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1. Definitions 
Mutant, mutation: in this manuscript, these terms are equivalent to "variant", with no 

pathogenic connotation. 
Ties: statistical term used to designate "identical values". 
WT reference: backbone cDNA sequence carrying each assessed variant. 
Cut-off: value that allows separation of the mutations into two categories: pathogenic or 

neutral. Depending on the functional assay, the pathogenic category lies above or below 
the cut-off, with the neutral category in the opposite position. 

Sensitivity: proportion of pathogenic mutations correctly classified. In functional assessment, 
this is equivalent to the proportion of pathogenic mutations in the pathogenic area. This 
area lies above or below the cut-off, depending on the assay used. 

Specificity: proportion of neutral mutations correctly classified. In functional assessment, this 
is equivalent to the proportion of neutral mutations in the neutral area. This area lies 
above or below the cut-off, depending on the assay used. 

Accuracy: proportion of mutations correctly classified. 
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Best cut-off: cut-off value associated with the Youden's index (see S2 Fig). 
Best sensitivity and specificity: values associated with the best cut-off, and thus with the 

Youden's index. The term "best" is frequently omitted as the sensitivity and specificity 
of an assay is always the best among the possible sensitivities and specificities. 

Experimental data: data from experiments, as opposed to data from bootstrap analysis, which 
corresponds to a computer-assisted sampling of the experimental data. 

Experimental best cut-off: best cut-off obtained from experimental data, as opposed to the 
best cut-off obtained from bootstrap analysis. 

Experimental sensitivity, specificity and accuracy: best sensitivity, best specificity and best 
accuracy obtained from experimental data and associated with the experimental best 
cut-off, as opposed to the sensitivity, specificity and accuracy of the probability systems 
of classification, obtained after bootstrap analysis. 

Initial sensitivity and specificity: equivalent to experimental best sensitivity and specificity. 
The term "initial" can be used to designate the sensitivity and specificity of the data 
(experimental or theoretical), since they are computed using the initial position of the 
neutral and pathogenic mutations, before bootstrap analysis. 

Standard method: medians of the mutants are used to find the best cut-off. 
Standard with reference method: as in the standard method, except that the best cut-off 

identified is divided by the median of the WT BRCA1 reference. Thus, the best cut-off 
is a value relative to the BRCA1 median value, with no unit. In fact, the standard with 
reference method is not different from the standard method for the experimental data. 
However, these methods differ during bootstrap analysis, since the raw and relative best 
cut-offs fluctuate differently. 

Raw best cut-off: the term "raw" indicates that the best cut-off value is not divided by the WT 
BRCA1 median. Therefore, the raw best cut-off has the unit of the experimental data 
(e.g., cells per colony in the Colony Size assay). 

Relative best cut-off: The term "relative" indicates that the best cut-off value is divided by the 
WT BRCA1 median. 

MWW method: as in the standard method, except that each mutant is not represented by a 
median value but by a p value, as explained in S4 Fig. 

CDF: cumulative distribution function, see S6 Fig. 
Probability system of classification: system that uses the fluctuation of the best cut-off to 

derive probabilities of pathogenicity for each assessed variant (S6 Fig). Such 
probabilities allow the use of a five-class nomenclature to classify variants, as shown in 
S1 Table. Of note, the system is based on an average CDF. 

Sensitivity of the probability system of classification: proportion of pathogenic mutations 
within the class 4 or 5 (see Fig 2B). This sensitivity has to be distinguished from the 
experimental sensitivity. 

Specificity of the probability system of classification: proportion of neutral mutations within 
the class 1 or 2 (see Fig 2B). This specificity has to be distinguished from the 
experimental specificity. 

Probability unit: lowest potential incrementation within the average CDF. In an exact 
distribution, this unit is equal to 1 / nbest exact if at least three consecutive best cut-off 
values from the exact best cut-off distribution are not repeated. Otherwise, the value of 
the unit is higher. In an approximate distribution (bootstrap), this unit is equal to 1 / 
nbootstrap if at least three consecutive best cut-off values from the best cut-off distribution 
are not repeated. Otherwise, the value of the unit is higher. 

Quantile system of classification: this system is an alternative to the probability system of 
classification. It is a very simple approach to generate probabilistic classifications. 
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However, as demonstrated below, this system is not adapted to the classification of 
variants. 

System of classification: designates either the probability or the quantile system. 
Accuracy of a system of classification: capability of the probability or quantile system to 

attribute a class 1 or 2 to the neutral mutations, and a class 4 or 5 to the pathogenic 
mutations. Of note, a completely accurate system never attributes the class 3 and never 
misclassifies variants. A system fully inaccurate attributes the class 3 only, or totally 
misclassifies the neutral and pathogenic variants. 

Classification model: computational model that combines a method of best cut-off 
computation (standard, standard with reference or MWW method) and a system of 
classification (probability or quantile system). 

 
2. Symbols frequently used 
nneutral number of neutral mutations 
npathogenic number of pathogenic mutations 
nmutant number of values within every mutant (implicating an equal number of values 

between each mutant) 
nBRCA1 number of values in the WT BRCA1 reference 
nbootstrap number of bootstraps performed to estimate the best cut-off fluctuation 
nbest number of best cut-off values obtained after bootstrap (nbest = nbootstrap) 
ndiff number of different best cut-off values obtained after bootstrap 
nbest exact number of best cut-off values in the exact best cut-off distribution (equal to the 

number of sampling possibilities) 
nexact diff number of different best cut-off values in the exact best cut-off distribution 
 
3. Colony size and Liquid Medium assays in glucose media 
All of the clones from the Colony Size assay were assessed in glucose media to control the 
absence of any intrinsic growth defect, which would disturb the classification of the 
pathogenic missense mutations (S3B Fig). The rare clones, 10% below the median of the 
BRCA1 or Vector cells, after glucose induction, were removed from the study before analysis 
in galactose media. 
As for the Colony Size assay, all of the clones from the Liquid Medium assay were assessed 
in glucose media to control the absence of any intrinsic growth defect (S8B Fig). Of note, the 
126 clones used in the Colony Size and Liquid Medium assays were the same, except for 2 
clones, due to the screening in glucose media. 
 
4. Western blot 
Western blots were performed as previously described [11]. One among three independent 
clones from each category was selected for analysis. Membranes were probed with an anti-
BRCA1 monoclonal antibody (MS110, Calbiochem, Billerica, MA, USA, 1:200 dilution), 
then with a secondary peroxidase-conjugated anti-mouse antibody (Jackson Immunoresearch, 
West Grove, PA, USA, 1:10,000 dilution). To control for loading variation, stripped 
membranes were probed with an anti-Tubulin antibody (YL1/2, AbD serotec, Oxford, UK, 
1:2,000 dilution) followed by a secondary peroxidase-conjugated anti-rat antibody (Jackson 
Immunoresearch, 1:5,000 dilution), or with an anti-β actin antibody (8224, abcam, 1:5,000 
dilution) followed by a secondary peroxidase-conjugated anti-mouse antibody (Jackson 
Immunoresearch, 1:10,000 dilution). The ImageJ software was used to quantify signal 
intensities in every lane (full lanes quantified). 
Western-blot analyses were performed to ascertain that growth recoveries were not related to 
any defect in BRCA1 protein expression (S20 Fig). In contrast, mutations showing the largest 
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number of cells per colony were associated with an increase in protein levels. This confirms 
what we previously reported for the Y1853X mutation and truncated forms of BRCA1 [11], 
and suggests that protein levels, clearly higher than the WT BRCA1 control level, predict a 
classification as pathogenic by the Colony Size, Liquid Medium, Spot Formation or Yeast 
Localization assay. 
 
