
Supplementary methods

1 Cox process representation and mean-field approxima-
tions

1.1 Classification of reactions w.r.t. to their Poisson representation

As mentioned in the Methods section, the Poisson representation (PR) becomes complex depending
on the reactions in the system. Supplementary Table 1 shows a classification of different types of
elementary reactions in terms of the behaviour of the corresponding diffusion matrix B(u). We
note that this strict classification of course only holds if the considered reaction is the only reaction
in the system. If there are several reactions happening, the system typically behaves as the entry
in Supplementary Table 1 corresponding to the reaction of highest type.

The behaviours of the PR are quite intuitive: for reactions of Type I, it is well-known that
fluctuations are Poissonian, which manifests itself in a deterministic PR. Note that if the Poisson
representation is real-valued, the probability distribution of the molecule numbers in the PR ansatz
given in Equation (3) in the main text is a real-valued mixture of Poisson distributions, for which
it is well-known that the resulting distributions are super-Poissonian. Reactions of Type II, for
which fluctuations are super-Poissonian, therefore have real and stochastic PRs. It is easy to see
that reactions of Type III and IV, however, cannot be represented in this way: a zeroth or first
order reaction with two non-identical product molecules, i.e., of Type III, imposes a constraint on
the particle numbers. For the reaction ∅ → A + B for example, the particle numbers of species
A and B differ by a constant integer number (depending on the initial condition). Conditioned
on the molecule number of A, B is a delta distribution, which clearly cannot be achieved by a
real Poisson mixture, and the PR has to be complex. Bimolecular reactions give rise to similar
constraints or may lead to sub-Poissonian fluctuations, and hence their PR has to be complex-
valued. We therefore approximate reactions of Type III and Type IV as described in the following.

1.2 Approximation of Type III and IV reactions

We would like a real PR for general reaction networks. We therefore have to approximate reactions
of Type III and IV. Consider first reactions of Type IV, where two molecules react with each other.
We approximate this type of reactions in a mean-field type of sense: we replace the interaction
of the two molecules with each other by two unimolecular reactions whose propensity functions
depend on the particle number of one species and the mean value of the respective other species.
For instance, the reaction

A+B
k−−−−→ ∅, f(n) =

k

Ω
nBnA, (1)

becomes replaced by the two reactions

A
k〈nB〉/Ω−−−−−−−−−→ ∅, f(n) =

k

Ω
〈nB〉nA, (2)

B
k〈nA〉/Ω−−−−−−−−−→ ∅, f(n) =

k

Ω
〈nA〉nB , (3)

where 〈nA〉 and 〈nB〉 denote the mean values of the molecule numbers of species A and B, re-
spectively, and Ω is the volume of the system. The reactions (2) and (3) thus correspond to linear
reactions with one reactant and zero product molecules. The corresponding PR is therefore real
and deterministic. Since the mean values of the corresponding PR variables, say uA and uB , are
equal to the means of 〈nA〉 or 〈nB〉, the rate constants in PR space simply become rescaled by
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Supplementary Table 1: Classification of different types of reactions w.r.t. to their Poisson repre-
sentation. If different types of reactions are happening, the PR typically behave like the reaction
of highest type.

reaction types PR
Type stoichiometry description examples

I

∑
i sir ≤ 1∑
i rir ≤ 1

zero or one
reactant and
product molecules

∅→ A
A→ ∅
A→ B

real and determ.

II

∑
i sir ≤ 1

rir = 2 for one i
and zero otherwise

zero or one reactant;
two identical
product molecules

∅→ A+A
A→ A+A
B → A+A

real and stoch.

III

∑
i sir ≤ 1

rir = rjr = 1 for two i 6= j
and zero otherwise

zero or one reactant;
two non-identical
product molecules

∅→ A+B
A→ A+B
A→ B + C

complex and stoch.

IV

∑
i sir = 2∑
i rir ≤ 2 two reactant molecules

A+A→ . . .
A+B → . . .

complex and stoch.

