1	Transcriptional reprogramming and phenotypic switching associated with the
2	adaptation of <i>Lactobacillus plantarum</i> C2 to plant niches
3	
4	Pasquale Filannino ^a , Raffaella Di Cagno ^a *, Carmine Crecchio ^a , Caterina De Virgilio ^b , Maria
5	De Angelis ^a , Marco Gobbetti ^a
6	
7	^a Department of Plant, Soil and Food Sciences, University of Bari A. Moro, Via Amendola 165/a,
8	70126 Bari, Italy
9	^b Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via
10	Orabona, 4, 70126 Bari, Italy
11	
12	
13	
14	Table of Contents:
15	- Supplementary Figures S1-S8
16	- Supplementary Tables S1- S6
17	
18	
19	
20	
21	

- 24 Lactobacillus plantarum C2 was cultivated in carrot and pineapple juice, chosen as model systems representative of vegetables and fruits, respectively.
- 25 Samples derived from the late exponential growth phase and maintenance were assessed at the molecular level through genome-wide transcriptome
- analysis, and the phenotypic microarray and physiological characteristics were determined in parallel.

29	Histograms showing fold-change ratios and frequencies of up-regulated and down-regulated genes
30	during the late exponential (LE) growth phase (16 or 18 h at 30°C) (A, B, D, and E) and the
31	maintenance period (21 days at 4°C) (G, H, L, and M) in carrot (CJ) and pineapple (PJ) juices
32	compared to MRS medium. Volcano plots showing gene expression in L. plantarum C2 during the
33	LE growth phase (C and F) and the maintenance period (I and N) in CJ and PJ compared to MRS
34	medium. The x-axis represents the differential gene expression profiles plotted as fold-induction
35	ratios on a log-2 scale. The y-axis indicates the statistical significance of the differences in
36	expression (p-value as calculated by ANOVA) on a log ₁₀ scale.
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	

55 Figure S3.

Integrated pathways of *Lactobacillus plantarum* C2 during the late exponential growth phase (16 h at 30°C) in carrot juice (CJ) compared to MRS medium. A screenshot of the DAVID pathway analysis of the set of differentially expressed genes is shown. The nodes for genes encoding enzymes are coloured lime green if up-regulated and red if down-regulated. Other enzyme nodes appear in pale green. Substrate nodes appear in white. Multiple up/down-regulated genes are separated by semicolons. Analytical modules are provided in Dataset S4.

76	The aminoacyl-tRNA biosynthesis pathway in Lactobacillus plantarum C2 during the late
77	exponential growth phase in carrot juice (CJ) compared to MRS medium. A screenshot of the
78	DAVID pathway analysis of the set of differentially expressed genes is shown. The nodes for genes
79	encoding enzymes are coloured lime green if up-regulated and red if down-regulated. Other enzyme
80	nodes appear in pale green. Substrate nodes appear in white. Analytical modules are provided in
81	Dataset S4.
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	
93	
94	
95	
96	
97	
98	
99	
100	
101	

104	Integrated pathways of Lactobacillus plantarum C2 during maintenance (21 days at 4°C) in carrot juice (CJ) compared to MRS medium. A screenshot
105	of the DAVID pathway analysis of the set of differentially expressed genes is shown. The nodes for genes encoding enzymes are coloured lime green if
106	up-regulated and red if down-regulated. Other enzyme nodes appear in pale green. Substrate nodes appear in white. Multiple up/down-regulated genes
107	are separated by semicolons. Analytical modules are provided in Dataset S4.
108	
109	
110	
111	
112	
113	
114	
115	
116	
117	
118	
119	
120	

Figure S6.

Integrated pathways of *Lactobacillus plantarum* C2 during the late exponential growth phase (18 h at 30°C) in pineapple juice (PJ) compared to MRS medium. A screenshot of the DAVID pathway analysis of the set of differentially expressed genes is shown. The nodes for genes encoding enzymes are coloured lime green if up-regulated and red if down-regulated. Other enzyme nodes appear in pale green. Substrate nodes appear in white. Multiple up- or down-regulated genes are separated by semicolons. Analytical modules are provided in Dataset S4.

Figure S7.

