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Supplementary Figure 1. Effect of MDM2 deficiency on expression of p53, PC and p21 in pancreatic
islets and hypothalamus. (a) Quantification of mRNA level of p21 in pancreatic islets isolated from 12-
week-old male β-MDM2KO mice and its WT controls. Expression levels were normalized with β-actin and
GAPDH (n=5-6). (b) Immunoblotting analysis of protein expression of MDM2, p53, PC and β-actin in
hypothalamus of 6-week-old male β-MDM2KO mice and its WT controls. The right panel is densitometric
analysis for the relative abundance of MDM2, PC and p53 normalized with β-actin (n=3). *p<0.05 (Student’s
t-test). All data are represented as the mean±s.e.m.
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Supplementary Figure 2. Female β-MDM2KO mice exhibit glucose intolerance and defective GSIS. (a)
GTT and (b) insulin secretion during the GTT (b) in 8-week-old female β-MDM2KO mice and its WT
controls (n=4). *p<0.05 (Student’s t-test). All data are represented as the mean±s.e.m. Note that RIP-Cre
controls and non-RIP-Cre WT littermates exhibited similar glucose tolerance and GSIS.
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Supplementary Figure 3. Static GSIS in isolated islets of β-MDM2KO mice, DKO mice and WT
controls. The isolated islets of 12-week-old male β-MDM2KO mice, DKO mice and WT controls were
subjected to static GSIS as Figure 1g, followed by measurement of insulin concentration in the
conditional medium and in the islets at 30 minute (n=5). *p<0.05 (Student’s t-test). All data are
represented as the mean±s.e.m.
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Supplementary Figure 4. Effect of AAV-mediated inactivation of p53 on β-cell mass. 8-week-old male
β-MDM2KO mice and its WT controls infected with indicated AAV at a dosage of 1X1012 genomic copy
for 3 week were used. Pancreatic sections from the above mice were subjected to H&E staining
(magnification at ×400). The bar chart in the lower panel is the quantitative measurement of β-cell mass
from the upper panel (n=6). Representative images were shown. Scale bar, 50 μm. All data are represented
as the mean±s.e.m.
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Supplementary Figure 5. Effect of MDM2 deficiency on insulin content, mitochondrial and β-cell
morphology, insulin granules and gene expression profiles in β-cells. 12-week-old male β-MDM2KO
mice and its WT controls were used. (a) H&E staining of pancreas with original magnification at ×400
(scale bar, 50 μm). (b) β-cell mass measurement from panel a. (n=8). (c) Pancreatic insulin content was
measured by insulin ELISA. (n=6). (d) Immunofluorescence staining of insulin (red) and glucagon (green)
of pancreas with original magnification at ×400 (scale bar, 50 μm). (e) The bar chart is the quantification of
α-cell to β-cell ratio from panel d. (f) The isolated islets were subjected to electron microscopy analysis
(scale bar, 1 μm). Docked insulin granules were denoted with arrows. Quantification of the number of
docked insulin granules (g) and total insulin granules (h). (n=4). (i) Quantification for mRNA levels of
pancreatic and duodenal homeobox 1 (PDX1), insulin II (INS2), glucose transporter 2 (GLUT2), glucose
kinase (GCK) and pyruvate dehydrogenase (PDH) in the isolated islets by real-time quantitative PCR
analysis. All the target genes were normalized with GAPDH and β-actin and expressed as fold change
relative to WT controls. (n=4). (j) Mitochondrial morphology in isolated islets examined by electron
microscopy analysis (scale bar, 1 μm). (k-l) Quantification of the number (k) and percentage of area (l) of
mitochondria. Mitochondria are denoted with arrows. (n=4). Representative images were shown. All data
are represented as the mean±s.e.m.
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Supplementary Figure 6. Effect of nutlin-3a on mitochondrial metabolism in MIN6 β cells. MIN6 cells
were pre-treated with nutlin-3a (10 μg/ml) or DMSO as vehicle for 6 hours. (a) Intracellular ATP levels upon
glucose stimulation (20 mM) for 10 minutes. (b) Calcium influx in response to glucose (20 mM) and KCl (20
mM) stimulation. (c-d) ECAR (c) and OCR (d) in response to glucose (20 mM) and oligomycin (5 μM)
stimulation. Intracellular level of NADH (e) or NADPH (f) in response to glucose (20 mM) stimulation for
30 minutes. *p<0.05 (n=4) (Student’s t-test). All data are represented as the mean±s.e.m.