〈uA〉/Ω and 〈uB〉/Ω, respectively. Specifically, if there are no other reactions happening in the
system, the PR Langevin equations read

duA = − k
Ω
〈uB〉uAdt, (4)

duB = − k
Ω
〈uA〉uBdt. (5)

Consider now a bimolecular reaction with two identical reactant molecules,

A+A
k−−−−→ ∅, f(n) =

k

Ω
nA(nA − 1). (6)

For such reactions, we replace the interaction of A with itself by the interaction of A with its
mean,

A
k〈nA〉/Ω−−−−−−−−−→ ∅, f(n) =

k

Ω
〈nA〉nA. (7)

In PR space, this leads to the Langevin equation for A,

duA = − k
Ω
〈uA〉uAdt. (8)

Consider next the following reaction of Type III (c.f. Supplementary Table 1)

A
k−−−−→ A+B, f(n) = knA, (9)

which can be approximated in a similar fashion as the bimolecular reactions before: we replace
the dependence of the creation of B molecules on A molecules by a dependence on the mean of
the later, i.e. 〈nA〉,

∅ k〈nA〉−−−−−−−→ B, f(n) = k〈nA〉. (10)
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Supplementary Table 2: Reactions of Types III and IV and their approximate reactions. The
corresponding propensities in PR space for the approximate system are obtained by replacing nA
and nB with uA and uB , respectively. nA and nB denote the particle number variables of species
A and B, respectively, and uA and uB the corresponding PR variables.

reactions approximation
type propensity type propensity

A+B → . . . knAnB/Ω
A→ . . .
B → . . .

k〈nB〉nA/Ω
k〈nA〉nB/Ω

A+A→ . . . knA(nA − 1)/Ω A→ . . . k〈nA〉nA/Ω
A→ A+B knA ∅→ B k〈nA〉
∅→ B + C Ωk

∅→ B
∅→ C

Ωk
Ωk

A→ B + C knA
A→ B
A→ C

knA
knA

For the other two Type III reactions,

∅ k−−−−→ B + C, f(n) = kΩ, (11)

A
k−−−−→ B + C, f(n) = knA, (12)

we have to decouple the productions of B and C, which can be achieved by approximating the
reactions by

∅ k−−−−→ B, ∅ k−−−−→ C, f(n) = kΩ, (13)

A
k−−−−→ B, A

k−−−−→ C, f(n) = knA. (14)

While (11) correlates the molecule numbers of species B and C, we have effectively decorrelated
B and C by introducing the reactions (13) and (13).

Supplementary Table 2 summarises the approximations for all reactions of Type III and IV.
Note that bimolecular reactions (Type IV) with two identical product molecules under these ap-
proximations still lead to stochastic PRs. Note also that depending on the reaction, a combination
of the used approximations has to be performed, for example for the reactions A+B → A+C or
A+A→ C +D.

Example

As an example, consider the following reaction system

X
k1−−−−−→ X +X, X +X

k2−−−−−→ ∅. (15)

The corresponding stoichiometric matrix reads

S = (1,−2). (16)

The first reaction in (15) is of Type II and thus does not need to be approximated. The corre-
sponding non-spatial propensity function in real space is given by f1(n) = k1n, where n is the
variable denoting the number of X particles. The second reaction in Eq. (15) is of Type IV and
hence needs to be approximated. According to Supplementary Table 2 we approximate it by the

reaction X
k2〈n〉/Ω−−−−−−−−−→ ∅ with propensity f2(n) = k2〈n〉n/Ω. The corresponding propensity

functions in spatial PR space are obtained by replacing n → u(x, t) and 〈n〉 → 〈u(x, t)〉, where
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u(x, t) is the PR field of species X. We thus have

X
k1−−−−−→ X +X, f1(n) = k1n,

↓

X
k1−−−−−→ X +X, g1(u(x, t)) = k1u(x, t),

(17)

for the first reaction and

X +X
k2−−−−−→ ∅, f2(n) =

k2

Ω
n(n− 1),

↓

X
k2−−−−−→ ∅, f2(n) =

k2

Ω
〈n〉n,

↓

X
k2−−−−−→ ∅, g2(u(x, t)) = k2〈u(x, t)〉u(x, t),

(18)

for the second reaction. The corresponding stoichiometric matrix becomes

S = (1,−1). (19)

Using the general stochastic partial differential equation (SPDE )for intensity fields given in (4)
in the main text we hence obtain the for the intensity field u(x, t),

du(x, t) = [D∆u(x, t) + k1u(x, t)− k2〈u(x, t)〉u(x, t)]dt

+
√

2k2〈u(x, t)〉u(x, t)dW (x, t).
(20)

We would like to emphasise that 〈u(x, t)〉 denotes the local expectation of the stochastic intensity
field u(x, t) and not a spatial averaging.

