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Supplementary Appendix 
 

This appendix has been provided by the authors to give readers additional information about their 

work. 

Supplement to: Is cardiovascular screening the best option for reducing future cardiovascular disease 

burden? A microsimulation study to quantify the policy options. 
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CHAPTER 1. HIGH LEVEL DESCRIPTION OF IMPACTNCD 

IMPACTNCD is a discrete time dynamic stochastic microsimulation model.1,2 Within IMPACTNCD each 

unit is a synthetic individual and is represented by a record containing a unique identifier and a set of 

associated attributes.  

For this study we considered age, sex, quintile groups of index of multiple deprivation (QIMD)*, body 

mass index (BMI), systolic blood pressure (SBP), total plasma cholesterol (TC), diabetes mellitus† (DM, 

binary variable), smoking status (current/ex/never smoker), environmental tobacco exposure (ETS, 

binary variable), fruit and vegetable (F&V) consumption and physical activity‡ (PA) as the set of 

associated attributes. A set of stochastic rules are then applied to these individuals, such as the 

probability of developing coronary heart disease (CHD) or dying, as the simulation advances in discrete 

annual steps. The output is an estimate of the burden of CHD and stroke in the synthetic population 

including both total aggregate change and, more importantly, the distributional nature of the change. 

This allows, among others, for an investigation of the impact of different scenarios on social equity. 

IMPACTNCD is a complex model that simulates the life course of synthetic individuals and consists of 

two modules: The ‘population’ module and the ‘disease’ module. Figure S1 highlights the steps of the 

algorithm that generate the life course of each synthetic individual. We will fully describe IMPACTNCD 

by describing the processes in each of these steps in the following chapters. The description is from 

an epidemiological rather than technical perspective. The source code and all parameter input files 

are available in https://github.com/ChristK/IMPACTncd/tree/CVD-policy-options under the GNU 

GPLv3 licence. Tables S1 and S2 summarise the sources of the input parameters and the main 

assumptions and limitations, respectively. 

Technical requirements 

IMPACTNCD is being developed in R v3.2.04 and is currently deployed in an 80 logical core server with 

2TB of RAM running Scientific Linux v6.2. IMPACTNCD is built around the R package ‘data.table’5, which 

imports a new heavily optimised data structure in R. Most functions that operate in a data table have 

been coded in C to improve performance. Each iteration for each scenario is running independently in 

one of the CPU cores and the R package ‘foreach’6 is responsible for the distribution of the jobs and 

collection of the results. To ensure statistical independence of the pseudo-random number generators 

                                                           
* QIMD is a measure of relative area deprivation based on the 2010 version of the Index of Multiple Deprivation.3 
† We defined as diabetics those with self-reported medically diagnosed diabetes (excluding pregnancy-only 
diabetes) or glycated haemoglobin (HbA1c) ≥ 6.5. 
‡ Measured as days per week with 30 or more minutes of moderate or vigorous activity. 
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running in parallel, the R package ‘doRNG’7 was used to produce independent random steams of 

numbers, generated by L'Ecuyer's combined multiple-recursive generator.8 

Figure S1 Simplified IMPACTNCD algorithm for individuals. For each step, the algorithm uses information from all appropriate 
previous steps. CHD denotes coronary heart disease. 
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Population module 

The ‘population’ module consists of steps 1 to 4 in Figure S1. Synthetic individuals enter into the 

simulation in the initial year (2011 for this study). The number of synthetic individuals that enter into 

the simulation is user defined and for this study was set to 400,000. The algorithm ensures that the 

age, sex and QIMD distribution of the sample is similar to this of the English population in mid-2011. 

This concludes step 1, which only happens at the beginning of each simulation. Steps 2-7 are calculated 

annually (in simulation time) for each synthetic individual until the simulation horizon is reached, or 

death occurs. 

Estimating exposure to risk factors (steps 2-3) 

In steps 2 and 3, IMPACTNCD estimates the exposure of the synthetic individual to the modelled risk 

factors. It is essential the risk profile of each synthetic individual to be similar to the risk profiles that 

can be observed in the real English population. For this, we first built a ‘close to reality’ synthetic 

population of England from which we sampled the synthetic individuals. Then, we used generalised 

linear models (GLM) for each modelled risk factor, to simulate individualised risk factor trajectories 

for all synthetic individuals. 