142	Integrated pathways of <i>Lactobacillus plantarum</i> C2 during the maintenance period (21 days at 4°C) in pineapple juice (PJ) compared to MRS medium.
143	A screenshot of DAVID pathway analysis of the set of differentially expressed genes is shown. The nodes for genes encoding enzymes are coloured
144	lime green if up-regulated and red if down-regulated. Other enzyme nodes appear in pale green. Substrate nodes appear in white. Multiple up- or down-
145	regulated genes are separated by semicolons. Analytical modules are provided in Dataset S4.
146	
147	

161 The aminoacyl-tRNA biosynthesis pathway in *Lactobacillus plantarum* C2 during the maintenance

162 period (21 days at 4°C) in pineapple juice (PJ) compared to MRS medium. A screenshot of DAVID

pathway analysis of the set of differentially expressed genes is shown. The nodes for genes
encoding enzymes are coloured lime green if up-regulated and red if down-regulated. Other enzyme
nodes appear in pale green. Substrate nodes appear in white. Analytical modules are provided in
Dataset S4.

Table S1. Phage- and prophage-related genes differentially expressed during the late exponential (LE) growth phase (16 or 18 h at 30°C) and the

168	maintenance period	(21 days at	4°C) in carr	ot (CJ) or pinear	ople (PJ) juices	compared to MRS m	edium.
-----	--------------------	-------------	--------------	-------------------	------------------	-------------------	--------

	Carrot juice (CJ)										
	Gene	Fold Change	Description	Accession							
	lp_0915	4.82	phage protein	NC_004567.2							
	lp_2397	2.08	prophage P2a protein 59; extracellular polysaccharide deacetylase, lipid-anchored	NC_004567.2							
	lp_2417	2.55	prophage P2a protein 40; major capsid protein	NC_004567.2							
	lp_0681	-11.94	prophage P1 protein 58, lysin	NC_004567.2							
	lp_2437	-2.74	prophage P2a protein 20, replication protein DnaD domain	NC_004567.2							
	lp_0661	-3.29	prophage P1 protein 38, terminase large subunit TerL	NC_004567.2							
	lp_2436	-3.35	prophage P2a protein 21	NC_004567.2							
	lp_0644	-3.46	prophage P1 protein 21	NC_004567.2							
I.F. growth phage	lp_2466	-2.09	prophage P2b protein 15, terminase large subunit	NC_004567.2							
LE growth phase	lp_2426	-2.67	prophage P2a protein 31; phage ArpU family transcriptional regulator	NC_004567.2							
	lp_0682	-21.87	prophage P1 protein 59	NC_004567.2							
	lp_2445	-2.73	prophage P2a protein 12	NC_004567.2							
	lp_2457	-2.32	prophage P2b protein 24	NC_004567.2							
	lp_0656	-3.29	prophage P1 protein 33, phage ArpU family transcriptional regulator	NC_004567.2							
	lp_2400	-2.19	prophage P2a protein 57	NC_004567.2							
	lp_2399	-5.57	prophage P2a protein 58, holin	NC_004567.2							
	lp_0663	-2.06	prophage P1 protein 40, minor head protein	NC_004567.2							
_	lp_2446	-3.24	prophage P2a protein 11	NC_004567.2							
	lp_2397	12.55	prophage P2a protein 59; extracellular polysaccharide deacetylase, lipid-anchored	NC_004567.2							
	lp_2415	2.04	prophage P2a protein 42	NC_004567.2							
	lp_2417	3.23	prophage P2a protein 40; major capsid protein	NC_004567.2							
Maintenance	lp_2428	2.85	prophage P2a protein 29	NC_004567.2							
	lp_2432	2.40	prophage P2a protein 25	NC_004567.2							
	lp_2433	3.21	prophage P2a protein 24; endodeoxyribonuclease RusA-like	NC_004567.2							
_	lp_2437	3.55	prophage P2a protein 20, replication protein DnaD domain	NC_004567.2							

