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1 Estimation algorithm for the copula mixture model

1.1 Iterative procedure to esimate the parameter

Here we describe the iterative procedure to esimate the parameter θ =
(
π0, π1, π2, µ1, σ

2
1 , ρ1,µ2, σ

2
2 , ρ2

)
in detail.

(a) Compute the empirical marginal CDF F̂j(xi,j) =
ri,j
n where ri,j is the rank of xi,j on the platform j and n

is the sample size.

(b) Rescale F̂j(xi,j) by ui,j ≡ n
n+1 F̂ (xi,j) to avoid potential unboundedness of G−1(ui,j) if ui,j ’s tend to one.

(c) Initialize θ = θ0.

(d) Compute pseudo-data zi,j = G−1(ui,j | θ). As G−1 does not have a closed form, G is first computed on a

grid of 1000 points for u ∈ [min(−3, µ2 − 3),max(3, µ1 + 3)], then zi,j is obtained by linear interpolation

on the grid.

(e) Run EM to maximize the log-likelihood of pseudo-data,

l(θ) =

n∑
i=1

[
log

{
π0h0(zi,1, zi,2; 0, 1, 0) +

2∑
k=1

πkhk(zi,1, zi,2;µk, σ
2
k, ρk)

}]

to get θ(t) = arg max
θ

l(θ). The E-step and M-step are described below.

(f) Set θ = θ(t) and go to step (e) until covergence.

1.2 EM algorithm for maximizing the log-likelihood of pseudo data

Here we decrible the EM algorithm in step (f) above. To Proceed, we denote Ki as the latent variables, then the

complete log-likelihood for the augmented pseudo data Yi ≡ (Zi,Ki) is

lc(θ) =

n∑
i=1

[
I(Ki = 0) {log π0 + log h0(zi,1, zi,2; 0, 1, 0)}

+

2∑
k=1

I(Ki = k)
{

log πk + log hk(zi,1, zi,2;µk, σ
2
k, ρk)

} ]

where I(·) is the indicator function. Denote τi,k = P (Ki = k), k = 0, 1, 2.

(a) E-step:
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Conditional on observations and current value θ(t), the expected log-likelihood function is:

Q(θ | θ(t)) = E
[
lc(θ)|Zi, θ(t)

]
=

n∑
i=1

[
τ
(t+1)
i,0 {log π0 + log h0(zi,1, zi,2; 0, 1, 0)}

+

2∑
k=1

τ
(t+1)
i,k

{
log πk + log hk(zi,1, zi,2;µk, σ

2
k, ρk)

} ]

Then,

τ
(t+1)
i,0 =

P (Ki = 0, zi | θ(t))
P (zi | θ(t))

=
π
(t)
0 h0(zi,1, zi,2; 0, 1, 0)

π
(t)
0 h0(zi,1, zi,2) +

∑2
k=1 π

(t)
k hk(zi,1, zi,2;µ

(t)
k , σ

2(t)
k , ρ

(t)
k )

τ
(t+1)
i,k =

P (Ki = k, zi | θ(t))
P (zi | θ(t))

=
π
(t)
k hk(zi,1, zi,2;µ

(t)
k , σ

2(t)
k , ρ

(t)
k )

π
(t)
0 h0(zi,1, zi,2; 0, 1, 0) +

∑2
k=1 π

(t)
k hk(zi,1, zi,2;µ

(t)
k , σ

2(t)
k , ρ

(t)
k )

,

for k = 1, 2.

(b) M-step:

By setting ∂Q(θ|θ(t))
∂πk

= 0 for k = 0, 1, 2, we can obtain

π
(t+1)
k =

1

n

n∑
i=1

τ
(t+1)
i,k .

Note that the first term of Q(θ|θ(t)) is irrelevant to (µk, σ
2
k, ρk) for k = 1, 2. Thus, to update (µk, σ

2
k, ρk),

we only need to maximize the first term of Q(θ|θ(t+1)), which is denoted as Q1(θ|θ(t)):

Q1(θ|θ(t))

=

n∑
i=1

τ
(t+1)
i,0

[
log

(
1

2π

)
− 1

2

(
z2i,1 + z2i,2

)]

+

2∑
k=1

n∑
i=1

τ
(t+1)
i,k

[
log

(
1

2πσ2
k

√
1− ρ2k

)
− (zi,1 − µk)2 − 2ρk(zi,1 − µk)(zi,2 − µk) + (zi,2 − µk)2

2(1− ρ2k)σ2
k

]