Supplementary Figure 7. Changes in ATP to ADP ratio in response to high glucose stimulation in islets
of β-MDM2KO mice, DKO mice and their WT controls. Islets isolated from 10-week-old male β-
MDM2KO mice, DKO mice and WT controls were used. Intracellular ATP/ADP ratio measured at 10 minute
after stimulation with glucose (20 mM) using ADP/ATP Ratio Bioluminescence Assay Kit (Biovision,
Catalog number K255-200). n=4. *p<0.05 (Student’s t-test). All data are represented as the mean±s.e.m.
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a b

Supplementary Figure 8. Effect of p53 overexpression on apoptosis and proliferation in MIN6 cells.
MIN6 cells were infected with adenovirus encoding luciferase (Adv-Luci) or p53 (Adv-p53) for 24 hours. (a)
The infected cells were subjected to immunoblotting using an antibody against p53 or β-actin as indicated.
(b) Activity of caspase 3 in the infected cells, normalized with total protein and expressed as fold change
over the luciferase control. (c) Absorbance of MTT proliferation assay in the infected cells, and expressed in
fold change over the luciferase control. (n=4). All data are represented as the mean±s.e.m.
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Supplementary Figure 9. Effect of MDM2 inactivation on the mitochondrial substrates-induced insulin
secretion and calcium influx. (a) The schematic diagram illustrating how the mitochondrial substrates
methyl succinate (MS) and α-ketoisocaproic acid (KIC) induce insulin secretion by generating OAA and
acetyl-CoA in the TCA cycle, respectively. (b-c) Pancreatic islets were isolated from 10-week-old male β-
MDM2KO mice and its WT littermates. (b) Calcium influx in response to KIC (10 mM, panel b) or MS (10
mM, panel c), and KCl (20 mM, panel b & c) in the isolated islets. (d) MIN6 β cells were pre-treated with
nutlin-3a (10 μg/ml) or DMSO as vehicle control for 6 hours, followed by stimulation with KIC (10 mM) or
MS (10 mM) for 30 minutes. Insulin levels in conditional medium were measured. *P<0.05 (n=4) (Student’s
t-test). All data are represented as the mean±s.e.m. Note that there was no difference in total insulin content
among different treatments.
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Supplementary Figure 10. The MDM2-p53 axis controls PC expression in β-cells. (a-b) Pancreatic islets
isolated from 12-week-old male β-MDM2KO mice and its WT littermates were used. (a) Quantification of
mRNA levels of malic enzyme 1 and 2 (ME1 and ME2), pyruvate carboxylase (PC) by QPCR analysis. (b)
Representative immunoblotting images for PC and β-actin from three independent experiment are shown.
The bottom panel is the densitometric analysis for the relative abundance of PC normalized with β-actin. (c)
QPCR analysis for mRNA levels of PC normalized with GAPDH and β-actin in MIN6 β cells treated with
nutlin-3a (10 μg/ml) or DMSO as vehicle control for 24 hours. (d) Isolated islets from β-MDM2KO mice
and WT littermates were treated with PFTα or DMSO as vehicle were subjected to immunoblotting using an
antibody against PC or β-actin as indicated. Representative immunoblotting images for PC and β-actin from
three independent experiment are shown. The right panel is densitometric analysis for the relative abundance
of PC normalized with β-actin. *P<0.05 (n=4) (Student’s t-test). All data are represented as the mean±s.e.m.
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Supplementary Figure 11. Effect of β-cell deletion of p53 on β-cell mass in mice on normal chow. (a)
H&E staining in the pancreatic sections of 14-week-old p53 KO mice and its WT controls on normal chow
diet. Magnification at ×400 (scale bar, 50 μm). (b) Measurement of β-cell mass in panel a (n=6).
Representative images were shown. The data are represented as the mean±s.e.m
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Supplementary Figure 12. Effect of overexpression of p53 on PC reporter luciferase activity in
HEK293 cells. HEK293 cells were co-transfected with the wild-type PC firefly luciferase reporter and pRL-
TK renilla luciferase reporter for 6 hours, followed by infection with adenovirus encoding GFP or p53 for 24
hours. (a) Immunoblotting analysis of p53 or β-actin in the cells. (n=6). (b) Relative dual luciferase activity
in total cell lysate was measured, and expressed as fold change over GFP control. (n=5). All data are
represented as the mean±s.e.m.
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Supplementary Figure 13. Uncropped scans of the immunoblots (Figure 1-10)
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Supplementary Figure 14. Uncropped scans of the immunoblots (Supplementary Figure 1, 8, 10 and
12 )
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6-week-old 20-week-old
WT RIP-Cre KO WT RIP-Cre KO

Food intake
(gram/day/mouse) 3.52±0.21 3.54±0.20 3.60±0.23 3.63±0.25 3.65±0.30 3.70±0.28

Body weight
(gram) 20.10±0.10 20.09±0.12 19.29±0.27 25.21±0.29 24.96±0.21 24.97±0.33

Blood glucose 
(mmol) 5.0±0.8 5.2±0.9 5.6±1.0 5.7±0.9 5.6±1.0 6.3±1.2

Insulin
(ng/ml) 0.41±0.12 0.39±0.14 0.35±0.14 0.52±0.14 0.48±0.15 0.44±0.21

Supplementary Table 1. Metabolic characteristics of β-MDM2KO mice and its WT littermates and
RIP-Cre controls. 6-week-old and 20-week-old male mice were fasted for 6 hours before measurement of
glucose and insulin levels. (n=5 for each group).