Table S1. Continued

			Carrot juice (CJ)	
	Gene	Fold Change	Description	Accession
	lp_2442	3.17	prophage P2a protein 15	NC_004567.2
	lp_0632	2.76	prophage P1 protein 9, phage Cro/CI family transcriptional regulator	NC_004567.2
	lp_0915	3.54	phage protein	NC_004567.2
	lp_2445	2.38	prophage P2a protein 12	NC_004567.2
	lp_2446	2.42	prophage P2a protein 11	NC_004567.2
	lp_2448	2.74	prophage P2a protein 9, phage Cro/CI family transcriptional regulator	NC_004567.2
	lp_2460	2.12	prophage P2b protein 21	NC_004567.2
	lp_2461	3.90	prophage P2b protein 20	NC_004567.2
Maintenance	lp_2467	2.04	prophage P2b protein 14, terminase small subunit	NC_004567.2
141aintenance	lp_2474	2.03	prophage P2b protein 7, DNA replication	NC_004567.2
	lp_3381	2.64	prophage P3 protein 9	NC_004567.2
	lp_0661	-5.69	prophage P1 protein 38, terminase large subunit TerL	NC_004567.2
	lp_0663	-3.90	prophage P1 protein 40, minor head protein	NC_004567.2
	lp_0675	-2.38	prophage P1 protein 52, endolysin	NC_004567.2
	lp_0676	-2.43	prophage P1 protein 53, GDSL-like lipase/acylhydrolase family	NC_004567.2
	lp_0682	-2.25	prophage P1 protein 59	NC_004567.2
	lp_2399	-2.04	prophage P2a protein 58, holin	NC_004567.2
	lp_2457	-2.51	prophage P2b protein 24	NC_004567.2
			Pineapple juice (PJ)	
	Gene	Fold Change	Description	Accession
	lp_0643	-2.37	prophage P1 protein 20	NC_004567.2
	lp_0644	-10.32	prophage P1 protein 21	NC_004567.2
	lp_0646	-2.22	prophage P1 protein 23	NC_004567.2
LE growth phase	lp_0656	-6.97	prophage P1 protein 33, phage ArpU family transcriptional regulator	NC_004567.2
	lp_0661	-5.78	prophage P1 protein 38, terminase large subunit TerL	NC_004567.2
	lp_0662	-2.75	prophage P1 protein 39, portal protein	NC_004567.2
	lp_0663	-2.68	prophage P1 protein 40, minor head protein	NC_004567.2

Table S1. Continued

	Pineapple juice (PJ)										
	Gene	Fold Change	Description	Accession							
	lp_0681	-2.88	prophage P1 protein 58, lysin	NC_004567.2							
	lp_0682	-2.22	prophage P1 protein 59	NC_004567.2							
	lp_2399	-2.39	prophage P2a protein 58, holin	NC_004567.2							
	lp_2426	-6.41	prophage P2a protein 31; phage ArpU family transcriptional regulator	NC_004567.2							
	lp_2433	-4.26	prophage P2a protein 24; endodeoxyribonuclease RusA-like	NC_004567.2							
	lp_2434	-2.35	prophage P2a protein 23	NC_004567.2							
	lp_2436	-9.93	prophage P2a protein 21	NC_004567.2							
	lp_2437	-6.81	prophage P2a protein 20, replication protein DnaD domain	NC_004567.2							
LE growth phase	lp_2442	-8.05	prophage P2a protein 15	NC_004567.2							
	lp_2445	-5.92	prophage P2a protein 12	NC_004567.2							
	lp_2446	-7.32	prophage P2a protein 11	NC_004567.2							
	lp_2455	-2.36	prophage P2a protein 2, integrase	NC_004567.2							
	lp_2457	-2.37	prophage P2b protein 24	NC_004567.2							
	lp_2466	-2.38	prophage P2b protein 15, terminase large subunit	NC_004567.2							
	lp_2472	-2.53	prophage P2b protein 9	NC_004567.2							
	lp_2473	-2.36	prophage P2b protein 8, helicase	NC_004567.2							
	lp_2480	-2.34	prophage P2b protein 1, integrase	NC_004567.2							
	lp_2397	2.37	prophage P2a protein 59; extracellular polysaccharide deacetylase, lipid-anchored	NC_004567.2							
	lp_0915	2.80	phage protein	NC_004567.2							
	lp_0643	-2.93	prophage P1 protein 20	NC_004567.2							
	lp_0644	-9.51	prophage P1 protein 21	NC_004567.2							
Maintenance	lp_0646	-2.76	prophage P1 protein 23	NC_004567.2							
Maintenance	lp_0656	-10.61	prophage P1 protein 33, phage ArpU family transcriptional regulator	NC_004567.2							
	lp_0661	-3.76	prophage P1 protein 38, terminase large subunit TerL	NC_004567.2							
	lp_0662	-2.31	prophage P1 protein 39, portal protein	NC_004567.2							
	lp_0663	-2.51	prophage P1 protein 40, minor head protein	NC_004567.2							
	lp_0681	-3.43	prophage P1 protein 58, lysin	NC_004567.2							