Taking derivatives w.r.t each term, we have the following:

∂Q1(θ|θ(t))
∂µ1

=

n∑
i=1

τ
(t+1)
i,1

2(1− ρ21)
· 2(1− ρ1)(zi,1 + zi,2 − 2µ1)

σ2
1

Set it equal to 0, we have:

µ
(t+1)
1 =

∑n
i=1 τ

(t+1)
i,1 (zi,1 + zi,2)

2
∑n
i=1 τ

(t+1)
i,1

By symmetry,

µ
(t+1)
2 =

∑n
i=1 τ

(t+1)
i,2 (zi,1 + zi,2)

2
∑n
i=1 τ

(t+1)
i,2
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Similarly,

∂Q1(θ|θt)
∂σ2

1

=

n∑
i=1

τ
(t+1)
i,1 ×[

− 1

σ2
1

+
(zi,1 − µ1)2 − 2ρ1(zi,1 − µ1)(zi,2 − µ1) + (zi,2 − µ1)2

2σ4
1(1− ρ21)

]
(1)

∂Q1(θ|θt)
∂ρ1

=

n∑
i=1

τ
(t+1)
i,1 ×[
ρ1

1− ρ21
− ρ1

(1− ρ21)2
·

(zi,1 − µ1)2 − ( 1
ρ1

+ ρ1)(zi,1 − µ1)(zi,2 − µ1) + (zi,2 − µ1)2

σ2
1

]
. (2)

Solving (1) and (2) together,

(σ2
1)(t+1) =

∑n
i=1 τ

(t+1)
i,1

[
(zi,1 − µ1)2 + (zi,2 − µ1)2

]
2
∑n
i=1 τ

(t+1)
i,1

ρ
(t+1)
1 =

2
∑n
i=1 τ

(t+1)
i,1 (zi,1 − µ1)(zi,2 − µ1)∑n

i=1 τ
(t+1)
i,1 [(zi,1 − µ1)2 + (zi,2 − µ1)2]

.

By symmetry,

(σ2
2)(t+1) =

∑n
i=1 τ

(t+1)
i,2

[
(zi,1 − µ2)2 + (zi,2 − µ2)2

]
2
∑n
i=1 τ

(t+1)
i,2

ρ
(t+1)
2 =

2
∑n
i=1 τ

(t+1)
i,2 (zi,1 − µ2)(zi,2 − µ2)∑n

i=1 τ
(t+1)
i,2 [(zi,1 − µ2)2 + (zi,2 − µ2)2]

.

As shown in Figure 1, our method is well-calibrated in all the scenarios, even though our model assumption

is violated. In addition, our method also shows the highest discriminative power among all the methods of

comparison.

2 Real data-based simulation study

2.1 Simulation of RNA-seq data

The RNA-seq data was simulated from a negative binomial model as previously described by Kvam[1]. The

simulation procedure is as follows.

(a) Simulation of mean gene expression levels

i. We assume that the expression level of RNA-seq data follows a Gamma distribution, Gamma(k, θ).

We estimate k and θ by fitting the RNA-seq data of liver and kidney samples in Marioni et al[2].

ii. Then, we generate the mean expression level of a gene j by aj ∼ Gamma(k, θ).

(b) Simulation of fold changes

i. We assume the log2 fold change follows a three-component Gaussian mixture distribution with µ0 = 0

for non-DE genes, µ1 > 0 for up-regulated genes and µ2 < 0 for down-regulated genes. We fit this

model using the a log2 fold change between kidney and liver.

ii. We then simulate the log2 fold change for gene j, bj , using the three-component Gaussian mixture

model with fitted parameters
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(c) Generation of read counts

The read counts for gene j in treatment i, (i = 0, 1) is simulated from a negative binomial distribution,

ySij ∼ NB(µij , φj)

where mean µij = aj2
(−1)ibj and the dispersion parameter φj is simulated from a Gamma distribution,

φj ∼ Gamma(0.85, 0.5), following Hardcastle and Kelly[3].

2.2 Simulation of microarray data

The simulation of microarray data follows a method in Xiao et al [4] as follows.

(a) Estimation of mean expression levels

The microarray intensity for gene j is modeled according to Rocke and Durbin [5]:

yj = u+ aj exp(η) + ε,

where aj is the intensity measured on the microarray, u is background noise, η and ε are error terms that

are normally distributed.

