. We found 1043 unique enzyme-metabolite associations in KEGG where we

have both the metabolite concentration level and enzyme expression level.

Identifying differences in metabolite concentrations between species

To identify metabolites with differences in concentrations between species, we
applied the following linear model on the levels of each metabolite:

Ysij = Us + Qsi + Esij

where ysi is the normalized log concentration level from species s in individual i and
replicate j, usis the expected log concentration level in species s, aiis a random effect to
capture the variance between individuals within each species, and &s; is the error term.

To identify metabolites differentially concentrated (DC) between species we used a
set of three likelihood ratio tests, each comparing the likelihood of the full model above
with that of a reduced model, which assumes there is a similar concentration level across

the species. We calculated a likelihood ratio (LR) statistic for each pairwise comparison,
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and estimated a P-value under the assumption that the LR has a chi-square distribution
with one degree of freedom. We then calculated the false discovery rate associated with
these P-values using the approach of [6]. Finally, we used a threshold of g-value < 0.05 and
identified 122, 96, and 29 metabolites with different concentrations between human and
chimpanzee, human and rhesus macaque, and chimpanzee and rhesus macaque,
respectively (see Figure S3). Given the small number of differences between chimpanzee
and rhesus macaque, we focused most of the following analyses on the human-
chimpanzee and human-rhesus macaque comparisons, which were more informative.
Next, we aimed to find metabolites with a human-specific concentration level, i.e.,
metabolites that show a significantly higher (or lower) level in human, but a similar level
in the two non-human species. To do so, we combined the results of the three pairwise
tests described above, and picked genes with a P<0.01 for human-chimpanzee and human-
rhesus macaque comparison, and P>0.1 for chimpanzee-rhesus macaque. We identified 35
metabolites with the expected pattern, of which 21 have a known name (shown in Figure

1).

Human-specific metabolic concentrations in pathways

We then wanted to identify KEGG pathways that show evidence for human-specific
metabolic concentrations. To do so, for each pathway in KEGG we combined the pairwise
P-values for differential concentration over all the metabolites in the pathway using
Fisher’s method, and considered pathways with a combined, Bonferroni-corrected P<0.05
for the human-chimpanzee and human-rhesus macaque differences, and combined P>0.1

for the chimpanzee-rhesus difference. Table S3 lists the most enriched pathways,
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including the metabolites included in the analysis in each pathway, and the combined

pairwise P-values.

Identifying differentially expressed genes

For all subsequent analyses we excluded probes that did not have corresponding
orthologs in all three species (i.e., we only consider probes that have the human,
chimpanzee, and rhesus macaque species-specific versions on the array — we refer to these
as the “corresponding orthologous probes”). Following this step, we excluded genes that
were represented by fewer than three corresponding orthologous probes across all
species. Thus, the total number of genes included in all subsequent analyses was 17,231
(95% of genes originally included on the array). Expression estimates were obtained from
[4].

To identify genes that are differentially expressed (DE) between human and
chimpanzee within a tissue, we used likelihood ratio (LR) tests within the frame work of
nested mixed linear models, as previously described [4]. Briefly, we estimated the
maximum likelihood of the full model as well as that of a reduced (null) model, in which
we assume that the expression level in human and chimpanzee is similar. We then
calculated -2-(log-likelihood ratio) between the fits of the reduced and full models. We
expect genes that deviate from the null (i.e., genes that are truly differentially expressed

between human and chimpanzee) to have higher values of this statistic.

Correlation between the number of reactions and differential concentration
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In order to test correlations among the number of metabolic reactions a metabolite
is involved in (commonly called “connectivity”) and the level of DC between species, we
first examined the distribution of the number of reactions per metabolite extracted from
KEGG. As can be seen in Figure S4, the distribution is enriched with low-reaction
metabolites, but has a long tail of high-connectivity metabolites. We show results using a
cutoff of 20 reactions to distinguish the two groups, but results remain unchanged for
multiple other cutoff choices. After splitting the metabolites to low- and high-connectivity
compounds, we plotted the distribution of likelihood ratios for differential concentration

between species pairs in Figure S5.

Permutation test for difference in medians

We used a permutation test to estimate the significance of observed differences
between the medians of values for different groupings of metabolites (e.g. likelihood ratio
for metabolites involved in reactions controlled by differentially expressed vs. non-
differentially expressed enzymes). For this purpose, we define the difference between the
medians (or means) of the two groups as D. Then, we randomly divided all the values into
two groups of same sizes as observed, and calculated the medians of the random groups.
This permutation was repeated 10,000 times, and each time the difference between the
medians of the two randomly selected groups (Di) was recorded. The test P-value was

defined as the number of times where D; =D, divided by 10,000.
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Supplementary Tables

Table S1 contains the metabolite concentration levels used in this study, and is provided

in a separate data file.

Table S2. Information on the liver samples used in this study.

