#### **SUPPLEMENTARY INFORMATION**

# Title: Antithrombin controls tumor migration, invasion and angiogenesis by inhibition of enteropeptidase

Ginés Luengo-Gil\*<sup>1</sup>, María Inmaculada Calvo\*<sup>2</sup>, Ester Martín-Villar<sup>2</sup>, Sonia Águila<sup>1</sup>,

Nataliya Bohdan<sup>1</sup>, Ana I. Antón<sup>1</sup>, Salvador Espín<sup>1</sup>, Francisco Ayala<sup>1</sup>, Vicente Vicente<sup>1</sup>,

Javier Corral<sup>1</sup>, Miguel Quintanilla<sup>2</sup>, Irene Martínez-Martínez<sup>1</sup>

<sup>1</sup>Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Murcia.

<sup>2</sup>Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid.

#### Corresponding author's contact information:

Dr. Irene Martínez-Martínez Centro Regional de Hemodonación Ronda de Garay S/N, Murcia 30003, Spain Tel: +34968341990 Fax: +34968261914 E-mail: immlgi@um.es

\* These authors contributed equally to this article

#### **Detailed methods**

#### <u>Materials</u>

Pentasaccharide (Fondaparinux; Arixtra®) was from Sanofi-Synthelabo (Paris, France), and LMWH (Bemiparin) or UFH were from Rovi (Madrid, Spain).

Culture media were obtained from Gibco (Fisher Scientific, Madrid, Spain). NP-40, recombinant human D,L-sulforaphane, recombinant active enteropeptidase, glutaraldehyde and rhodamine were purchased from Sigma (Madrid, Spain). Matrigel<sup>TM</sup> Basement Membrane Matrix was obtained from BD Biosciences (Madrid, Spain). Antithrombin was purified from plasma as described elsewhere (1).

#### qRT-PCR

Transcript relative quantification of TMPRSS15 was performed by qRT-PCR using SYBR Premix Π Ex Taq (Takara) and the primers 5'CTAGGCCTGCATATGAAATC3' (forward) and 5'CTGTGTAATTCACTTTAAATTCC3' (reverse). Expression of beta-actin (ACTB) employed as endogenous reference control, using the primers 5' was TGACCCAGATCATGTTTGAGA3' (forward) and 5'TAGCACAGCCTGGATAGCAA3' (reverse). The PCRs were performed using a LightCycler 480 system (Roche). Expression analysis was performed in duplicate for each sample. The fold difference for each sample was obtained using the second derivative Ct method (2).

<u>Carcinoma cell xenografts in nude mice and immunodetection of antithrombin and</u> <u>enteropeptidase in tumors</u> Animals were kept in ventilated rooms under lighting (12-h light, 12-h dark cycle) and temperature controlled conditions, and allowed feed and water *ad libitum*. All experimental procedures were conducted in compliance with 2010/63/UE European guidelines.

HT-29, U-87 MG and A549 were injected ( $5x10^{6}$  cells) subcutaneously into the flanks of 6-week old female nude mice. Mice were euthanized and tumors were surgically removed when their diameters reached over 1 cm. Only HT-29 and A549 cells were tumorigenic.

For immunoblotting, excised tumors were homogenized at 4°C in NT lysis buffer (50 mM Tris-HCl, pH 7.4, 100 mM NaCl, 5 mM MgCl<sub>2</sub>, 5 mM CaCl<sub>2</sub>, 1% NP-40, 1% Triton X-100, 2 mM phenylmethylsulfonyl fluoride, 20  $\mu$ g/ml aprotinin, and 1 mM sodium orthovanadate). For immunofluorescence analysis, sections from paraffinembedded tumors were fixed and subjected to heat-induced antigen retrieval before exposure to primary antibodies. Polyclonal antibodies recognizing antithrombin (Sigma-Aldrich Cat# A9522 RRID:AB\_258455) and anti-enterokinase LC (L-13) (Santa Cruz Biotechnology Cat# sc-51283 RRID:AB\_2253102) were used. Secondary anti-rabbit and anti-goat Alexa Fluor 594 and Alexa Fluor 488 antibodies were from Invitrogen (Life Technologies Cat# A21207 RRID: AB\_10049744 and Life Technologies Cat# A11055 RRID:AB\_10564074, respectively). The covers were then washed three times with PBS and twice with distilled H<sub>2</sub>O before being mounted in Vectashield mounting medium (Vector Laboratories, UK). Confocal laser-scanning microscopy was performed in a Leica TCS-SP2 microscope (Leica Microsystems, Heidelberg, Germany). Images were acquired using a 63× (NA 1.32) oil-immersion objective and assembled using Leica Confocal Software 2.0. Secondary antibodies were also incubated in the absence of primary antibodies to detect unspecific immunostaining.

