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Justification of AICc as model selection criterion

Among the various criteria for model selection that have been proposed in the literature, the Akaike and Bayesian
information criteria (commonly abbreviated as AIC and BIC, respectively) are those that are most frequently employed
in the analysis of empirical data. Both criteria have the general form

−2 ln(L(v̂)) + aK, (S1)

where L is the likelihood function, v̂ the model parameters that maximize L, and K is the number of parameters.
The difference between AIC and BIC is the prefactor a in the last term,

a =

{

2 for AIC,

ln(N) for BIC,
(S2)

where N is the number of data points. For N ≥ 8, the BIC gives thus a larger penalty than the AIC for every
additional parameter in the model.
BIC-based model selection is known to be consistent in the sense that it almost surely selects the true model if

it is among the candidates and N is infinitely large [1]. AIC-based model selection is generally not consistent, but
unlike the BIC it is, in statistical parlance, efficient: in the limit N → ∞ the AIC selects a candidate model with the
smallest Kullback-Leibler divergence from the true model, even if the true model is not among the candidates [2, 3].
The true model is in most biological applications indeed unlikely to be included in the candidate set because it usually
contains a large number of unknown parameters, which may furthermore increase with N . The consistency of the
BIC and the efficiency of the AIC are asymptotic statements valid for N → ∞. While it is insightful to know under
which conditions the AIC or BIC are asymptotically optimal, these properties are ultimately of theoretical rather than
practical relevance for finite data sets. The best guidance which criterion to choose comes from simulation studies
involving finite data.
With a random number generator we have created finite data that pose a similar challenge to the model selection

algorithm as the observed degree distributions. The data are N = 106 random numbers, independently sampled from
the distribution

Pr(kobs > k) = (S3)
{

exp
[

−β(kc + α)−1k
]

if 0 < k ≤ kc,

C(kc, α, β)× (k + α)−β if k > kc,

where kobs is the generated random integer and the prefactor on the second line is C(kc, α, β) = (kc +
α)β exp

[

−β(kc + α)−1kc
]

. The tail of this distribution is a power law. If k were real-valued rather than an in-
teger, the right-hand side of Eq. (S3) would be differentiable everywhere. We have chosen this distribution for two
reasons. First, we want to test whether it is possible to determine with information criteria that the true model is
a power-law (POW in Table 1). Second, we want to find out which criterion is better at determining the precise
crossover point kc in the presence of random fluctuations. The motivation is that, if the brain were indeed scale-free,
we would correctly identify the power-law model and its parameterization. We fixed α = 10, β = 2.5 and allowed kc
to vary.
For our first exploratory Monte Carlo simulations, we compared whether AIC- or BIC-based model selection is

more successful at determining the true kc from the POW candidate models

Prcandidate(kobs > k) = (S4)






1−
∑k

i=1 Ai if 0 < k ≤ kc,

(1−
∑kc

i=1 Ai)
(

kc+α
k+α

)β

if k > kc,
.
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FIG. S1: The true crossover point kc in Eq. (S3) versus values fitted by selecting among the candidate models of Eq. (S4).
The selected models either minimize AIC (black filled circles) or BIC (red open squares). The diagonal line indicates perfect
prediction. Standard errors are smaller than symbol sizes.

where α, β and A1, . . . , Akc
are adjustable parameters. The crossover point kc is not itself a parameter in Eq. (S4),

but rather an index for different candidate models.
We summarize the results in Fig. S1. The AIC reconstructs the crossover point almost accurately in the entire range

0 ≤ kc ≤ 150. The BIC underestimates kc, especially when kc is large. The reason lies in the BIC’s steeper penalty
for additional parameters in Eq. (S2). Another obstacle for the BIC is that the true model (i.e. the distribution of
Eq. S3 with the three parameters α, β and kc) is generally not one of the candidates of Eq. (S4) because those contain
more parameters than necessary, in particular one parameter Ai for every 0 < i ≤ kc. The AIC, by contrast, correctly
chooses a candidate that still describes the input best among the wrong (i.e. overparameterized) models: for k > kc
the distribution decays ∝ (k + α)−β whereas there is no power law in the region 0 < k ≤ kc.
Having found that the AIC is better suited for model selection in the present context, we investigate next whether

the AIC reliably identifies the correct model among those listed in Table 1. We generate 10 independent sets of
N = 106 random numbers each. These are drawn from the distribution of Eq. (S3) with α = 10, β = 2.5, and now
we also fix kc = 100. For 8 out of these 10 sets, the power law had the smallest AIC. In the remaining two, the power
law’s AIC differed from the minimum only by ∆POW = 0.05 in one case and ∆POW = 0.30 in the other case. As we
have explained after Eq. (5), such small ∆POW are still interpreted as substantial empirical support for the power law.
We conclude that, if the connectome’s degree distribution were scale-free, the AIC would have correctly identified a
power law as a plausible candidate model.
We have tested whether this statement remains true even if the observed network is not the full scale-free network,

but only a random sample of 20% of the edges. Such subsampling of the true network might mimic that the data
are collected at a finite resolution and therefore only a fraction of the fiber tracts might be detected. For a fixed
power-law degree distribution (α = 10, β = 2.5, N = 2 · 106, kc = 0), we first construct a corresponding network
with the configuration model [4]. We then randomly select 20% of the edges. The degrees of this subgraph have the
distribution [5]

P (kobs = j) =

∞
∑

i=j

(

i

j

)

0.2j 0.8i−jP (ktrue = i). (S5)

Here ktrue is the true degree of a node (i.e. in our model a power-law distribution POW as in Table 1 of the main text)
and kobs is the degree observed in the sampled network. We removed all nodes with degree zero from the network to
be consistent with the procedure used by the OCP.
Applying AIC-based model selection with the candidates of Table 1, we find that the differences between the heavy-

tailed distributions POW, LGN, TPW and GWB are smaller for the sampled network than for the full network. In
ten test runs, we could always rule out EXP, WBL and in one case LGN because ∆ > 10, but otherwise ∆ was below
this threshold. Still, POW had the smallest AIC in eight out of ten cases and came in a close second in the remaining
two. In summary, AIC-based model selection would have correctly included the power law in the set of plausible
candidates even if the observed network had been a small sample of a network with a scale-free degree distribution.
There is one fine detail to note when the dimension K of the model approaches the sample size N . In such cases

the AIC is a negatively biased estimate of the Kullback-Leibler information [6]. An approximate correction for this

bias is the additional penalty term 2K(K+1)
N−K−1 in Eq. (4). This modified version of the AIC is commonly abbreviated as



3

AICc. Although the difference is small in the present context, it has been suggested that AICc should routinely be
used instead of the AIC [6, 7]. We have followed this advice throughout this article.
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