Table S1. Continued

	Pineapple juice (PJ)									
	Gene	Fold Change	Description	Accession						
	lp_0682	-10.37	prophage P1 protein 59	NC_004567.2						
	lp_2399	-2.67	prophage P2a protein 58, holin	NC_004567.2						
	lp_2417	-2.62	prophage P2a protein 40; major capsid protein	NC_004567.2						
	lp_2426	-8.80	prophage P2a protein 31; phage ArpU family transcriptional regulator	NC_004567.2						
	lp_2434	-2.91	prophage P2a protein 23	NC_004567.2						
Maintenance	lp_2436	-10.91	prophage P2a protein 21	NC_004567.2						
	lp_2437	-6.83	prophage P2a protein 20, replication protein DnaD domain	NC_004567.2						
	lp_2442	-12.30	prophage P2a protein 15	NC_004567.2						
	lp_2445	-14.63	prophage P2a protein 12	NC_004567.2						
	lp_2446	-13.86	prophage P2a protein 11	NC_004567.2						
	lp_2457	-5.12	prophage P2b protein 24	NC_004567.2						

Table S2. Cell density (log CFU/ml) and pH values during the growth (24 h at 30°C) and the maintenance period (21 days at 4°C) in carrot juice (CJ),

188 pineapple juice (PJ), and MRS broth.

Time (h) at 30°C										T	ime (dag	ys) at 4ª	°C					
		0	2	4	6	8	10	12	14	16	18	20	22	24	5	10	15	21
CJ	log CFU/ml	$\begin{array}{r} 7.04 \pm \\ 0.03 \end{array}$	6.98 ± 0.04	7.44 ± 0.02	8.10±0.05	8.45 ± 0.04	8.76 ± 0.02	8.97 ± 0.03	9.00 ± 0.06	9.10 ± 0.05	9.15 ± 0.03	9.16 ± 0.04	9.21 ± 0.06	$\begin{array}{r} 9.20 \pm \\ 0.05 \end{array}$	9.12 ± 0.04	9.02 ± 0.02	$\begin{array}{r} 8.85 \pm \\ 0.05 \end{array}$	8.68± 0.03
	pН	5.81 ± 0.02	5.75 ± 0.02	$\begin{array}{c} 5.70 \pm \\ 0.02 \end{array}$	5.61 ± 0.01	5.51 ± 0.02	5.21 ± 0.02	$\begin{array}{c} 4.91 \pm \\ 0.03 \end{array}$	4.50 ± 0.01	4.26 ± 0.01	$\begin{array}{c} 4.24 \pm \\ 0.02 \end{array}$	$\begin{array}{c} 4.25 \pm \\ 0.03 \end{array}$	$\begin{array}{c} 4.23 \pm \\ 0.03 \end{array}$	$\begin{array}{c} 4.19 \pm \\ 0.02 \end{array}$	4.10±0.02	$\begin{array}{c} 4.08 \pm \\ 0.01 \end{array}$	$\begin{array}{c} 4.06 \pm \\ 0.03 \end{array}$	4.02 ± 0.02
	log CFU/ml	$\begin{array}{r} 7.02 \pm \\ 0.03 \end{array}$	6.98 ± 0.04	7.01 ± 0.02	7.16 ± 0.04	7.71 ± 0.04	8.28 ± 0.05	8.68 ± 0.04	8.91 ± 0.03	9.05 ± 0.03	9.08 ± 0.05	9.09 ± 0.06	9.11 ± 0.04	9.13 ± 0.06	$\begin{array}{r} 8.83 \pm \\ 0.02 \end{array}$	8.64 ± 0.04	8.51 ± 0.04	$\begin{array}{r} 8.35 \pm \\ 0.03 \end{array}$
РJ	pН	$\begin{array}{c} 3.69 \pm \\ 0.02 \end{array}$	$\begin{array}{c} 3.67 \pm \\ 0.01 \end{array}$	3.66 ± 0.02	3.65 ± 0.01	$\begin{array}{c} 3.58 \pm \\ 0.02 \end{array}$	$\begin{array}{c} 3.56 \pm \\ 0.03 \end{array}$	$\begin{array}{c} 3.47 \pm \\ 0.04 \end{array}$	3.43 ± 0.02	$\begin{array}{c} 3.40 \pm \\ 0.02 \end{array}$	3.35 ± 0.02	$\begin{array}{c} 3.34 \pm \\ 0.03 \end{array}$	$\begin{array}{c} 3.30 \pm \\ 0.02 \end{array}$	$\begin{array}{c} 3.29 \pm \\ 0.03 \end{array}$	3.25 ± 0.02	$\begin{array}{c} 3.24 \pm \\ 0.01 \end{array}$	$\begin{array}{c} 3.24 \pm \\ 0.01 \end{array}$	3.22 ± 0.01
MRS	log CFU/ml	6.99 ± 0.03	7.10 ± 0.03	7.56 ± 0.02	8.35 ± 0.03	9.01 ± 0.04	9.40 ± 0.05	9.61 ± 0.04	9.70 ± 0.03	9.78 ± 0.05	9.84 ± 0.04	9.81 ± 0.04	9.84 ± 0.03	$\begin{array}{r} 9.83 \pm \\ 0.08 \end{array}$	9.71 ± 0.04	9.64 ± 0.05	9.15 ± 0.06	8.89 ± 0.05
	рН	5.71 ± 0.01	$\begin{array}{c} 5.60 \pm \\ 0.02 \end{array}$	$\begin{array}{c} 5.55 \pm \\ 0.02 \end{array}$	$\begin{array}{c} 4.98 \pm \\ 0.03 \end{array}$	$\begin{array}{c} 4.44 \pm \\ 0.02 \end{array}$	$\begin{array}{c} 4.32 \pm \\ 0.02 \end{array}$	$\begin{array}{c} 4.18 \pm \\ 0.03 \end{array}$	4.10 ± 0.02	$\begin{array}{c} 4.02 \pm \\ 0.02 \end{array}$	$\begin{array}{c} 4.00 \pm \\ 0.01 \end{array}$	$\begin{array}{c} 4.01 \pm \\ 0.03 \end{array}$	$\begin{array}{c} 3.99 \pm \\ 0.02 \end{array}$	$\begin{array}{c} 3.98 \pm \\ 0.01 \end{array}$	$\begin{array}{c} 3.98 \pm \\ 0.02 \end{array}$	$\begin{array}{c} 3.97 \pm \\ 0.03 \end{array}$	$\begin{array}{c} 3.96 \pm \\ 0.04 \end{array}$	3.96 ± 0.02