#### **References**

- Mushunje, A., Evans, G., Brennan, S.O., Carrell, R.W. & Zhou, A. Latent antithrombin and its detection, formation and turnover in the circulation. *J. Thromb. Haemost.* 2, 2170-2177 (2004).
- 2. Schmittgen, T. D., & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. *Nature Protocols*, *3*, 1101-1108 (2008).

#### **Supplementary figure legends**

**Supplementary Fig. S1.** *TMPRSS15* gene and protein expression in A549, U-87 MG and HT-29 cells. A) Amplification curves for *TMPRSS15* gene by RT-qPCR. The target-specific fluorescence signal of SYBR Green fluorescence emission (detection range 515–545 nm) is plotted against the number of PCR cycles. RT-PCR experiments were carried out in duplicate. The threshold level is given by green horizontal lines. B) Electrophoretic mobility of enteropeptidase. SDS-PAGE was run under reducing conditions and enteropeptidase was detected by western blot and immunostaining.

Supplementary Fig. S2. Electrophoretic mobility of antithrombin in the supernatant of cells after incubation for 1 hour. SDS-PAGE was run under non-reducing conditions and antithrombin was detected by western blot and immunostaining. Supernatant of MDA-MB-231 cells was also loaded as a control of

cells with low expression of enteropeptidase. AT-T: antithrombin cleaved by thrombin. ATc: control purified antithrombin.

**Supplementary Fig. S3. Electrophoretic mobility of cleaved antithrombin by enteropeptidase.** SDS-PAGE was run under non-reducing conditions and proteins were detected by silver staining. AT: antithrombin; EP: enteropeptidase; LMWH: low molecular weight heparin.

**Supplementary Fig. S4. Enteropeptidase protein expression in EA.hy 926.** SDS-PAGE was run under reducing conditions and proteins were detected by immunodetection. U-87 MG, HT-29 and A549 cells were also run as positive controls of enteropeptidase expression. Beta-actin expression was used as a loading control.

**Supplementary Fig. S5. Cell proliferation assay of U-87 MG, A549 and HT-29 cells.** Cells were grow in PBS or in presence of low molecular weight heparin (LMWH), antithrombin (AT) or low molecular weight heparin and AT in combination (AT+LMWH) and proliferation was determined using a XTT kit (ATCC, Manassas, VA, USA) at 24 hours. Each histogram represents the mean ± SD of three experiments.

Supplementary Fig. S6. Effect of antithrombin and heparin on cell migration of HT-29 and A549 cells. Wound healing was evaluated after incubation of cells for 24 hours. A) Microscope images of HT-29 cells 0 and 24 hours after the wound with the pipette tip. B) Microscope images of A549 cells 24 hours after the wound. The conditions assayed were: no treatment, incubation with low molecular weight heparin (LMWH), antithrombin (AT) or antithrombin and LMWH in combination (AT-

LMWH). C) Representation of percentage of wound confluence under the different conditions. Each condition was evaluated in triplicates and five different images were processed for each different assay; \*: p<0.05; \*\*: p<0.01. Images were recorded by a Leica microscope at 5×, and Image-J was used to analyze migration. Mann-Whitney U test was used to determine the significance.