1.3 Proof of Remark 1 and Result 1

The proof of Remark 1 and Result 1 relies on the SPDE in Equation (4) in the main text and its
derivation given in the Methods section. For simplicity, we consider a one-dimensional system with
one species X in the interval [0, 1] here. Consider the PR of the RDME for approximated reactions
given in Equation (29). Consider first a system involving only reactions of Type I. In that case we
do not have to perform any approximations to obtain Equation (29) and the second sum including
the noise terms vanishes, i.e., Equation (29) reduces to a PDE. For deterministic initial conditions
the ui thus remain deterministic, and the probability distribution of nl in compartment l at time
t is given by a Poisson distribution with mean value ul(t). The mean number of molecules in an
interval I = [(m1 − 1

2 )h, (m2 + 1
2 )h],m1 < m2 ∈ N at time t is thus

〈N(I, t)〉 =

m2∑
i=m1

〈ni〉 =

m2∑
i=m1

〈ui〉 =

m2∑
i=m1

ui, (21)

where N(I, t) =
∑m2

i=m1
ni. Since the ni are independent Poisson random variables, N(I, t) is also

a Poisson random variable with mean 〈N(I, t)〉 =
∑m2

i=m1
ui(t).

Defining ui/h→ u(xi), where xl is the center of compartment l, allows us to take the continuum
limit h→ 0 of Equation (29) which gives the (S)PDE in Equation (4). The mean value of N(I, t)
can be written as 〈N(I, t)〉 =

∑m2

i=m1
hu(xi, t), which is a Riemann sum. Taking the limit h → 0

for constant I gives

〈N(I, t)〉 →
∫
I

dxu(x, t). (22)
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According to the Countable additivity theorem, the sum of an infinite number of Poisson distributed
independent random variables converges with probability 1 if the sum of the mean values converges,
and the sum has is Poisson distributed with corresponding mean value. We assume that the mean
particle density is bound everywhere, which means that the values ui/h = u(xi) are bound for all
i and all h. Let B be such an upper bound. Since∣∣∣∣∣

m2∑
i=m1

hu(xi)

∣∣∣∣∣ ≤ h
m2∑

i=m1

∣∣u(xi)
∣∣ ≤ h m2∑

i=m1

B = h(m2 −m1)B, (23)

the sum converges in the limit h→ 0 for constant I = [(m1 − 1
2 )h, (m2 + 1

2 )h]. We thus find that
N(I, t) is Poisson distributed in the continuum limit and we can write

P (N(I, t) = n)
n→∞−−−−−−−→ P(n;

∫
I

dxu(x, t)). (24)

The same can be shown similarly for a countable union of subintervals of [0, 1], and N(U1, t) and
N(U2, t) are obviously independent for disjunct U1 and U2. The probability distribution for any
fixed t is thus exactly the same as the one of a spatial Poisson process with intensity u(x, t).

Suppose now the system also includes reactions of Type II. In this case the PR becomes
stochastic, i.e., Equation (29) and its continuum version (4) contain non-vanishing noise terms.
The field u(x, t) is thus a random process. Given a realisation of u(x, t), the same considerations as
for the deterministic case apply and the single-time probability distribution behaves like a spatio-
temporal Poisson process. Since u(x, t) is now a random process, the single-time probability
distribution of the system corresponds exactly to the one of a spatial Cox process with intensity
u(x, t). The same considerations hold in an approximate sense for Type III and IV reactions. These
findings can easily be generalised to multiple-species systems and general spatial dimensions. This
concludes the proof of Remark 1 and Result 1 in the main text.