Gene Forward (5’-3’) Reverse (5’-3’) Application

PC GGGATGCCCACCAGTCACT CATAGGGCGCAATCTTTTTGA QPCR

ME1 AGTATCCATGACAAAGGGCAC ATCCCATTACAGCCAAGGTC QPCR

ME2 AGGAGAAGCTGCACTTGGAA GCACCTGCCACTCCAATTAT QPCR

PDX1 GGTATAGCCGGAGAGATGC CTGGTCCGTATTGGAACG QPCR

INS2 TGGAGGCTCTCTACCTGGTG TCTACAATGCCACGCTTCTG QPCR

GLUT2 CTTGGTTCATGGTTGCTGAAT GCAATGTACTGGAAGCAGAGG QPCR

PDH GGGACGTCTGTTGAGAGAGC TGTGTCCATGGTAGCGGTAA QPCR

GCK ATCTTCTGTTCCACGGAGAGG GATGTTAAGGATCTGCCTTCG QPCR

MDM2 GGGAGTGATCTGAAGGATCC CTCATCTGTGTTCTCTTCTGTC QPCR

p53 ACTGCATGGACGATCTGTTG GTGACAGGGTCCTGTGCTG QPCR

p21 GCAGATCCACAGCGATATCC CAACTGCTCACTGTCCACGG QPCR

β-actin CGCCACCAGTTCGCCATGGA TACAGCCCGGGGAGCATCGT QPCR

GAPDH CTCATGACCACAGTCCATGC CACATTGGGGGTAGGAACAC QPCR

Human PC 
ATTGGTACCATGGATTACAAGGATGAC 
GACGATAAGCTGAAGTTCCGAACAGTC 

CAT
AATAAGCTTTCACCACAGTCTCCATCTTCAT

GG
Cloning

Mouse p53
(AAV)

ATTGTCGACATGGATTACAAGGATGAC
GACGATAAGACTGCCATGGAGGAGTCA

CAG
AATAAGCTTTCAGTCTGAGTCAGGCCCCAC Cloning

Mouse p53
(Adv)

ATTTCATGAATGGATTACAAG 
GATGACGACGATAAGACTGCCATGGAG

GAGTCACAG
AATAGATCTTCAGTCTGAGTCAGGCCCCAC Cloning

DN-p53 GACGGAGGTCGTGAGACACTGCCCCCA 
CCATGAGC

GCTCATGGTGGGGGCAGTGTCTCACGACC
TCCGTC Mutagenesis

Mouse PC promoter 
p53 RE

ATTCTCGAGGTAATTGTTCCAGAGCAG
GTA AATAAGCTTAGATAAGGAGTCTTCCTTGGA Cloning

Mouse PC promoter 
p53 RE Mut-1

GGTTTTTACATGTGATGAAAGACGGCTC
TGTGCTAGAGGACTAGTC

GACTAGTCCTCTAGCACAGAGCCGTCTTTC
ATCACATGTAAAAACC Mutagenesis

Mouse PC promoter 
p53 RE Mut-2

CATGCTCTGTGCTAGAGGACTAAAATG 
TCTGTCTGTCTGTCTGTCTC

GAGACAGACAGACAGACAGACATTTTAGTC
CTCTAGCACAGAGCATG

Mutagenesis

Mouse PC promoter 
p53 RE-ChIP GGCTGGTACAAGGTAATTG CACATACACACAAAAAGAG ChIP

Mouse MDM2 promoter
p53 RE-ChIP GGTGCCTGGTCCCGGACTCG CCGGG CCGAGAGGGTCCCCCAGGGGTGTCC ChIP

Supplementary Table 2. Primer sequences used for this study. Abbreviations: pancreatic and duodenal
homeobox 1 (PDX1) and insulin 2 (INS2), glucose transporter 2 (GLUT2), glucose kinase (GCK) and
pyruvate dehydrogenase kinase 1 (PDH) , malic enzyme 1 &2 (ME1&2), pyruvate carboxylase (PC), adeno-
associated virus (AAV), adenovirus (Adv), response element (RE), dominant negative of p53 (DN-p53).