Supplementary Fig. S7. Effect of antithrombin and heparin on invasion of A-549 cells by a transwell assay. Cell invasion was evaluated after incubation of cells for 9 hours under the following conditions: no treatment, incubation with low molecular weight heparin (LMWH), antithrombin (AT) or incubation with antithrombin and LMWH in combination (AT-LMWH). A) Microscope images of cells invaded after 9 hours of incubation. B) Percentage of cell invasion under the different conditions. Each condition was evaluated in triplicate, and three different images were processed for each different assay; \*: p<0.05; \*\*: p<0.01. Images were recorded with a Leica microscope at 5×, and Image J was used to analyze the invaded area. Statistical analysis was carried out with a Mann-Whitney U test.

Supplementary Fig. S8. Antithrombin and enteropeptidase immunodetection in human xenograft tumors surgically removed from nude mice. HT-29 and A549 tumor cells were subcutaneously injected in the two flanks (T1 and T2) of nude mice and removed when they reached around 1 cm diameter. Immunostaining by westernblot was performed with the same primary antibodies used for the immunohistofluorescence assay. T1 and T2 represent different xenograft tumors Alphatubulin was detected as loading control.

**Supplementary Fig. S9. Effect of low molecular weight heparin on the metastatic potential** *in vivo*. Bioluminescence images of mice showing metastatic colonies at week 3 and 4 after injection into the tail vein of HT-29 cells. Mice were previously treated with 100 U Low molecular weight heparin (LMWH) or vehicle (PBS). Only those mice with detectable metastasis are shown.

**Supplementary Fig. S10.** *TMPRSS15* gene silencing efficiency in U-87 MG cells. A) Quantitative real time PCR data showing a >80% suppression of *TMPRSS15* gene expression. Cells were transfected with 5 nM ON-TARGETplus SMARTpool siRNAs against *TMPRSS15*, and control siRNA. Relative expression of mRNA was calculated using the comparative CT method 48 hours after transfection. Experiments were performed in triplicates. B) Enteropeptidase expression in silenced cells. SDS-PAGE was run under reducing conditions. Beta-actin expression was used as a loading control.

## **Supplementary Tables**

Supplementary Table S1. Tumorigenicity of human U-87 MG, A549 and HT-29

cell xenografts in *nu/nu* mice.

|                                                    | U-87 MG | HT-29 | A549  |
|----------------------------------------------------|---------|-------|-------|
| Days to observe tumors 0.5 cm <sup>2</sup> of size | N.A     | 4-6   | 22-25 |
| Number of tumors per injection sites (%)           | 0       | 100   | 100   |
| Number of mice                                     | 7       | 7     | 7     |

N.A. (not applicated)

Supplementary Table S2. Statistical analysis of vessel formation by the co-culture

of EA. hy926 and U-87 MG cells under different conditions.

| Comparisons <sup>*</sup>          | p                  |
|-----------------------------------|--------------------|
| All conditions                    | $0.00009^{+}$      |
| DL-Sulforaphane                   | $0.008^{\ddagger}$ |
| DL-Sulforaphane Vs AT             | $0.008^{\ddagger}$ |
| DL-Sulforaphane Vs LMWH           | 0.011 <sup>‡</sup> |
| DL-Sulforaphane Vs AT-EP-LMWH     | $NS^{\dagger}$     |
| No treatment Vs AT                | 0.085 <sup>‡</sup> |
| No treatment Vs LMWH              | $0.203^{\ddagger}$ |
| No treatment Vs AT- EP-LMWH       | $0.001^{\ddagger}$ |
| AT Vs LMWH                        | 0.908 <sup>‡</sup> |
| AT Vs AT-EP-LMWH                  | 0.001 <sup>‡</sup> |
| LMWH Vs AT-EP-LMWH                | 0.001 <sup>‡</sup> |
| * O realizates for each condition |                    |

\* 8 replicates for each condition

+ Kruskal-Wallis test

‡ Mann-Whitney U test

NS: Non-Significant









# AT AT-EP-LMWH -+ Cleaved





#### Enteropeptidase







B)



A)







AT





EP

#### $\alpha$ -tubulin

### Week 3



PBS

Heparin

Week 4



PBS

Heparin