To estimate aj , one may apply a variance stablizing data transformation [6]:

aj = ln(yj − u+
√

(yj − u)2 + sd(ε)/sd(η)) (3)

According to this model, when aj is small, yj = u + ε. Since u is a constant, sd(ε) = sd(yj). We used

the bottom 1% data to estimate sd(ε). We estimate u using the mean expression of raw data minus mean

expression of data after background correction, where the background correction was done by using RMA

method [7]. When aj is sufficiently large, log(yj) = log(aj) + η. So we calculate sd(η) using genes among

the top 0.1% within each treatment. The distribution of aj then can be constructed using the estimated

values through (3).

(b) Estimation of log2 fold changes

The log2 fold change is estimated from the kidney/liver microarray data in Marioni et al.[4] by assuming

a three-component mixture model with µ0 = 0 for non-DE genes.

(c) Simulation of mean expression levels and log2 fold changes

For each gene, the mean expression level aj is drawn from the distribution estimated in step 1, and the

log2 fold change, bj , is drawn from the three-component mixture model estimated from real data in step

(b). Then simulated expression level is yMij = aj2
(−1)ibj

2.3 Coupling of RNA-seq and microarray data

To reflect the correspondence between RNA-seq and microarray data measured from the same sample, we couple

the RNA-seq and microarray data in the following way. For gene j, we first randomly generate percentiles

qaj ∼ Unif(0, 1) and qbj ∼ Unif(0, 1) for aj and bj , respectively, and then simulate the RNA-seq and microarray

according to 3.1 and 3.2, respectively, using the same aj and bj .

2.4 Procedure for adjusting data quality in simulation

This section describes the procedure and parameter settings for simulating RNA-seq and microarray data with

different qualities.
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For RNA-seq, we adjust the quality of data by altering the dispersion parameter φj in the negative binomial

distribution. A larger φj will introduce higher level of randomness in the final expression level, reducing the

quality of data. In our simulation, we draw φj from Gamma(0.85, 0.5) for high-quality data, following the

parameter setting in [3], and draw φj from Gamma(1.75, 3) and Gamma(1.2, 3) for low quality data with equal

tails and unequal tails, respectively.

For microarray data, we adjust the quality of data by multiplying a random perturbation factor to the gene

expression level simulated in Section 2.2 (c). That is, the gene expression level for gene j in treatment i is

yij = aj2
(−1)ibjαij , where αij ∼ unif(1 − t, 1 + t) is a multiplicative factor to control data quality. In our

simulation, we let t = 0.12 and t = 0.15 for high quality data with equal and unequal tails, respectively, and let

t = 0.24 and t = 0.27 for low quality data with equal and unequal tails, respectively.

3 Preprocessing of MAQC/SEQC data

3.1 Preprocessing of MAQC data

Microarray data from MAQC project can be downloaded from Gene Expression Omnibus with the GEO Series

accession number = GSE5350. Annotation for this data was obtained from hgu133plus2.db.

The data was firstly processed using the affy package on Bioconductor with the default setting. The RMA

method was then applied to normalize the data. For genes that correspond to multiple probes, we collapse the

probes and use the mean expression level of collapsed probes as the expression level of the gene.

3.2 Preprocessing of SEQC data

RNA-seq data was obtained by loading R package SEQC. Then the data was normalized by using DEseq package

with the default setting. The read counts were summed over all 20 replicates for each gene symbol. The symbols

with total read count less than 30 are removed from analysis. Only the gene symbols that are shared by both

RNA-seq data and microarray data are kept for further analysis.

4 Extension of our model to the case of more than two samples

When more than 2 (m > 2) samples are integrated, the copula mixture model can be described as follows.

Let Ki = k ∼ Bernoulli(πk), k=0, 1, 2, and


σ2
k ρkσ

2
k · · · ρkσ

2
k

ρkσ
2
k σ2

k · · · ρkσ
2
k

...
...

. . .
...

ρkσ
2
k ρkσ

2
k · · · σ2

k

 ,

where µ0 = 0, µ1 > 0, µ2 < 0, ρ0 = 0, 0 < ρ1 ≤ 1, 0 < ρ2 ≤ 1.