5. The ProClass toolbox developed for the probabilistic classification of experimental 

data 
The Probabilistic Classification (ProClass) toolbox compiles the R codes [29] and raw data 
used in this article. The toolbox is designed with the purpose to facilitate the analysis of most 
kind of functional assay data, and to provide a probabilistic classification of variants. This 
toolbox is also adapted to other experimental data, provided that they include at least one 
positive and one negative control. ProClass is available on line at: 
http://xfer.curie.fr/get/tvsjyy4dUno/ProClass_toolbox.zip. The following sections 6 to 14 
describe the computational procedures used in ProClass. Sections 22 and 23 explain how to 
integrate ProClass during functional assessment. 
 
6. Experimental data assembling 
As mentioned in the description of the functional assays, three independent transformants, 
also referred to as "clones", were selected for each transformation. This means that each 
strain, described in S11 Table, is represented by three clones. For the Colony Size assay, the 
40 missense mutations were separated into four batches of 10 mutations. In the first batch, the 
three clones from each mutation were analyzed in three independent experiments. The three 
clones from the WT BRCA1 and the Vector strain were systematically used as a control. This 
gave 9 colony size values for each WT BRCA1, mutated BRCA1 or Vector control strain in 
the first batch. At this stage, no normalization was performed, meaning that the dispersion of 
the 9 values includes both the inter-experiment and the inter-clonal variation. The same was 
performed for the three other batches of 10 missense mutations, with the WT BRCA1 and the 
Vector strains as a control. Next, to assemble the results from the four batches, the following 
formula was applied: ݔ 	ൈ 	ଵ	௧	ோଵݔ ⁄	௧	ோଵݔ	 , with xijk being the colony size 
value of the clone i (i = 1 to 3) in the experiment j (j = 1 to 3) for the batch k (k = 2 to 4), and 
with ݔோଵ	௧	ଵ and ݔோଵ	௧	 being the median value of the 9 colony size values from 
the WT BRCA1 strain in the batch 1 and k respectively. This means that, in batch 2, 3 and 4, 
the values were adjusted such that the median value of the 9 WT BRCA1 colony size values is 
equal to the WT BRCA1 median value of batch 1. This also means that the inter-batches 
variation was not considered. For the WT BRCA1 and Vector strains, the 9 adjusted values of 
the 4 batches were kept, meaning that the final distribution of these two strains was composed 
of 36 values. 
The same method was applied to the Liquid Medium assay. Of note, the clones used in the 
Colony Size assay were mostly the same used in the Liquid Medium assay, which allows the 
comparison of the relative efficiency of these two assays. For the Spot Formation assay, the 
same method was used, except that the three clones from each strain were assessed once in 
independent experiments, which led to 3 instead of 9 values. Finally, after adjusting and 
assembling the values from the four batches, the distributions of the mutant and WT BRCA1 
strains were composed of 3 and 12 values respectively. No Vector control strain was used for 
this assay ("no spot formation" is the theoretical negative control). For the Yeast Localization 
assay, the same method as for the Spot Formation assay was applied, but without data 
normalization, due to the WT BRCA1 values close to zero, which otherwise would severely 
amplify data variation. Of note, the images used in the Spot Formation assay were the same 
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used in the Yeast Localization assay, which allows the comparison of the relative efficiency 
of these two assays. 
 
7. The MWW method 
The distribution of each mutant was compared to the distribution of the WT BRCA1 using the 
Mann-Whitney-Wilcoxon (MWW) test. The p value of this test gives the probability to obtain 
the observed overlap of the two compared distributions, in the random sample, assuming that 
the two distributions are identical in the population from which is performed the sampling 
(statistical population). The null hypothesis H0 is P(xmutant i > xBRCA1 j) = P(xmutant i < xBRCA1 j). 
If H0 is true, this means that the probability P(xmutant i > xBRCA1 j), of having a mutant value 
xmutant i above a BRCA1 value xBRCA1 j, is equal to the probability P(xmutant i < xBRCA1 j), of 
having a mutant value xmutant i below a BRCA1 value xBRCA1 j. In an upper-sided MWW test, 
the alternative hypothesis is that the mutant values tend to be above the BRCA1 values, which 
is written as P(xmutant i > xBRCA1 j) > P(xmutant i < xBRCA1 j) [30]. Importantly, the p values 
computed here are not used to reject or not reject the null hypothesis of the test, but to 
quantify the overlap between the mutant and the WT BRCA1 distributions (S4 Fig). This 
defines relative positions of the mutant distributions using the WT BRCA1 distribution as a 
reference position. Thus, the assumptions necessary for the MWW test [30] are not required 
here. Relative positions are limited to the environment of the WT BRCA1 distribution. 
Indeed, pathogenic variants showing no overlap with the WT BRCA1 distribution have the 
same relative position (same p value), even if the functional assay identifies differences 
between them. Normal approximation and continuity correction were systematically applied 
to anticipate the presence of identical values (ties). For that, the R function used was 
wilcox.test(..., exact=FALSE, correct=TRUE). Of note, using these parameters, an increasing 
number of ties has a tendency to decrease the p value computed. With nmutant = 9 and nBRCA1 = 
36 (Colony Size and Liquid Medium assays), the p values of the MWW test theoretically 
range from 2.3e-6 to 1 without ties, and from 2e-11 to 1 with a maximum number of ties. 
With nmutant = 3 and nBRCA1 = 12 (Spot Formation and Yeast Localization assay), the p values 
of the MWW test theoretically range from 0.0058 to 0.9962 without ties, and from 0.00014 to 
1 with a maximum number of ties. In addition, particular results have to be mentioned when 
using correct= TRUE and one-tailed tests. For instance, the p value obtained for two 
distributions that perfectly overlap, (e.g., wilcox.test(1:3, 1:3, alternative = "less", 
exact=FALSE, correct=TRUE)) is slightly upper than 0.5. This has no consequence in variant 
classification, since p values are used as relative positions, as long as the number of values per 
variant remains identical. In addition, the p value obtained for two distributions that show the 
same unique value (e.g., wilcox.test(c(1,1,1), c(1,1,1), alternative = "less", exact=FALSE, 
correct=TRUE)) is equal to 1. In such extreme situations, it is recommended to use 
correct=FALSE. 
For the Colony Size, Liquid Medium and Yeast Localization assays, upper-sided MWW tests 
were performed (the hypothesis being that the distributions of the pathogenic mutations are 
above the distribution of the WT BRCA1 reference). The R function used was wilcox.test(WT 
reference values, mutant i values, alternative = "less", exact=FALSE, correct=TRUE). For the 
Spot Formation assay, lower-sided MWW tests were performed (the hypothesis being that the 
distributions of the pathogenic mutations lie below the distribution of the WT BRCA1 
reference). The R function used was wilcox.test(WT reference values, mutant i values, 
alternative = "greater", exact=FALSE, correct=TRUE). Results are summarized in S4 Table. 
 