2 Inference for Poisson and Cox processes

2.1 Numerical solution of (S)PDEs via basis projection

General formulation

To apply the derived Cox process representation we need to solve (S)PDEs. We do this here
approximately by means of a basis function projection leading to a finite set of coupled (stochastic)
ordinary differential equations (SDEs/ODEs). For illustration we confine ourselves here to a one-
dimension and one-species system, but the equations can be easily extended to multi-dimensional
and multi-species systems. Consider an SPDE of the form

du(x, t) = A(x, t) +
√
C(x, t)dW (x, t), (25)

where A(x, t) and C(x, t) are polynomials in u(x, t) with potentially space-dependent coefficients.
We approximate u(x, t) by a linear-combination of a finite set of spatial basis functions {φi(x)}ni=1,

u(x, t) =

n∑
i=1

ci(t)φi(x), (26)

where we have introduced the time-dependent coefficients ci(t). Inserting this ansatz into (25),
multiplying from the left with φj and integrating over x, it can be shown that the parameter
vector c = (c1, . . . cn) fulfils [1]

dc(t) = Φ−1〈φ|A〉dt+
√

Φ−1〈φ|C|φ〉Φ−1dW, (27)
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where dW is a n-dimensional Wiener process and we have defined

〈φi|f〉 =

∫
dxφi(x)f(x, t), (28)

〈φi|f |φj〉 =

∫
dxφi(x)f(x, t)φj(x), (29)

〈φ|f〉i = 〈φi|f〉, (30)

〈φ|f |φ〉ij = 〈φi|f |φj〉, (31)

Φij = 〈φi|φj〉, (32)

for a general function f(x, t).

For the real-valued Poisson representation

Due to the approximations of certain reaction types introduced in Section 1.2 the drift and diffusion
terms in the SDE in (27) are always linear in the coefficient vector c, with coefficients of the drift
potentially depending on 〈c〉, i.e., the drift may contain terms of the form ci〈cj〉. Using this it
is straightforward to show that the moment equations of c of different orders are not coupled
to each other, i.e., the first-order moment equations depend only on first-order moments, etc.
This in turn allows to directly numerically integrate the moment equations. Depending on the
reactions involved, the diffusion term may be independent of c in which case the SDE in (27) has a
multivariate Gaussian solution. The latter can be obtained by integrating the moment equations
of up to order two. If the solution of the SDE is not Gaussian, we simply approximate it by
a multivariate Gaussian with mean and variance obtained in the same way. Therefore, with the
approximations introduced in Section 1.2, the SPDEs of all possible reaction systems can be solved
by numerical solution of ODEs without the need for any additional approximations.

Locally constant non-overlapping basis functions

We use locally constant, non-overlapping step functions throughout this work. For a one-dimensional
system in the interval [0, 1], for example, we define n basis functions as

ψ(x) =

{
1 0 ≤ x ≤ 1

n ,
0 otherwise,

(33)

φi(x) = ψ(x− (i− 1)/n) for i = 1, . . . n. (34)

The corresponding overlap and diffusion operator matrices read

Φ = 〈φ|φ〉 =
1

n
1n×n, (35)

〈φ|∆|φ〉 = n



−1 1
1 −2 1

1 −2
. . .

. . .

. . . −2 1
1 −2 1

1 −1


, (36)

where 1n×n is the n-dimensional unity matrix and ∆ is the Laplace operator.
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2.2 Filtering

Here we describe the filtering procedure used to approximate likelihoods. Consider a Poisson
process with intensity u(x, t) given as the solution of a PDE as in (25) (with vanishing noise
term), and spatial measurements y = (yt0 , . . . ,ytn) at discrete times t0, . . . , tn. Suppose the
intensity is approximated by a linear combination of basis function as in (26). Solving the PDE
for u(x, t) thus amounts to solving the system of ODEs in (27) (with vanishing noise terms) for
the coefficient vector c.