Let

ui,j ≡ G(zi,j) =

2∑
k=0

πkΦ(
zi,j − µk

σk
)

where j = 1, . . . ,m. Our actual observations are

xi,j = F−1j (ui,j)
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5 Supplementary tables

Table 1: Parameter estimation for the simulation with violation of model assumptions

Parameter S1 S2 S3 S4
True Estimated True Estimated True Estimated True Estimated

π0 0.50
0.511

0.50
0.510

0.90
0.899

0.50
0.504

(0.010) (0.010) (0.003) (0.009)

π1 0.25
0.242

0.35
0.343

0.05
0.050

0.25
0.248

(0.005) (0.007) (0.002) (0.004)

π2 0.25
0.245

0.15
0.145

0.05
0.050

0.25
0.247

(0.006) (0.005) (0.002) (0.005)

µ1 0.58–1.58
1.087

0.58–1.58
1.097

0.58–1.58
1.107

0.58–1.58
1.089

(0.032) (0.014) (0.036) (0.012)

µ2 -1.58– -0.58
-1.095

-1.58 – -0.58
-1.098

-1.58– -0.58
-1.114

-1.58– -0.58
-1.088

(0.016) (0.036) (0.037) (0.011)

σ1 0.80
0.807

0.80
0.801

0.80
0.815

0.80
0.813

(0.019) (0.011) (0.372) (0.010)

σ2 0.80
0.801

0.80
0.815

0.80
0.827

0.80
0.812

(0.017) (0.019) (0.335) (0.010)

ρ1 0.80–0.88
0.852

0.80–0.88
0.861

0.80–0.88
0.844

0.55–0.65
0.643

(0.014) (0.015) (0.024) (0.017)

ρ2 0.80–0.88
0.855

0.80–0.88
0.838

0.80–0.88
0.853

0.55–0.65
0.643

(0.016) (0.024) (0.024) (0.022)

Four simulation scenarios:

S1: data with same proportion of up- and down-regulated DEGs

S2: data with different proportions of up- and down-regulated DEGs

S3: data with a small proportion of DEGs

S4: data with low inter-platform consistency.
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Table 2: AUC for the real data-based simulation study

Cases Tails1 Data quality2 Our method eBayes DEseq Fisher Stouffer RankProd

(A)
Equal

H H 0.823 0.790 0.787 0.820 0.821 0.814
(B) H L 0.790 0.695 0.799 0.791 0.792 0.779
(C) L L 0.714 0.685 0.649 0.707 0.707 0.690

(D)
Unequal

H H 0.812 0.756 0.757 0.787 0.789 0.796
(E) H L 0.785 0.675 0.766 0.765 0.766 0.764
(F) L L 0.753 0.678 0.687 0.722 0.724 0.733

The highest AUC in each case is shown in bold face.

1 Scenarios with different proportions of up- and down-regulated genes

- Equal: there are 20% up-regulated genes, 20% down-regulated genes and 60% non-DEGs.

- Unequal: there are 30% up-regulated genes, 10% down-regulated genes and 60% non-DEGs.

2 Scenarios with different data quality

- H H: Both RNA-seq and microarray data have high quality.

- H L: RNA-seq data has high quality while microarray data has low quality.

- L L: Both RNA-seq and microarray data have low quality.
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Table 3: AUC for the synthetic microRNA data

Cutoff1 Our method RNA-seq fold change Microarray fold change DEseq RankProd

0 0.957 0.906 0.885 0.913 0.919
±0.5 0.978 0.938 0.927 0.942 0.958

The highest AUC in each case is shown in bold face.

1 AUC was calculated for two levels of classification stringency.

- Cutoff=0: Genes with no fold change as true non-DEGs and the rest as true DEGs

- Cutoff=±0.5: Genes with a log2 fold change less than ±0.5 as true non-DEGs and the rest as true DEGs
and the rest as true DEGs
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6 Supplementary Figures
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Figure 1: Calibration of our method in the simulation with violation of model assumption. The estimated error
rate (x-axis) is compared with the actual frequency of false identifications (y-axis) in four simulation settings. (A)
S1: data with same proportion of up- and down-regulated DEGs, (B) S2: data with different proportions of up-
and down-regulated DEGs, (C) S3: data with a small proportion of DEGs, (D) S4: data with low inter-platform
consistency. Parameters for each setting are shown in Supplementary Table 1. In all settings, our method shows
a good calibration.
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Figure 2: Comparison of discriminative power in the simulation with violation of model assumption. The
percentage of correct and incorrect calls at various thresholds for our method, Fisher’s method, Stouffer’s method
and RankProd in four simulation settings. (A) S1: data with same proportion of up- and down-regulated DEGs,
(B) S2: data with different proportions of up- and down-regulated DEGs, (C) S3: data with a small proportion of
DEGs, (D) S4: data with low inter-platform consistency. Parameters for each setting are shown in Supplementary
Table 1. In all settings, our method outperforms all the other methods.
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