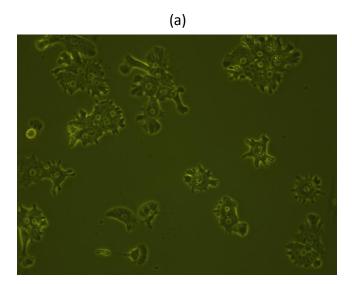
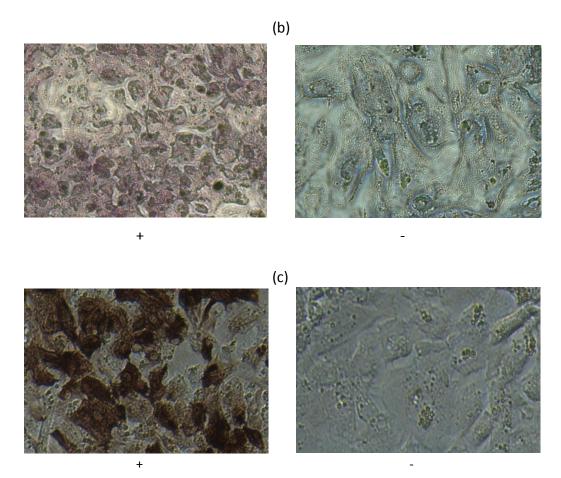

Analysis of miRNAs and their target genes associated with lipid metabolism in duck liver

Jun He^{1,2}, Weiqun Wang³, Lizhi Lu², Yong Tian², Dong Niu⁴, Jindong Ren^{2,5}, Liyan Dong^{1,2}, Siwei Sun¹, Yan Zhao¹, Guoqin Li², Jianliang Shen⁵, Xiuhong Li^{1*}


²Institute of Animal Science, Wenzhou Vocational College of Science & Technology, Wenzhou 325006, P. R. China. ²Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy Agricultural Sciences, Hangzhou 310021, P. R. China. ³Department of Human Nutrition, Kansas State University, Manhattan, Kansas, 66506, USA. ⁴College of Animal Science, Zhejiang University, Hangzhou 310021, P. R. China. ⁵Zhejiang Zhuowang Agriculture Sci-Tech Limited Co., Huzhou 313014, P. R. China. ^{*}Correspondence and requests for materials should be addressed to X. L. (email: lixiuhong_wky@163.com)



Supplementary Figure S1. Scatter plot (b) of the miRNA expression comparisons between control group (CG) and experimental group (EG). Differences were considered significant at adj. $P \le 0.01$.

Supplementary Figure S2. miRNA expression density distributions in CG and EG livers

Supplementary Figure S3. Isolation (a) and identification (b and c) of duck hepatocytes. Hepatocytes were isolated for Cherry-Valley duck (age of 1 week) following the method of Seglen (1976). Periodic acid-Schiff stain (b) and immunohistochemistry (c) with Anti-Cytokeratin 18 antibody (Abcam, UK) were performed to identify the isolated duck hepatocytes following the producers' protocols.