Sample Source Species ID sex
H1 Yale Human Yale 1 m
H2 Yale Human Yale 2 m
H3 Yale Human Yale 3 m
H4 Yale Human Yale 4 m
H5 NDRI Human 56655 f
H6 NDRI Human 56720 f
C1 Yerkes Chimpanzee YNO05-400, Jeanie f
C2 Yerkes Chimpanzee YNO06-108, Beleka  f
C3 MD Anderson Chimpanzee MDANDER m
C4 Yerkes Chimpanzee YNO06-147, Iyk m
C5 Yerkes Chimpanzee c0547, Keith m
Ccé6 A.Stone Chimpanzee YN95-427 m
R1 Yerkes Rhesus macaque YNO05-349, RFj9 f
R2 Yerkes Rhesus macaque YNO05-82, RFh3 m
R3 A.Stone Rhesus macaque 13330-305,R1333 m
R4 A.Stone Rhesus macaque 19935-305,R1999 m
R5 Yerkes Rhesus macaque YNO04-311 f
R6 Yerkes Rhesus macaque 17602 m
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Table S3. Pathways over-represented with metabolites showing a human-specific pattern.

Pathway Name Metabolites Puc Pu.r Pcr
Primary bile acid biosynthesis taurine, glycine, cholesterol 8.60E-05 3.34E-05 0.983767682
lysine, glycine, 2-aminoadipic
Lysine degradation acid, glutaric acid, 5-aminovaleric 0.000108626 2.12E-05 0.949036076
acid
Argmme. and proline urea, prolllne., glutamm.e, furpanc 5 36E-05 0.003132915 0.635359913
metabolism acid, creatinine, aspartic acid, ...
phenylalanine, fumaric acid,
Phenylalanine metabolism tyrosine, succinic acid, salicylic =~ 4.44E-05 0.001355468 0.956585677
acid, ...
Phenylalanine, tyrosine and  phenylalanine, tyrosine, 0.006070129 0.007642205 0.968361491
tryptophan biosynthesis tryptophan, quinic acid
Taurine and hypotaurine cysteine, alanine, taurine 0.003953963 6.41E-05 0.416250497
metabolism
serine, aspartic acid, tyrosine,
Cyanoamino acid metabolism glycine, asparagine, cyano-L- 0.000499792 0.001509633 0.958270424
alanine
oxoproline, cysteine, glycine,
Glutathione metabolism glutamic acid, dehydroascorbate, 2.50E-07 5.42E-07 0.909925842
Naphthalene degradation salicylic acid, salicylaldehyde 0.002293026 0.006249661 0.946095694
Thiamine metabolism cysteine, tyrosine, glycine 0.004317159 0.009294191 0.916033897
Tro.p:%ne, plperl.dlnfe and _ phenyla.lamne, lysine, isoleucine, 0.000114158 0.001362611 0.927163623
pyridine alkaloid biosynthesis putrescine
xanthine, valine, uric acid, urea,
Metabolic pathways uracil, threonine, serine, proline, 6.98E-18 2.92E-14 0.936975057
Biosynthesis of secondary xanthine, valine, threonine,
. serine, proline, phenylalanine, 1.94E-10 6.18E-06 0.994914412
metabolites o
methionine, ...
valine, urea, threonine, serine,
ABC transporters proline, phenylalanine, lysine, 1.49E-05 2.30E-05 0.994763357
isoleucine, ...
Protein digestion and valine, threonine, serine, proline,
. phenylalanine, methionine, lysine, 0.000276889 6.70E-05 0.979072152
absorption
. . uric acid, glucose, cholesterol,
Bile secretion C o . 1 0.001121257 0.005314515 0.998908375
salicylic acid, spermidine, ...
Biosynthesis of phenylalanine, fumaric acid, 3- 0.000786858 0.000757432 0.981246965

phenylpropanoids

phosphoglycerate, citric acid, ...
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Table S4. Cellular and molecular functions in the Ingenuity database enriched among the

metabolites shown in Figure 2 (top 5 categories are shown).

Functional Category P-value Metabolites

Cell-To-Cell Signaling and Interaction 3.94E-02 D-glucose,glycine

Energy Production 3.66E-02 D-glucose,glycine,citric acid

Skelet_al and Muscular System Development and 3.97E-02 putrescine,D-glucose,glycine,taurine
Function

Cell Morphology 4.9E-02 AMP,D-glucose,glycine,taurine

Cellular Function and Maintenance 4.9E-02 AMP,D-glucose,salicylic acid,glycine,taurine

Table S5. Canonical pathways in the Ingenuity database enriched among the metabolites

shown in Figure 2 (top 5 categories are shown).

Functional Category P-value Metabolites

Lysine Degradation 1.10E-03 glutaric acid,2-aminoadipic acid,glycine
Insulin Receptor Signaling 1.35E-03 AMP,D-glucose

Nitrogen Metabolism 1.82E-03 AMP glycine,taurine

Glutathione Metabolism 1.02E-02 pyrrolidonecarboxylic acid,glycine
Cyanoamino Acid Metabolism 1.29E-02 glycine,3-cyano-L-alanine
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Table S6. Metabolites found in Fu et al. [7] and also included in our analysis.