8. Sensitivity and specificity computation using the standard method 
Medians from the mutant distributions were ordered (as in the waterfall representation, Fig 
1A) and means were computed between every two consecutive medians. These mean values 
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were defined as all possible cut-offs within the ordered medians. Sensitivity and specificity 
were computed for each cut-off. Sensitivity corresponded to the proportion of pathogenic 
mutant medians above (Colony Size, Liquid Medium and Yeast Localization assays) or below 
(Spot Formation assay) the cut-off. Specificity corresponded to the proportion of neutral 
mutant medians below (Colony Size, Liquid Medium and Yeast Localization assays) or above 
(Spot Formation assay) the cut-off. Of note, cut-offs above or below all of the medians were 
not considered. This means that the sensitivity/specificity of (0, 1) and (1, 0) were excluded 
from the study. In S2 Fig, the confidence intervals of the sensitivity and specificity were 
computed with the binom.test(..., alternative = "two.sided", conf.level = 0.95) function of R, 
considering that the theoretical sensitivity or specificity is 100% (p = 1). The receiver 
operating characteristic (ROC) curve offers a visual representation of the sensitivities and 
specificities computed. For the x-axis, it is common to use 1-specificity more than specificity, 
as 1-specificity represents the false positive rate (FPR). The dotted line showed in S2 Fig 
indicates the positive diagonal, for which sensitivities = 1 - specificities. The top left corner of 
the ROC chart corresponds to sensitivity = 1 and specificity = 1 (1 - specificity = 0), which 
represents the optimal situation for any given assay. 
 
9. Difference between the standard method and the standard with reference methods 
We distinguish the standard method from the standard with reference method. The first uses 
raw cut-offs, meaning that the cut-off values are not divided by the median of the WT BRCA1 
reference (see the definitions above). Thus, the cut-off values have the unit of the 
experimental data (e.g., cells per colony in the Colony Size assay). In the standard with 
reference method, cut-off values are divided by the median of the WT BRCA1 reference 
distribution. Nothing changes between these 2 methods when working with the experimental 
data (i.e., experimental sensitivity and specificity are the same for both methods). However, 
results change when performing bootstrap analysis, because in the standard with reference 
method, the fluctuation of the best cut-off is influenced by the fluctuation of the WT BRCA1 
reference, which is not the case in the standard method, that only depends on sampling the 
neutral and pathogenic mutant values (described below). 
 
10. Sensitivity and specificity computation using the MWW method 
The same as the standard method was applied, but for ordered p values (e.g., Fig 1B) instead 
of medians. Thus, the final cut-offs analyzed in ROC curves were the intermediate p values 
between the ordered mutant p values. 
 
11. Best cut-off, best sensitivity and best specificity computation 
In the standard or MWW method, the best compromise between the highest sensitivity and 
specificity was determined by the nonparametric empirical Youden's index [31-33], which is 
defined as max[sensitivity i + specificity i - 1] for each cut-off i. The Youden's index 
corresponds to the dot on the ROC curve that maximizes the vertical distance between the 
positive diagonal and the ROC curve. Such dots were pinpointed as black numbers in S2 Fig. 
The best cut-off was defined as the cut-off of the Youden's index. The best sensitivity and 
best specificity were defined as those associated with the best cut-off. The standard method 
and the standard with reference methods generated systematically the same best experimental 
sensitivity and best experimental specificity, regardless of the data analyzed, since the best 
cut-off is the same in these two methods, except for the unit (raw best cut-off in the standard 
method, and relative best cut-off in the standard with reference method). 
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12. Bootstrap procedure A to define three different fluctuations of the best cut-off 
Nonparametric random samplings [34] were performed as follows. The number of sampled 
values was systematically the number of values available in each mutant and in the WT 
BRCA1 reference. Thus, for each mutant, nmutant values were randomly chosen with 
replacement. The same was performed for the BRCA1 distribution, with nBRCA1 values 
randomly chosen with replacement. As an example, using the Colony Size assay, the number 
of values randomly chosen was nmutant = 9 and nBRCA1 = 36, since respectively 9 and 36 values 
were available in these distributions. In the Spot Formation assay, the number of values 
randomly chosen was nmutant = 3 and nBRCA1 = 12, since respectively 3 and 12 values were 
available in these distributions. Next, using this new set of sampled data, we applied the three 
standard, standard with reference and MWW methods. In the standard method, medians of the 
mutant distributions were ordered, raw cut-offs were computed as described above, and the 
raw best cut-off value associated with the Youden's index of the ROC curve, was saved. In the 
standard with reference method, the raw best cut-off, identified by the standard method, was 
divided by the median of the WT BRCA1 reference computed on the new sample data and 
was saved. In the MWW method, p values for each mutant were computed as described 
above, and ordered. Next, cut-offs were computed as described above, and the best cut-off 
value, associated with the Youden's index of the ROC curve, was saved. In each of the three 
methods, if several cut-offs lead to the Youden's index, the median of these cut-offs was 
considered as the best cut-off. This procedure was repeated 2,000 times, to obtain 2,000 best 
cut-off values for each of the three methods. Next, the 2,000 bootstraps were repeated 20 
times. This procedure is referred to as "bootstrap procedure A", which, in summary, generated 
20 sets of 2,000 best cut-offs for each of the standard, standard with reference and MWW 
methods. 
It is important to mention that, in the standard with reference method, best cut-off values are 
multiplication factors of the BRCA1 median value. This means that fluctuation of the BRCA1 
median is included in the best cut-off fluctuation. For instance, with the Colony Size assay: 
during the random sampling i, if the raw best cut-off found is ܾ௪	

∗ ൌ 25,000 cells per 
colony (the star indicates that the value comes from bootstrapping) and if the BRCA1 median 
is ݔோଵ	

∗ ൌ 10,000, then the relative best cut-off is ܾ
∗ ൌ ܾ௪	

∗ 	ோଵݔ
∗⁄ ൌ 2.5. In the 

random sampling i+1, if ܾ௪	ାଵ
∗ ൌ 25,000 cells per colony and if ݔோଵ	ାଵ

∗ ൌ 5,000, then 
the relative best cut-off is ܾାଵ

∗ ൌ 5. These examples highlight the fact that the relative best 
cut-off values can change, even if the raw best cut-off value of the standard method remains 
the same. 
 