Since the intensity of a Poisson process is deterministic, the likelihood p(y|Θ) of the data given
the model Θ is simply computed by solving the ODE in c forward over the whole time interval
and subsequently plugging in the measurements:

p(y|Θ) =

n∏
i=0

p(yti |c(ti)), (37)

p(xi|c(ti)) =
∏
s∈xi

u(s, ti)e
−

∫
dxu(x,ti), (38)

where u(x, ti) is given in terms of c(ti) in (26).
In the case of a Cox process, the intensity u(x, t) fulfils an SPDE and thus is a random

process. After basis projection as in (27) the dynamics can be formulated in terms of the co-
efficients ci(t), which fulfil the system of SDEs in (27). As explained in Section 2.1, the latter
is either solved by a Gaussian distribution or we approxiamte it by a Gaussian distribution.
The likelihood has to be computed iteratively by solving the SDEs forward between measure-
ment points and performing measurement updates. Suppose we have the Gaussian posterior
p(c(ti−1)|yti−1 , . . . ,yt0) at time ti−1. Solving the SDE for c forward in time we obtain the pre-
dictive distribution p(c(t1)|xi−1, . . . , x0) which is again Gaussian. The posterior at time ti is then
obtained by the Bayesian update as

p(c(ti)|yti , . . . ,yt0) =
p(yti |c(ti))p(c(ti)|yti−1 , . . . ,yt0)

p(yti |yti−1 , . . . ,yt0)
, (39)

with likelihood contribution

p(yti |yti−1
, . . . ,yt0) =

∫
dc(ti)p(yti |c(ti))p(c(ti)|yti−1

, . . . ,yt0), (40)

where p(yti |c(ti)) is given in (38). The full likelihood is hence given by

p(y|Θ) = p(yt0)

n∏
i=1

p(yti |yti−1 , . . . ,yt0). (41)

The posterior in (39) is generally not Gaussian and intractable. We hence approximate it by a
Gaussian using the Laplace approximation [1], which approximates the posterior by a Gaussian
centred at the posterior’s mode and with covariance being the negative Hessian of the posterior
in the mode.

3 Details for studied systems

3.1 Gene expression

Equations

Consider the gene expression system in Fig. 2 in the main text. For simplicitly, we consider
a one-dimensional version here with the nucleus on one side of the cell. We do not model the
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gene explicitly, but rather assume a homogeneous production of mRNA in the nucleus. The
corresponding reactions are

nucleus : ∅ m1−−−−−→M, (42)

whole cell : M
m2−−−−−→ ∅, (43)

cytosol : M
p1−−−−−→M + P, (44)

whole cell : P
p2−−−−−→ ∅, (45)

and both the mRNA M and protein P diffuse across the whole cell with diffusion constants dM
and dP , respectively. After approximating the reaction in (44) as explained in Section 1.2 the PR
for this system is real and deterministic, and we obtain using the SPDE in Equation (4)

duM (x, t) = [dM∆uM (x, t) +m1hn(x)−m2uM (x, t)]dt, (46)

duP (x, t) = [dP ∆uP (x, t) + p1hc(x)uM (x, t)− p2uP (x, t)]dt, (47)

hn(x) =
1

r
Θ(r − x), (48)

hc(x) =
1

1− r
Θ(x− r), (49)

where r is the size of the nucleus and Θ the Heaviside step function. The functions hn(x) and
hc(x) arise because M and P only become created in the nucleus and cytosol, respectively. If we
additionally include the autocatalytic reaction

P
p3−−−−−→ P + P, (50)

the equation for uP (x, t) becomes an SPDE and reads

duP (x, t) = [dP ∆uP (x, t) + p1hc(x)uM (x, t) + p3uP (x, t)− p2uP (x, t)]dt (51)

+
√

2p3uP (x, t)dW (x, t). (52)

Inference

Consider first the system without the reaction in (50). In this case the system corresponds to
a Poisson process. After basis function projection of the PDEs in (46) and (47) as explained in
Section 2.1, we are left with solving a coupled system of ODEs and can compute data likelihoods
as in (37). We fix the parameters to

r = 0.3, dM = 0.1, m1 = 20, m2 = 0.5, dP = 0.1, p1 = 20, p2 = 0.2. (53)

We assume that initially there are zero mRNA molecules and zero protein molecules in the cell.
We further assume that the mRNA is unobserved and consider measurements of the protein at
thirty equally separated time points separated by ∆t = 0.5. We project the PDEs in (46) and
(47) onto twenty basis functions as explained in Section 2.1. We then optimise the likelihood of
the data with respect to the parameters to obtain parameter estimates. We vary the initial values
for the parameters in the likelihood optimiser randomly between 0.5 times and 2 times the exact
value. The inference results are shown in Table 1 in the main text.