189 Each value was expressed as the mean of three independent experiments \pm standard deviations analyzed in duplicate.

195 **Table S3.** Concentrations (mM) of organic acids (lactic and malic acids) and carbohydrates (glucose, fructose, sucrose, galactose and lactose) during

196 the late exponential (LE) growth phase (16 or 18 h at 30°C) and the maintenance period (21 days at 4°C) in carrot (CJ) and pineapple (PJ) juices and

19/ MRS medium. Concentrations before termentation are also repor	m. Concentrations before fermentation are also repo	orted.
---	---	--------

	CJ			PJ			MRS		
	Unfermented	LE growth phase	Maintenance	Unfermented	LE growth phase	Maintenance	Unfermented	LE growth phase	Maintenance
Lactic acid (mM)	n.d.	41 ± 1^d	55 ± 2^{c}	n.d.	$38\pm\mathbf{2^d}$	57 ± 4^{c}	n.d.	128 ± 5^{b}	141 ± 8^{a}
Glucose (mM)	58 ± 2^{c}	50 ± 2^d	49 ± 2^{d}	206 ± 5^{a}	202 ± 4^a	198 ± 6^{a}	115 ± 4^{b}	53 ± 2^d	46 ± 3^{e}
Fructose (mM)	47 ± 1^{a}	42 ± 1^{b}	41 ± 2^{b}	212 ± 7^{a}	209 ± 3^a	207 ± 4^a	n.d.	n.d.	n.d.
Sucrose (mM)	56 ± 2^a	55 ± 2^{a}	55 ± 3^{a}	33 ± 2^{b}	29 ± 2^{bc}	26 ± 2^{c}	n.d.	n.d.	n.d.
Malic acid (mM)	29 ± 1^a	18 ± 1^{c}	13 ± 1^d	21 ± 1^{b}	14 ± 2^d	10 ± 1^{e}	n.d.	n.d.	n.d.
Citric acid (mM)	n.d.	n.d.	n.d.	20 ± 1^{a}	19 ± 1^a	19 ± 2^{a}	n.d.	n.d.	n.d.

