Disruption of *Slc52a3* gene causes neonatal lethality with riboflavin deficiency in mice

Hiroki Yoshimatsu¹, Atsushi Yonezawa^{1*}, Kaori Yamanishi¹, Yoshiaki Yao¹, Kumiko Sugano¹, Shunsaku Nakagawa¹, Satoshi Imai¹, Tomohiro Omura¹, Takayuki Nakagawa¹, Ikuko Yano¹, Satohiro Masuda^{1,†}, Ken-ichi Inui^{1,††}, Kazuo Matsubara¹

¹Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto 606-8507, Japan Present affiliation: [†]Department of Pharmacy, Kyushu University Hospital, Fukuoka, 812-8582, Japan, ^{††}Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan

Supplementary Table S1

Plasma and tissue concentrations of riboflavin, FMN, and FAD in *Slc52a3-/-* mice with (+) or without (-) riboflavin supplementation (RS).

In the riboflavin-supplemented group, the pregnant dams were given 50 mg/L of riboflavin in drinking water from gestational day 0. The P0 *Slc52a3-/-* pups were sacrificed 5-9 hr after birth, and plasma and tissue concentrations of riboflavin, FMN and FAD were measured by HPLC. All data are expressed as the mean \pm SD. Values where **P* < 0.05, ***P* < 0.01, significantly different from RS (-).

	Riboflavin		FMN		FAD	
	RS (-)	RS (+)	RS (-)	RS (+)	RS (-)	RS (+)
Plasma	5.38 ± 2.79	$80.59 \pm 68.41*$	81.10 ± 71.69	47.91 ± 38.81	84.52 ± 21.46	91.97 ± 15.94
Brain	0.29 ± 0.05	0.85 ± 0.86	0.09 ± 0.02	$0.13 \pm 0.04*$	0.84 ± 0.11	1.17 ± 0.18 **
Lung	0.77 ± 0.31	$1.59 \pm 0.62*$	0.11 ± 0.10	0.09 ± 0.02	1.61 ± 0.11	$2.16 \pm 0.35 **$
Heart	2.46 ± 1.30	$4.82 \pm 2.00*$	0.20 ± 0.13	$0.34 \pm 0.09*$	3.11 ± 0.83	8.70 ± 5.20*
Liver	2.48 ± 0.89	4.18 ± 2.04	0.27 ± 0.11	0.33 ± 0.15	4.56 ± 0.49	$7.24 \pm 2.60*$
Kidney	1.74 ± 0.42	3.67 ± 1.08**	0.26 ± 0.09	0.40 ± 0.07 **	1.74 ± 0.42	2.66 ± 0.61 **

(Unit: plasma, μ M; tissues, nmol/g tissue)

(d)

Supplementary Figure S1.

Target disruption of *Slc52a3.* (a) Diagrams of *Slc52a3-/-* construct. Exons are indicated by closed boxes. Primers used for long-range PCR are depicted as arrowheads. (b) Long-range PCR analysis of genomic DNA from mouse tail biopsy samples for confirmation of homologous recombination. (c) Genotyping by PCR analysis. (d) mRNA expression of *Slc52a3* in wild-type (WT), *Slc52a3+/-* and *Slc52a3-/-*. Total RNA isolated from the kidney obtained from newborn pups was reverse-transcribed and mRNA level of *Slc52a3* was determined by real-time PCR. Each column represents the mean \pm SD. Values where ****P* < 0.001 indicate significant difference from WT.

(a)

Supplementary Figure S2. Gross appearance of tissues of *Slc52a3-/-* **neonatal mice.** Tissues were obtained from WT and *Slc52a3-/-* newborn pups at postnatal day 0.

(a) Tissues were collected from WT and *Slc52a3-/-* littermates at P0 were fixed in 10% formalin and stained with hematoxylin-eosin by KAC Co., Ltd. (Kyoto, Japan). Femoral muscles were vertically and horizontally observed. (b) Western blotting analysis of femoral muscles was carried out using anti-apoptosis-inducing factor, mitochondrion-associated 1 (AIFM1) antibody. Femoral muscles were homogenized in RIPA lysis buffer, and equal amouts of protein lysate (30 µg per lane) were analyzed. Primary and secondary antibodies were anti-AIFM1 antibody (Proteintech Group Inc, 17984-1-AP) and horseradish peroxidase-conjugated anti-rabbit IgG (GE Healthcare Bio-Sciences), respectively. Representative photographs are shown.

Supplementary Figure S4. Influence of riboflavin supplementation on blood glucose level in *Slc52a3-/-* mice.

(a) Protocol for the animal experiments. Slc52a3+/- mice were mated, and pregnant dams were supplemented with 50 mg/L of riboflavin in drinking water *ad libitum* from gestational day 0 to 3 weeks postpartum. Newborn pups were also administered 0.75 mg/kg riboflavin subcutaneously once a day until weaning (3-week). From 3 to 5 weeks after birth, the mice received no riboflavin supplementation. (b) Blood glucose level in WT and *Slc52a3-/-* mice at 3 weeks old (riboflavin-treated condition) or 5 weeks old (riboflavin-untreated condition). Each column represents the mean \pm SD (3-week-old WT, n=5; 3-week-old *Slc52a3-/-*, n=4 5-week-old WT, n=5; 5-week-old *Slc52a3-/-*, n=5). Values where ***P* < 0.01 indicate significant difference from controls (WT).