13. Quantile computation after bootstrap procedure A 
In the first set of the bootstrap procedure A, a total of eleven quantiles, 0.1%, 0.5%, 1%, 
2.5%, 5%, 50% (median), 95%, 97.5%, 99%, 99.5% and 99.9%, were computed from the 
2,000 best cut-off values of the standard method (using the type 7 method of the quantile() 
function of R). This procedure was repeated for all of the 20 sets. Next, medians of the 20 
values from each of the eleven quantiles were computed (of note, these quantiles could have 
been directly computed from the 20 × 2,000 = 40,000 best cut-off values, but medians of 
quantiles have the advantage to buffer the fluctuation of extreme quantiles). The same was 
performed for the standard with reference and MWW methods. Thus, eleven median quantiles 
were obtained for each of the three methods, shown in S5 Table. Of note, the basic (non-
studentized pivotal) method was used to obtain the quantiles [35]. 
 
14. Probability system of classification 
This system is based on rank methods [14]. The following procedure was separately applied 
to the three standard, standard with reference and MWW methods. In each of the 20 bootstrap 
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sets, resulting from the bootstrap procedure A, the 2,000 best cut-off values were sorted by 
ascending or descending order, depending on the position of the neutral and pathogenic 
sectors in the assay and depending on the method used: ascending order if the lowest values 
correspond to the neutral sector and the highest to the pathogenic sector (e.g., Colony Size 
assay + standard method), and descending order in the opposite case (e.g., MWW method, 
whatever assay is used). Next, the median of the 20 first values, from the 20 sorted sets, was 
computed, and the same for the next 1,999 subsequent ranks, to obtain a median distribution 
of the sorted best cut-offs. Next, the probability 1 / nbest = 0.0005 was attributed to each of the 
nbest = 2,000 values of the median distribution (see the theoretical example in S6A-B Fig). 
Probabilities were summed in the case of identical values, which finally resulted in ndiff values 
in the median distribution of the sorted best cut-offs (e.g., ndiff = 154 in the Yeast Localization 
assay, using the standard method, as shown in S6C Fig and S12 Table). From this, two 
cumulative distribution function (CDF) were generated, by simply carrying out the 
cumulative sum of the ndiff probabilities, with the first CDF that ranged from the probability p1 
to pn diff = 1 and the second CDF that ranged from 0 to pn diff - 1 < 1. Next, the mean of the two 
CDF was computed, which resulted in an average CDF that associated a probability (0 < pi < 
1) for the ndiff different best cut-off values. This average CDF was obtained for each of the 
Colony Size, Liquid Medium, Spot Formation and Yeast Localization assays and for each of 
the standard, standard with reference and MWW methods (S6C-E Fig). 
To attribute a probability of pathogenicity to an assessed variant, using the standard method, 
the median of this variant was positioned within the raw best cut-off values of the average 
CDF. Next, the probability of the average CDF, closest to the variant median, was assigned to 
the variant as a probability of pathogenicity (see the example in S6B Fig). The same 
procedure was applied to the standard with reference method, except that the median of the 
variant was divided by the median of the WT BRCA1 reference median (i.e., 11,200 cells per 
colony in the Colony Size assay), to fit the average CDF composed of relative best cut-off 
values. The same procedure was applied to the MWW method, except that the p value of the 
variant was used to fit the average CDF. The five-class nomenclature [26] was used to 
categorize the probabilities of pathogenicity, as in genetic/epidemiological methods (S1 
Table). 
Of note, interest in averaging the two initial CDF lies in the removal of the probabilities 0 and 
1 in the resulting CDF, which could create infinite values during subsequent conversions. The 
second interest is that the average CDF copes with the absence of best cut-off fluctuation. In 
such situation, the average CDF is represented by a single best cut off value (equal to the 
experimental best cut-off) which has the probability 0.5. This means that in the absence of 
best cut-off fluctuation, the classification proposed by a given functional assay, is 
systematically "variant completely unknown". The convergence towards 0.5 is illustrated 
using the boundaries of the average CDF. If the number of best cut-off values is nbest, then the 
lowest probability within the CDF is 1/nbest. Thus, in the CDF1, the boundaries of the 
cumulated probabilities are: 
 


1

݊௦௧
	 ; 	1൨ 

 
nbest: number of best cut-off values obtained after bootstrap 

 
 
And in the CDF2: 

0	; 	1 െ
1

݊௦௧
൨ 
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Thus, in the average CDF, the boundaries are: 
 

൦

1
݊௦௧

 0

2
	; 	
1  1 െ 1

݊௦௧
2

൪ ൌ 
1

2݊௦௧
	; 	1 െ

1
2݊௦௧

൨ 

 
And when nbest = 1, both boundaries of the average CDF are equal to 0.5. 
 
15. Exact best cut-off distribution 
In certain situations, it is possible to use the exact best cut-off distribution, instead of 
performing bootstrap analysis. This exact distribution is defined as all of the sampling 
possibilities, when sampling with replacement nmutant values among the nmutant available, for 
each variant, and nBRCA1 values among the nBRCA1 available for the WT reference. An example 
is shown in S21B Fig. The number of sampling possibilities can be predicted as follows. For 
one variant, composed of nmutant different values, the number of sampling possibilities is: 
 

൬
2݊௨௧௧ െ 1
݊௨௧௧

൰ 

 
nmutant: number of values in each mutant (implicating the same number in the different 

mutants) 
 
With nneutral and npathogenic variants, composed of the same number of values nmutant, all 
different, the number of sampling possibilities is: 
 

൬
2݊௨௧௧ െ 1
݊௨௧௧

൰
	୬౫౪౨ౢା୬౦౪ౝౙ

 

 
nneutral: number of neutral mutations 
npathogenic: number of pathogenic mutations 

 
 
Finally, with the inclusion of the WT reference (standard with reference and MWW methods), 
composed of nBRCA1 different values, the number of sampling possibilities is: 
 

൬
2݊௨௧௧ െ 1
݊௨௧௧

൰
	୬౫౪౨ౢା୬౦౪ౝౙ

ൈ ൬
2݊ோଵ െ 1
݊ோଵ

൰ 

 
nBRCA1: number of values in the WT BRCA1 reference 

 
As an example, with one neutral and one pathogenic mutation (nneutral = 1 and npathogenic = 1), 
containing two values per mutant (nmutant = 2) and two values in the WT BRCA1 reference 
(nBRCA1 = 2), the number of sampling possibilities is 27 (27 rows in the table of S21B Fig). 
In the standard method, the formula shows that, if nmutant = 1, then the exact best cut-off 
distribution corresponds to the experimental best cut-off, and the same for the standard with 
reference and MWW methods if, additionally, nBRCA1 = 1 (S22A Fig). The formula also 
shows that the number of sampling possibilities rapidly increases with the number of mutant 
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values, BRCA1 values, neutral variants and pathogenic variants, which prevents the use of the 
exact best cut-off distribution in most cases. For instance, in the Colony Size assay, the 
maximum number of sampling possibilities reaches 2e175 using the standard method and 
6e195 using the MWW method. The bootstrap procedure has the advantage to by-pass this 
combinatory issue. However, it is important to mention that bootstrap affords an approximate 
distribution of the best cut-off, and that the quality of the approximation increases with the 
number of bootstraps nbootstrap performed. 
Of note, two different sampling possibilities can result in the same best cut-off (for instance, 
the best cut-off between 10 and 20, and between 5 and 25, is 15 in both cases). Thus, even if 
the number of mutant values, BRCA1 values, neutral variants and pathogenic variants, are 
high (generating a high number of sampling possibilities), the final number of different best 
cut-off values nexact diff, forming the average CDF of the probability system of classification, 
can be very low, even within an exact distribution. 
 