198 Each value was expressed as the mean of three independent experiments \pm standard deviations analyzed in duplicate.

199 Means within the row with different superscript letters (a-e) are significantly different (P < 0.05).

200 n.d., not detected.

201

Table S4. Concentrations (mg l^{-1}) of total and individual free amino acids (FAA) during the late exponential (LE) growth phase (16 or 18 h at 30°C)

and the maintenance period (21 days at 4°C) in carrot (CJ) and pineapple (PJ) juices and MRS medium. Concentrations before fermentation are also

205 reported.

FAA		CJ			PJ			MRS broth	
(mg/L)	Unfermented	LE growth phase	Maintenance	Unfermented	LE growth phase	Maintenance	Unfermented	LE growth phase	Maintenance
Asp	228.12	151.12	241.23	83.01	54.02	221.38	155.31	58.71	88.45
Thr	28.72	16.13	23.12	11.13	9.41	26.41	141.43	123.22	202.33
Ser	212.72	161.13	211.90	88.20	88.23	203.36	209.22	38.32	61.71
Glu	50.59	22.03	17.21	57.30	27.12	71.55	446.18	399.47	559.23
Gly	7.61	1.12	1.81	17.21	15.61	34.62	270.56	463.51	620.34
Ala	172.13	123.61	173.25	55.72	31.74	92.38	368.12	367.63	570.74
Cys	8.90	6.96	8.23	12.30	12.21	34.53	100.72	102.31	163.66
Val	40.23	21.12	29.15	20.27	22.24	53.12	196.19	210.50	327.38
Met	6.13	2.46	2.49	18.21	11.12	28.41	139.72	122.24	178.41
Ile	23.63	7.31	13.02	13.71	12.22	27.66	198.61	136.31	219.69
Leu	16.12	5.13	6.73	11.36	16.74	39.02	390.80	323.12	527.15
Tyr	15.12	3.21	5.03	19.45	13.22	35.51	94.36	22.23	40.12
Phe	26.13	18.13	22.13	33.62	26.15	61.32	273.61	182.41	308.36
His	9.12	6.12	7.03	41.71	32.41	60.12	184.60	131.36	225.81
Trp	7.21	4.20	6.02	14.14	11.12	12.01	20.22	81.57	47.38
Orn	1.32	2.03	2.31	2.41	1.41	3.23	12.56	13.73	28.50
Lys	9.12	17.03	25.01	20.30	14.85	44.10	180.38	141.80	222.03
Arg	35.21	20.03	36.96	16.71	17.20	45.68	299.12	282.39	436.43
Pro	13.73	11.02	16.92	11.23	13.81	24.49	84.71	120.91	124.67
GABA	183.12	129.20	172.71	26.13	27.51	58.21	33.52	83.20	107.25
Total	1095 ± 37^{e}	$708\pm63^{\rm f}$	1022 ± 81^{e}	$574\pm37^{\text{g}}$	458 ± 37^{h}	1177 ± 43^d	3800 ± 61^{b}	3405 ± 72^{c}	5060 ± 86^{a}

Each value was expressed as the mean of three independent experiments \pm standard deviations analyzed in duplicate.

207 Means within the row with different superscript letters (a-h) are significantly different (*P*<0.05).

208 Table S5. Comparison of microarray and qRT-PCR data for differentially expressed genes in

209 Lactobacillus plantarum C2 during the late exponential (LE) growth phase (16 or 18 h at 30°C) in

	Carrot juice (CJ)
Gene	Microarray fold change	qRT-PCR fold change
lp_3491	7.67	7.62
hpk5	6.20	2.99
lp_2183	3.49	1.94
lp_1425	6.59	1.7
gadB	-11.28	0.76
purF	-3,29	0.77
pyrC	-7.00	0.63
pyrB	-8.62	0.34
aroC2	12.30	19.95
aroI	2.14	10.66
	Pineapple juice (P	2J)
Gene	Microarray fold change	qRT-PCR fold change
fabI	2.92	3.08
fabD	2.66	4.64
fabz1	3.23	4.99
hisX	2.11	1.48
hisD	2.04	2.2
atpG	2.07	1.71
atpA	2.12	3.47
pdhC	-7.43	0.13
accA2	2.74	1.75
accD2	2.41	5.64
aroC2	9.83	15.63
aroI	3.43	12.01
aroF	4.59	2.42
oppA	3.81	12.40
oppD	4.49	3.17
ileT	2.47	1.86
bcap	3.66	3.27
lp_1425	4.52	1.80
lp_3491	9.10	11.59
dltX	4.84	1.64
pyrB	-2.05	0.53

210 carrot (CJ) or pineapple (PJ) juices compared to MRS medium.