Next, we consider the same system but with the additional reaction in (50), for which the PDE
in (47) gets replaced by the SPDE in (51). Now the system corresponds to a Cox process and we
are left with solving a coupled system of SDEs after basis function projection. We approximate the
solution of the SDEs by a multivariate Gaussian as described in Section 2.1. The corresponding
likelihoods can then be computed as in (41). We again consider measurements of the protein at
equally separated time points separated by ∆t = 0.5 and optimise the corresponding likelihood.
The results are shown in Table 2 in the main text.

8



3.2 SIRS

Equations

The reactions of the SIRS system are

S + I
k,w−−−−−−→ 2I, I

r−−−−→ R, R
s−−−−→ S. (54)

We consider a system in the two-dimensional square [0, 1]×[0, 1]. After approximating the reaction
in (44) as explained in Section 1.2 the PR for this system is real, and we obtain using Equation
(4) for the intensity fields of S, I and R,

duS(x, t) = d∆u(x, t)− kPRuS(x, t)uI(x, t) + suR(x, t), (55)

duI(x, t) = d∆uI(x, t) + kPRuS(x, t)uI(x, t)− ruI(x, t), (56)

duR(x, t) = d∆uR(x, t) + ruI(x, t)− suR(x, t), (57)

where we omitted noise terms in the equation for uI(x, t) for simplicitly and hence treat the
system deterministically. We introduced the reaction rate kPR in the term corresponding to the
bimolecular infection reaction. If we include the additional spontaneous infection reaction

S
v−−−−→ I, (58)

the equations for uS(x, t) and uI(x, t) obtain an additional term and read

duS(x, t) = d∆u(x, t)− kPRuS(x, t)uI(x, t) + suR(x, t)− vuS(x, t), (59)

duI(x, t) = d∆uI(x, t) + kPRuS(x, t)uI(x, t)− ruI(x, t) + vuS(x, t). (60)

Inference

As an initial condition we distribute Sini particles of species S randomly across the whole area,
one I particle at [0.05, 0.05] and assume zero R particles. We simulate data for forty time points
equally spaced by ∆t = 1. As a basis we take 100 basis functions equally distributed in both
dimensions. The inference results are shown in Table 3 in the main text.

3.3 Drosophila embryo

Data and equations

The data of the Bicoid protein in Drosophila embryos used here consists of two-dimensional fluo-
rescence data as depicted in Fig. 4a in the main text. Since the relation of measured fluorescence
intensity to actual protein numbers is unknown we simply translate them one to one here. The
Bicoid is typically modelled by a simple birth-death process with the reactions

∅ k1−−−−−→ P, P
k2−−−−−→ ∅. (61)

For simplicity, since diffusion is radially symmetric, we only consider the data within a certain
distance from the major axis of the embryos, thus effectively obtaining one-dimensional data. We
assume further that the protein is produced within a certain range around the left tip of the
embryos. Mathematically the system is thus equivalent to the mRNA system in Section 3.1. The
intensity of the protein hence fulfils the PDE

du(x, t) = (d∆u(x, t) + k1f(x)− k2u(x, t))dt, (62)

where x is the distance from the left end of the embryo, d is the diffusion constant, k1 the
production rate, f(x) = 1, x ∈ [0, r], f(x) = 0, x /∈ [0, 1], r is the production radius around the
origin and k2 is the decay rate.
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Inference

Since we have steady-state data, not all parameters are identifiable. One can easily see that
multiplication of k1, and k2 with the same factor leads to the same steady state. We thus infer the
creation range r, the diffusion rate d, and the ratio c = k2/k1. For the inference we project the
PDE in (62) on twenty basis functions and solve the resulting ODEs for large times to ensure the
solution to be in steady state. We optimise the likelihood for each of the embryos independently
to obtain the inferred parameter values. The results are visualised in Fig. 4 in the main text.
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