16. Properties of the probability of pathogenicity 
16.1. Associated risk 
The probability of pathogenicity computed is the probability to have the best cut-off value 
below (ascending average CDF) or above (descending average CDF) the considered mutant, 
which is related to the probability of misclassification of this mutant, due to the fluctuation of 
the best cut-off. As an example, in the Colony Size assay using the standard method 
(ascending average CDF, S6C Fig, left panel), a variant with a probability of pathogenicity of 
0.99 indicates that the best cut-off variable has a 99% chance to be below the variant median. 
In this example, the pathogenic area is above the best cut-off (Fig 1A), which means that this 
variant has a 1% probability of being classified as neutral (i.e., best cut-off above the variant 
median), due to the fluctuation of the best cut-off. In the same manner, again from the Colony 
Size assay using the standard method, a variant with a probability of pathogenicity of 0.001 
indicates that the best cut-off variable has 0.1% chance to be below the variant median, which 
means that this variant has a 0.1% probability of being classified as pathogenic (i.e., best cut-
off below the variant median), due to the fluctuation of the best cut-off, and, thus, has a 99.9% 
probability of being classified as neutral (i.e., best cut-off above the variant median). For 
descending average CDF, like in the Colony Size assay using the MWW method (S6E Fig, 
left panel), the reasoning is the opposite. It is important to mention that, contrary to 
genetic/epidemiological methods, for which the probability of pathogenicity computed 
measures a direct association of the variant with disease, here the probability of pathogenicity 
computed evaluates the risk to misclassify a variant, due to the fluctuation of the best cut-off, 
that depends on the fluctuation of the experimental data when performing the variant 
assessments. Finally, this probability of pathogenicity estimates the reproducibility of the 
variant classification obtained, following functional assessment. 
 
16.2. Paucity of experimental data impairs the variant classification 
As illustrated in the sections 16.4 and 16.5, the accuracy of the probability system decreases 
when the best cut-off distribution is composed of only a few different best cut-off values. 
Ultimately, when the best cut-off distribution is represented by one value (S22A,C Figs), the 
probability of pathogenicity 0.5 (class 3) is systematically attributed to all of the variants, 
regardless of their relative position. The weak number of different best cut-off values can 
result from (1) a low number of experimental replicates (S18G Fig), (2) a low number of 
neutral and pathogenic variants incorporated (except if the number of experimental replicates 
is high), and (3) a weak measurement accuracy leading to many ties (see the case of null 
ranges in S19G Fig). Thus, the probability system has the advantage to penalize functional 
assays with a paucity of experimental data. This situation is illustrated in the Yeast 
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localization assay using the standard method (Fig 2B). With ndiff = 154 (S6C Fig and S12 
Table) none of the pathogenic mutations was classified as class 5. 
 
16.3. Paucity of bootstrap performed impairs the variant classification 
As illustrated in sections 16.4 and 16.5, accuracy of the probability system is decreased when 
the best cut-off distribution is composed of very few different best cut-off values, which is the 
case if the number of bootstraps performed (nbootstrap) is low (S22B Fig). In contrast, if nbootstrap 
is high, then the accuracy  of the probability system will only depends on the experimental 
data (S22A Fig). 
 
16.4. Accuracy of the probability system (exact distribution) 
The accuracy of a system of classification is defined as the capability to assign a class 1 or 2 
to the neutral variant, and a class 4 or 5 to the pathogenic variants. A completely accurate 
system will never assign the class 3. A system fully inaccurate will assign the class 3 only, or 
will totally misclassify the neutral and pathogenic variants. In the probability system of 
classification, the accuracy is related to the probability unit of the average CDF. This 
probability unit is defined as the lowest potential incrementation within the average CDF or, 
which is equivalent, as the probability associated with a best cut-off value not repeated in the 
best cut-off distribution. In an exact distribution, this unit is equal to 1 / nbest exact, meaning 1 / 
27 = 0.04 in S21B Fig. As shown in section 14, this defines the lowest and highest potential 
boundaries of the average CDF, derived from the exact distribution:  


1

2݊௦௧	௫௧
	 ; 	1 െ

1
2݊௦௧	௫௧

൨ 

 
nbest exact: number of best cut-off values in the exact best cut-off distribution (equal to 

the number of sampling possibilities) 
 
In the probability system of classification, this implies that a neutral variant cannot have a 
probability of pathogenicity less than 1 / (2nbest exact). In the same manner, a pathogenic variant 
cannot have a probability of pathogenicity more than 1 - 1 / (2nbest exact). Thus, if nbest exact ≤ 10, 
the probability system will be unable to classify variants as class 2 or 1, because the lower 
boundary will not be less than 0.05 (S1 Table). Such limitations of the probability system of 
classification are recapitulated below: 
 

Class 1 and 2: 
ଵ

ଶ್ೞ	ೣೌ
൏ 0.05		 → 		 ݊௦௧	௫௧  10 (Relations 1) 

 

Class 1: 
ଵ

ଶ್ೞ	ೣೌ
൏ 0.001		 → 		 ݊௦௧	௫௧  500 

 

Class 4 and 5: 1 െ ଵ

ଶ್ೞ	ೣೌ
 0.95		 → 		 ݊௦௧	௫௧  10 

 

Class 5: 1 െ ଵ

ଶ್ೞ	ೣೌ
 0.99		 → 		 ݊௦௧	௫௧  50 

 
Because nbest exact is equal to the number of sampling possibilities, which is dependent on the 
number of values nmutant in each mutant, the number of values nBRCA1 in the WT BRCA1 
reference (except for the standard method), the number of neutral mutations nneutral (if nmutant > 
1) and the number of pathogenic mutations npathogenic (if nmutant > 1), this means that the 
accuracy of the probability system of classification is dependent on these parameters. As an 
example, in S21D Fig, with 1 neutral variant, 1 pathogenic variant, 2 values per variant and 2 
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values in the WT BRCA1 reference, the number of sampling possibilities is sufficient to allow 
the class 2 and class 4 classification, but not class 1 and class 5, in the standard with reference 
method. 
Of note, an increasing number of ties (identical values) in the dataset, lowers the accuracy of 
the probability system of classification. Indeed, ties reduce the number of different best cut-
off values, which reduces the interval of the average CDF (boundaries tend towards 0.5). 
Thus, the lowest nbest exact values, indicated in Relation 1, are indicative. Moreover, the 
measurement accuracy has to be considered during functional assessment, to prevent ties. 
The fact that two different sampling possibilities can result in the same computed best cut-off, 
also lowers the accuracy of the probability system of classification. As an example, even with 
no ties in the data set (S21A Fig), the reduced number of different best cut-off, finally 
obtained with the standard method (5 for 27 sampling possibilities), prevents the classification 
of variants other than class 3 (S21C Fig). This phenomenon, leading to identical best cut-off 
values, is not predictable, but it highlights again that the lowest nbest exact values, indicated in 
Relation 1, are indicative. 
 