Target gene		Sequence $5' \rightarrow 3'$			
	Forward primer				
16S rRNA	Polward primer				
		ICCICITCIOCACICAAOI			
rec.A	Forward primer	ACGGCGGGCAGAACAGATCAA			
10011	Reverse primer	TCGGCACGCTTAAATGGCGGT			
12	Forward primer	CGGGTGCCTATCCGGGTGTT			
accA2	Reverse primer	TGCCACCTTCACCAACAATCAAACT			
	Forward primer	TATGGGTTTCGCTTGCCTGCTTG			
accD2	Reverse primer	ACTGACGGGCGCACTTAGGTC			
	Forward primer	CCAAGGCGAGCATGACAGCAAAG			
dltX	Reverse primer				
	Eorward primer				
fabI	Polward primer				
fabD	Forward primer				
	Reverse primer				
hisD	Forward primer	ICCIAAGAAGACCGACCCGGCA			
	Reverse primer	ACGGTGGCACCAGAACACTTGG			
hisX	Forward primer	GGCCGTAAGACCAAGGTGCGA			
100511	Reverse primer	TCGCGCCAATTGCAACGCC			
atnG	Forward primer	TCGCGGTTGACGACGAAGCA			
uipo	Reverse primer	GTCGGCCGTGTTGCCACAAT			
atn 1	Forward primer	CCGCCACCCAATTCATCGCTC			
шрА	Reverse primer	CGTCGTCCTCCAGGTCGTGAA			
11.0	Forward primer	TTGGGCCGTTGCACCATCAATC			
panC	Reverse primer	GGTGTTGGGCGTATCGGTAAGGAA			
	Forward primer	ACATGCAACACATTCGTGGTAAGGA			
arol	Reverse primer	GGTTCCGCAATCTGCATCCCA			
	Forward primer	CGCTCTACGCTTGCATTTTGGCT			
aroF	Reverse primer	AAGGCCGCCATGAAGCCGAT			
	Forward primer	AGACCGCTTCGACCGCTAACT			
aroC2	Reverse primer	TCGTGAGGTCAGAGTGATGATTGGG			
	Forward primer	TCGTCAATGGCAAGAAGCCCGT			
oppA	Reverse primer	GCCCATCAGCTTGTCAAAGTAAGCA			
	Forward primer	ACATGCAACACATTCGTGGTAAGGA			
oppD	Reverse primer	GGTTCCGCAATCTGCATCCCA			
	Forward primer				
Всар	Reverse primer	TCGCCGGTTCCGCGTATTCA			
	Eorward primar				
ileT	Polward primer				
	Econyard primar				
lp 1425	Polward primer	CONCERCING A A TOO A COCCECT			
	Fewerse primer				
lp 3491	Forward primer	GGLACICITCAAGGLAGCIGGAAI			
	Reverse primer				
fabzl	Forward primer	GGGIGAAICGAICGIGGIGACGAAA			
	Reverse primer				
<i>pvrB</i>	Forward primer	GICACGGCCATACCATICITIGGGG			
17	Reverse primer				
pvrC	Forward primer	IGCCATAAACGGGCCAACCGA			
1 2	Reverse primer				
purF	Forward primer	CGATCCGCCGACTGGTGGTA			
r	Reverse primer	TTGCGAGAACAGGGGGTTCGG			
hpk5	Forward primer	AGTGATGCTGAATTAGTTGGGCCGGG			
	Reverse primer	CGCCAAATTATCAGTGACCTGGGTG			
In 2183	Forward primer	GGGTGACGTGTAGAATTGGGCGA			
<i>P_2105</i>	Reverse primer	GTGAGACCATGGACCAGGCGG			
aadR	Forward primer	AGCCGCACTCGATAAGGTCGT			
SuuD	Reverse primer	AGCCAACCGGAAGTCCCAGA			