Metabolite! Hspec.CBCz2 Hspec.PFC3 inLivert Hspec.livers
3-hydroxybutyric acid 0 0 0 0
glycerol

leucine

isoleucine

benzoic acid

serine

succinic acid
threonine

fumaric acid
erythronic acid
4-hydroxyproline
gaba

threonic acid
methionine
creatinine
oxoproline
glutamate
nicotinamide
putrescine
dodecanoic acid
glutamine
phenylalanine
glucose-1-phosphate
ornithine

aspartic acid
glycerol-3-phosphate
glucose

citricacid
dehydroascorbic acid
histidine
pantothenic acid
hexadecanoic acid
octadecenoic acid
6-phosphogluconic acid
tryptophan

uridine

alanine

butyricacid
tetradecanoic acid
cholesterol

S O O O O O O O O O OO O O O O OO OO OO O OO0 OO OO0 oo oo oc o oo o

S O O O O OO R PR O RFPR O OO OO OO OO0 OO R PR OOO OO OO oo oo ooo

_ O O R R R OO0 O R R O OR ORRRER R OR RO RRPRREREOROR R R R R R R

S O O O O O O O O O O O O FRPR OO OO O OO PR OO R OO0 OO OO oOoOOoO o ooo
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hydroxypyridine
3-hydroxypyridine
ribitol

fructose
glycerol-2-phosphate
tyrosine

pyruvicacid
heptadecanoic acid
valine

oxalic acid

decanoic acid

taurine

tetracosanoic acid
glycolic acid

2-amino adipic acid
fructose2

spermidine
glucose-6-phosphate2
ascorbic acid

ORrR OO R OOROOODOOO0OOOO0OOC O O
©C OO R OO RFRRPROOOOOCOOOO R O R
_ R O R OO R ORFR ORRPRRFEORORROO

adipic acid

1 Metabolite name, listing all metabolites with a known name from Fu et al.

2 Whether the metabolite has a human-specific pattern in the CBC (Fu et al.).

3 Whether the metabolite has a human-specific pattern in the PFC. (Fu et al.)

4 Whether the metabolite was identified and included in our analysis.

5 Whether we found the metabolite to have a human-specific pattern in the liver.

S O O O O O O O Fr OO OO O oo o o o o
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Figure S1. Principal component (PC) analysis of the normalized metabolite data, showing
the first vs. second PC (A,C) and third vs. fourth PC (B,D) on the x and y axes, respectively.
(A) Data after removal of outlier sample (HSA_56720_f 2); (B) data after removal of
outlier and following correction for batch effect; (C) full data, before removal of outlier,
PC1 vs. PC2; (D) full data, before removal of outlier, PC3 vs. PC4. Numbers correspond to
the three batches, and colors correspond to the species (blue-human, red-chimpanzee,
black-rhesus macaque).
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Figure S2. Heatmap of pairwise (Spearman) correlations of normalized and corrected
metabolite levels between all samples. Colors represent different R? values as indicated in
the color key at the top, with lighter colors indicate higher correlation. The dendrogram,
which was used to order the rows and columns of the heatmap, which is shown at the top
and left sides, was generated by clustering the pairwise correlation matrix using a
Euclidean distance metric and complete agglomeration.
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Metabolite between-species differential concentration
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C-R 241

Figure S3. Proportion of DC metabolites between each pair of species (H: human, C:
chimpanzee, R: rhesus macaque).



Number of KEGG reactions
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Figure S4. Histogram showing the distribution of number of reactions per metabolite,
using all the metabolites in our dataset for which we found a record in KEGG. The orange
horizontal line shows the selected cutoff for defining high- and low-reaction metabolites.
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Figure S5. Distribution of likelihood ratios for differential concentration between pairs of
species, broken down into high-reaction metabolites (orange) and low-reaction
metabolites (grey).
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Distribution of pemuted values
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Figure S6. The distribution of difference in medians between paired and unpaired
metabolites calculated from 1000 permutations of the real network. The red dot marks the
observed unpermuted value.
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Figure S7. Similar to Figure 2D in the main text, but considering metabolites involved in
the same reactions where at least one is DC between the species (and not necessarily both
metabolites, as in Figure 2D).
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Enzyme median d

Enzyme median d

Figure S8. similar to Figure 3 (panels B and C) in the main text, with the y-axis showing
the difference in estimated expression levels between human and chimpanzee for
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enzymes associated with DC (prange) and non-DC (grey) metabolites.
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Human-chimp enzyme differential expression
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Figure S9. The number of differentially concentrated metabolites in a reaction is
correlated with the level of differential expression of the associated enzyme. Enzyme LR
(y-axis) for DE between human and chimpanzee, comparing enzymes controlling reactions
in which none of the metabolites are DC (white), and reactions in which one or both
metabolites are DC (orange).
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Human-rhesus enzyme differential expression
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Figure S10. Similar to Figure S9, showing on the y-axis the LR for enzyme differential
expression between human and rhesus macaque.
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