16.5. Accuracy of the probability system (bootstrap) 
The considerations, developed in the precedent section (16.4), are also valid when using the 
approximate best cut-off distribution (obtained by bootstrap), instead of the exact distribution, 
except that the number of bootstraps performed, nbootstrap, is an additional parameter that 
influences the accuracy of the probability system of classification. More precisely, since the 
bootstrap procedure gives an estimation of the exact best cut-off distribution (S22B Fig), the 
effect of nbootstrap depends on nbest exact. 
If nbootstrap << nbest exact, then the lowest potential probability unit is: 
 

1
݊௧௦௧

 

 
nbootstrap: number of bootstraps performed to estimate the best cut-off fluctuation 

 
And the lowest and highest potential boundaries are: 
 

ቈ
1

2݊௧௦௧
	; 	1 െ

1
2݊௧௦௧

 

 
If nbootstrap >> nbest exact, then the lowest potential probability unit is: 
 

1
݊௦௧	௫௧

 

 
nbest exact: number of best cut-off values in the exact best cut-off distribution (equal to 

the number of sampling possibilities) 
 
And the lowest and highest potential boundaries are: 
 


1

2݊௦௧	௫௧
	 ; 	1 െ

1
2݊௦௧	௫௧

൨ 
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Using the probability system of classification, this implies that a neutral variant cannot have a 
probability of pathogenicity less than 1 / (2nbest exact), regardless of the number of bootstraps 
performed. This also implies that the lowest probability of pathogenicity of a neutral variant is 
overestimated if nbootstrap << nbest exact. In the same manner, a pathogenic variant cannot have a 
probability of pathogenicity more than 1 - 1 / (2nbest exact), regardless of the number of 
bootstraps performed. This also implies that the highest probability of pathogenicity of a 
pathogenic variant is underestimated if nbootstrap << nbest exact. 
As an example, in S21 Fig, if two bootstraps are performed, then nbootstrap = 2 << nbest exact = 
27. If we consider that the two best cut off values, obtained with the standard with reference 
method, are different, then the average CDF is represented by the two values 0.25 and 0.75, 
with the boundaries [0.25; 0.75]. Thus, the probability of pathogenicity attributed to the 
neutral variant is 0.25, which is overestimated compared to the 0.02 probability given by the 
exact distribution (S21D Fig). In the same manner, the probability of pathogenicity attributed 
to the pathogenic variant is 0.75, which is underestimated as compared to the 0.98 probability 
given by the exact distribution (S21D Fig). 
Of note, if the number of different best cut-off values is much lower than the number of 
bootstraps performed (ndiff << nbootstrap), this suggests that the approximate best cut-off 
distribution is close to the exact one. For instance, in the Liquid Medium assay using the 
standard method (S6C Fig), the nbootstrap = 2,000 bootstraps generated an approximate best 
cut-off distribution, composed of ndiff = 126 different best cut-off values. Thus, in this case, 
the limitations of the probability system of classification are probably due to nbest exact rather 
than nbootstrap. 
 
17. Combined probability of pathogenicity 
Let us consider one of these three methods: standard, standard with reference or MWW. For 
each variant, four probabilities of pathogenicity were obtained, from the four Colony Size, 
Liquid Medium, Spot Formation and Yeast Localization assays (S13-S15 Tables). Combining 
these probabilities provides a final probability of pathogenicity. The model proposed was 
derived from the one used in genetic/epidemiological methods [15]. Probabilities were 
converted into odds in favor of pathogenicity using the formula: 
 

ܱ ൌ


1 െ 
 

 
Oi: odds in favor of pathogenicity of the variant i (0 ≤ Oi < +∞) 
pi: probability of pathogenicity of the variant i (0 ≤ pi ≤ 1) 

 
With odds in favor of pathogenicity, the pathogenicity varies between 0 (absolutely neutral) 
and +∞ (absolutely pathogenic). A variant i, of fully unknown significance, has pi = 0.5 and 
thus Oi = 1. Only independent probabilities can be combined. Thus, probabilities from the 
Liquid Medium assays were excluded from the computation of the combined probabilities, 
since the Colony Size and Liquid Medium results were derived from the same yeast clones. In 
the same manner, probabilities from the Yeast Localization assays were excluded, since the 
Spot Formation and Yeast Localization results were derived from the same yeast clones and 
the same microscope picture acquisitions. Next, odds from the Colony Size and Spot 
Formation assays were multiplied: 
 

	ܱ	 ൌ ܱௌ	 ൈ ௌܱி	 
 

Ocomb i: combined odds in favor of pathogenicity of the variant i (0 ≤ Ocomb i < +∞) 
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And the combined probability of pathogenicity was obtained using the formula: 
 

	 ൌ
	ܱ	

1  	ܱ	
 

 
pcomb i: combined probability of pathogenicity of the variant i (0 ≤ pcomb i < 1) 

 
As a reminder, the accuracy of the probability system of classification is decreased together 
with nmutant, nBRCA1, nneutral and npathogenic, or together with nbootstrap (see sections 16.4 and 16.5). 
This means that the probabilities of pathogenicity attributed to the assessed variants will tend 
towards 0.5. Thus, it is remarkable that an assay, showing low nmutant, nBRCA1, nneutral and 
npathogenic values, or for which a low number of bootstraps has been performed, will have a low 
contribution in the combined probability of pathogenicity. Indeed, when the pathogenicity of 
a variant tends towards 0.5, the odds tend towards 1, which has a null effect in odds 
multiplication. 
 
18. Independent functional assays 
We estimate that the independence of two functional assays cannot be evaluated a posteriori, 
for instance by comparing the results of these assays. Indeed, in the a posteriori evaluation, 
the notion of independence is based on the hypothesis that the pathogenic variants can have a 
random position in the pathogenic area of a waterfall distribution. Thus, if we compare two 
assays, challenged by the same set of pathogenic mutations, the random position of the 
pathogenic variants, in each assay, should result in a low correlation between the variant 
medians, which would confirm the independence between the two assays. However, it is 
known that certain pathogenic mutations have intermediate effects on protein function [36]. 
Thus, it is difficult to ascertain a random position of the pathogenic mutations in the 
pathogenic area. Focusing on neutral mutations, rather than on pathogenic mutations, would 
not solve this issue, since intermediate effects cannot be excluded for neutral mutations. Thus, 
we propose to evaluate the independence of two assays a priori, with the following criteria: 
1) The two assessments must have been performed independently. This means that the results 
from each assay must come from different transfections, different cellular clones, different 
experimental times, etc. The fact that the plasmids used are not exactly the same reinforces 
the independence. For instance, in the Spot Formation assay, the plasmids code for the 
mCherry-BRCA1 fusion protein, but not in the Colony Size assay. Thus, the plasmids used 
are different in these two assays. 
2) What is monitored must be different. Following this, the Colony Size assay and the Liquid 
Medium assay are not independent, since both monitor the cell growth of yeast cells. If assays 
are not clearly associated with a protein function, then the measurements must be different. 
For instance, the Colony Size and the Spot Formation assays are not related to a known 
function of BRCA1, but the Colony Size assay monitors cell growth, while the Spot 
Formation assay monitors the formation of a cellular aggregate. Thus, the measurement is 
different for these two assays. 
Based on these criteria, The Colony Size and the Liquid Medium assays cannot be considered 
as independent, and the same for the Spot Formation and the Yeast Localization assays. 
 
19. Corrected probability of pathogenicity 
The fluctuation of the best cut is influenced by the experimental (initial) sensitivity and 
specificity of a functional assay (S16 Fig) but not by the number of neutral and pathogenic 
mutations used to determine these parameters (S17 Fig). This could be problematic in variant 
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classification, since a 100% sensitivity and specificity of an assay, resulting from 2 neutral 
and 2 pathogenic mutations assessed, are not reliable. To overcome this, we propose an 
approach to correct the odds in favor of pathogenicity, that takes into account the number of 
mutants used to evaluate a functional assay, as follows: 
 

ܱ	 ൌ ሺ ܱ െ 1ሻ ൈ ݂  1								if		 ܱ  1 
 

ܱ	 ൌ
1

ቀ 1
ܱ
െ 1ቁ ൈ ݂  1

								if		 ܱ ൏ 1 

 

݂ ൌ
݊௨௧  ݊௧

݊௨௧  ݊௧  ܽ
 

 

	 ൌ
ܱ	

1  ܱ	
 

 
Ocor i: corrected odds in favor of pathogenicity of the variant i 
Oi: odds in favor of pathogenicity of the variant i (0 ≤ Oi < +∞) 
fcor: factor of correction 
nneutral: number of neutral mutations used in the assay validation 
npathogenic: number of pathogenic mutations used in the assay validation 
a: integer that modulates the impact of nneutral and npathogenic 
pcor i: corrected probability of pathogenicity of the variant i (0 ≤ pcor i ≤ 1) 

 
In this study, we chose a = 2 as a correcting factor (S13-S15 Tables), which results in fcor = 
0.5 for nneutral + npathogenic = 2, fcor = 0.8 for nneutral + npathogenic = 8, fcor = 0.9 for nneutral + 
npathogenic = 18 and fcor = 0.95 for nneutral + npathogenic = 38 (S22D Fig). Since nneutral and npathogenic 
are not distinguished in the correction, this method of correction is not appropriate if nneutral 
and npathogenic are strongly unbalanced. 
 
20. Incorporation of the probability of pathogenicity into posterior probability models 

(Bayesian inference) 
The probability of pathogenicity derived from the best cut-off fluctuation can be used to 
compute a posterior probability of being pathogenic, considering the Bayes' theorem [37]: 

ܱ௦௧	 ൌ ܱ ൈ ܱ	 
 

ܱ	 ൌ
	

1 െ 	
 

 
Opost i: posterior odds in favor of pathogenicity of the variant i (0 ≤ Opost i < +∞) 
Oi: odds in favor of pathogenicity of the variant i (0 ≤ Oi < +∞) 
Oprior i: prior odds in favor of pathogenicity of the variant i (0 ≤ Oprior i < +∞) 
pprior i: prior probability of pathogenicity of the variant i (0 ≤ pprior i ≤ 1) 

 
The prior probability represents the probability of pathogenicity of the variant i before any 
functional assessment. A prior probability of 0.5 can be used in the absence of any prior 
information. In this case, Opost i = Oi. Prior probabilities can be provided by the GVGD Align 
model [38]. Then, the posterior probability of being pathogenic is obtained following: 
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ppost i: posterior probability of pathogenicity of the variant i (0 ≤ ppost i ≤ 1) 

 
This method can also be applied to the combined odds (Ocomb i) and the corrected odds (Ocor i), 
described above. 
 
21. The WT reference 
It is recommended to systematically add a WT reference control during variant assessment 
[4]. However, this may lead to divergent usage of this reference when interpreting results. The 
WT reference can either be included in the neutral category or be considered as a particular 
case, outside of the two neutral and pathogenic categories. The rational of the first choice is 
that the WT reference is by definition neutral (not pathogenic). The second choice is ruled by 
three concerns. First, since the WT reference distribution usually contains a number of values 
larger than in the other neutral distributions, the WT reference could have a strong weight in 
the final variant interpretation, if incorporated as an additional variant in the neutral category. 
Second, the WT reference corresponds to the backbone cDNA sequence, present in the 
expression plasmid, in which the mutations are introduced. In other words, neutral mutations 
have two differences in their sequences, compared two by two, while they only have one 
difference compared to the WT reference. Additionally, the variant classification obtained 
could be modified using another WT reference sequence, because of potential variant-
sequence interactions. Thus, the WT reference represents more than an additional neutral 
variant. Third, variants showing intermediate effects have been reported [36]. This highlights 
the benefit of the WT reference taken as a special case, beyond the neutral and pathogenic 
categories, because a reference would be necessary for the identification of neutral variants 
with intermediate effects. 
 
22. Procedure to include new data (VUS) in the validated Colony Size, Liquid Medium, 

Spot Formation or Yeast Localization assays 
- Download the ProClass toolbox (see section 5). 
- Read carefully the README.doc downloaded document. 
- Request the desired plasmids, presented in this study. 
- Generate the plasmids containing the VUS (new batch of variants). 
- Perform the experiment as described above. For instance, with the Colony Size assay, test 

three independent clones in three independent experiments to obtain 9 final values for the 
VUS. Add the WT BRCA1 reference (plasmid pPT60 or pPT63 depending on the chosen 
assay), as well as the pathogenic G1706E (plasmid pPT147 or pPT161) and the neutral 
R1751Q (plasmid pPT119 or pPT120) mutations as a control. Add the Vector control 
(pJL48 plasmid) for the Colony Size or the Liquid Medium assays. This means that 9 
values are also obtained for the WT BRCA1 reference and for each control. 

- Consider the results as a new batch and include these results in the downloaded table (e.g., 
Colony Size data.txt table). For the G1706E, R1751Q and Vector controls, change the 
name of the new values, like G1706E.bis, in order to prevent the fusion of the new values 
with the values of G1706E already present in the table. In addition, set these G1706E.bis, 
R1751Q.bis and Vector.bis controls as "Other.reference" in the "Prior_classif" column. 

- Execute the code of the Code data analysis and representation.doc file with the adapted 
settings (for the Colony Size assay, use the Colony Size data proba 2000x20 type7 replac 
noref less (MWW).txt file to generate the probability of being pathogenic using the MWW 
method). 
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-  In the normalized data obtained, verify that the median of the controls (G1706E.bis, 
R1751Q.bis and Vector.bis) fit approximately the median of the preexisting values 
(G1706E, R1751Q and Vector). 

- If the medians fit, use the probability of being pathogenic provided in the output results of 
the executed code. Results can be combined, corrected and included in a posterior 
probability model, as explained above. 

- If the median of the controls (G1706E.bis, R1751Q.bis and Vector.bis) do not fit the 
median of the preexisting values (G1706E, R1751Q and Vector), a new best cut-off 
fluctuation has to be generated. For that, remove the ".bis" in the name of the controls, in 
the data table, and follow the complete instructions provided in the README.doc 
downloaded document. 

 
23. Procedure to adapt the classification model to other functional assays 
- Download the ProClass toolbox (see section 5). 
- Select several neutral and pathogenic mutations formally classified by 

genetic/epidemiological methods. Favor, if possible, a similar number of neutral and 
pathogenic variants. 

- Design the experiment. It is counseled to plan independent experiments and to have the 
WT reference systematically present in each experiment. 

- Generate the expression vectors, carrying either the WT reference control, or the different 
neutral or pathogenic mutations. 

- Fix the number of values per mutation that has to be obtained (e.g., 9 values per mutation 
in the Colony Size assay). This number must be the same for each variant (neutral, 
pathogenic and unknown). This number must also be systematically respected when 
subsequently adding neutral and pathogenic mutations, in order to improve the sensitivity 
and specificity of the functional assay, or when subsequently adding VUS for 
classification. In addition, the number of values expected for the WT reference control 
should be high, in order to improve the sensitivity of variant classification (S18F Fig).  

- Of note, if the data show different numbers of values per neutral, pathogenic and unknown 
variants, the code of the Code data analysis and representation.doc file will reduce the 
data as explained in the README.doc file. 

- Perform the experiments. 
- Apply the complete instructions provided in the README.doc downloaded document. 
- Results can be combined, corrected and included in a posterior probability model, as 

explained above. 
 
24. Advantages of these procedures compared to the 2-component models of variant 

classification 
Recently, statistical models of variant classification have been proposed [7,8]. These models: 
(1) are parametric (assumption about the distribution of the data in the statistical population), 
(2) require high statistical skills to analyze the data and fit the model and (3) need to be 
recomputed when additional VUS are included in the model, for classification purposes. 
The model we propose alleviates these constraints. This model: (1) is nonparametric (no 
assumption about the distribution of the data in the statistical population), (2) does not require 
statistical skills to be handled and (3), following certain conditions, does not need 
recomputation when additional VUS are included. Moreover, the probability of pathogenicity 
computed with our model can be incorporated into posterior probability models (Bayesian 
inference), as described above, meaning that they can be handled in the manner as the 
probabilities computed by the 2-component models. 
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25. Limits of the nonparametric model (MWW method and probability system) 
1) The number of values per variants (neutral, pathogenic and UV) must be the same. This 

allows a balanced contribution of each neutral and pathogenic variant to the best cut-off 
fluctuation, as well as a correct adequacy between the unknown variants assessed and the 
best cut-off distribution used to classify them. The R code, available online, manages 
different number of values but at the cost of loss of information, as the code reduces the 
number of values from all the variants to the lowest existing in the data. 

2) A WT reference must be systematically present in each experiment performed. In addition, 
the MWW method requires that the WT reference is well embedded in the distribution of 
the neutral values (e.g., S5A Fig, left panel). A WT reference falling outside of the range 
of the neutral and pathogenic distributions impairs the sensitivity of the functional assay 
(S15 Fig). In such situation, it is recommended to use the standard method instead of the 
MWW method. 

3) It is counseled to have at least 3 values per variant and more than 3 values for the WT 
reference (S18 Fig). In theory, our nonparametric model does not require a minimum 
number of values. However, the greater the number is, the better is the sensitivity and 
specificity of the model (see section 16 above). Of note, with a single value per mutation 
and per WT reference, the fluctuation of the best cut-off is null (the probability of being 
pathogenic, assigned to each variant, is systematically 0.5).  

 
26. Procedure to adapt the model to other experiment system requiring a decision-

making based on cut-off 
The procedure described in section 23 can be applied to all situations, based on two categories 
(applying the standard method) or two categories + a reference category (applying the MWW 
method), as long as the best cut-off is able to fluctuate during bootstrap computation. If the 
two categories are divided into subcategories, as "variants" in the pathogenic and neutral 
categories, then the best cut-off fluctuation will be guaranteed with at least two different 
values in each subcategory. If the two categories are not subdivided, then the best cut-off 
fluctuation will be guaranteed with at least two different values in each category. 
Additionally, in the MWW method, the reference should be composed of at least two different 
values. Of note, if the data show different numbers of values per categories, the code of the 
Code data analysis and representation.doc file will reduce the data as explained in the 
README.doc file. Such data adjustment has been applied to the siRNA data presented in Fig 
3. The initial data are made of 864 values for the positive control (siKIF11), 288 values for 
the negative controls (siGOLGA2 and siGL2) and 12 values for the unknown siRNAs 
assessed. The code reduces the data to 12 values for siKIF11, siGOLGA2 and siGL2, before 
any subsequent analysis. The reference category is not concerned by this adjustment. 
 
27. The quantile system is not adapted to variant classification 
27.1. Presentation of the quantile system and variant classification 
We developed another approach to classify variants, referred to as "quantile system", which is 
very easy to apply. The quantile system is similar to the "grey zone approach" [39,40] but is 
extended to n zones. Since the classification as either pathogenic or neutral is dependent on 
the position of the variant above or below the best cut-off, we reasoned that the farther a 
variant is from the core of the best cut-off fluctuation, the more robust is its classification as 
either pathogenic or neutral. The quantile system consists of (1) overlapping the best cut-off 
fluctuation with the waterfall distribution of the mutants, (2) defining intervals in the best cut-
off distribution associated to the five-class nomenclature proposed by Plon et al. (see S1 
Table and Fig 1) and (3) classifying variants according to the position of their median 
(standard and standard with reference methods) or p value (MWW method) in the 5 intervals. 
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For instance, in Fig 1B, the p value of K45Q is located within the grey area. Thus, the variant 
is classified as class 3. The quantile system is fully documented in S23 Fig. The classification 
obtained in the four functional assays is depicted in S24 Fig. Globally, little differences were 
observed when comparing the classification obtained with the quantile (S16 Table) and the 
probability systems (S6 Table). Of note, the light blue, grey and pink areas depicted in Fig 1, 
Fig 3A-B and S7, S9, S11, S13-S19, S25-S27 Figs correspond to class 2, 3 and 4 of the 
quantile system, respectively. 
 
27.2. The quantile system improves the variant classification when data is lacking 
To detect potential flaws in the quantile system of classification, we recapitulated the analysis 
of theoretical situations, performed for the probability system (S25-S27 Figs and S17 Table). 
The results reveal a major flaw in the variant classification provided by the quantile system, 
as it does not penalize the paucity of data (S26B and S27 Figs). This was confirmed with the 
analysis from an exact best cut-off distribution (S21F Fig). In fact, the highest sensitivity, 
specificity and accuracy of the quantile system is reached when the best cut-off does not 
fluctuate (S22C Fig), which is favored by the paucity of data. In conclusion, the quantile 
system is not adapted to variant classification. This also suggests that the "grey zone 
approach" [39,40] is not an efficient method to identify a level of uncertainty within a given 
dataset. 
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