Generating the ‘close to reality’ synthetic population for IMPACTNCD 

The ‘close to reality’ synthetic population ensures that the sample of synthetic individuals for the 

simulation is drawn from a synthetic population similar to the real one in terms of age, sex, 

socioeconomic circumstance, and risk factors conditional distributions. In our implementation we 

used the same statistical framework originally developed by Alfons et al.9 and adapted it to make it 

compatible with epidemiological principles and frameworks.  

In general, this method uses a nationally representative survey of the real population to generate a 

‘close to reality’ synthetic population. Therefore, the method expands the, often small, sample of the 

survey into a significantly larger synthetic population, while preserves the statistical properties and 

important correlations of the original survey.  

The main advantages over other approaches is: 1) it takes into account the hierarchical structure of 

the sample design of the original survey, and 2) it can generate trait combinations which were not 

present in the original survey but are likely to exist in the real population. The second is particularly 

important, because it avoids bias from excessive repetition of specific combination of traits present in 

the original survey that results from multilevel stratification of a relatively small sample. For example, 

the original survey may have only two 35-year-old male participants, one with a BMI of 35 and the 

other with a BMI of 40 and no 35-year-old male participants with BMI between 35 and 40. Unlike other 

methodologies, the approach proposed by Alfons et al. can produce 35-year-old male synthetic 
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individuals with a BMI between 35 and 40. This is possible because the synthetic population is 

produced by drawing from conditional distributions that were estimated from multinomial models 

fitted in the original survey data. The detailed statistical methodology and justification can be found 

elsewhere.9 

Our approach consists of four stages from which the first is common with the original method 

described by Alfons et al.9 The following stages have been adapted in order to be compatible with the 

widely accepted ‘wider determinants of health’ framework.10 The main notion of this framework is 

that upstream factors such as the socioeconomic conditions, influence individual behavioural risk 

factors (e.g. diet, smoking), which in turn, influence individual downstream risk factors such as systolic 

blood pressure and total cholesterol. The four stages are: 

1. Setup of the household structure. 

2. Generate the socioeconomic variables. 

3. Generate the behavioural variables. 

4. Generate the biological variables. 

In each stage, information from all previous stages is used. All the variables of the synthetic population 

for this study were informed by the Health Survey for England 2011 (HSE11).11,12 The R language for 

statistical computing v3.2.0 and the R package ‘simPopulation’ v0.4.1 were used to implement the 

method.4,13 

STAGE 1: HOUSEHOLD STRUCTURE 

The household size, and the age and sex of the individuals in each household that have been recorded 

in HSE11 were used to inform the synthetic population, stratified by Strategic Health Authority (SHA)*.  

STAGE 2: SOCIOECONOMIC VARIABLES 

Once the basic age, sex, household and spatial information of the synthetic population was generated, 

other socioeconomic information was built up. QIMD for each synthetic individual was generated 

dependent on the household size and the age and sex of the individuals, stratified by SHA. Then, the 

equivalised income quintile groups14 (EQV5) for each household was generated, dependent on five-

year age groups and sex, stratified by QIMD. Finally, the employment status of the head of the 

household (HPNSSEC8) was generated using the National Statistics Socio-Economic Classification15, 

dependent on 5-year age groups, sex and EQV5, stratified by QIMD.  

STAGE 3: BEHAVIOURAL VARIABLES 

                                                           
* SHAs were 10 large geographic areas, part of the structure of the National Health Service in England before 
2013. SHA is the only variable with spatial information in HSE11 and it was used as a proxy, to include some 
spatial information to the synthetic population. 
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In this stage, behavioural variables such as F&V portions per day, days achieving more than 30 min of 

moderate or vigorous PA per week,* smoking status, and exposure to ETS were generated, dependent 

on 5-year age groups, sex, HPNSSEC8 and EQV5, stratified by QIMD. Moreover, statins and 

antihypertensive medication use (two separate binary variables) were generated, dependent on 5-

year age groups, sex and HPNSSEC8, stratified by QIMD. Other smoking related variables like cigarettes 

smoked per day for smokers, years since cessation for ex-smokers and pack-years for ever-smokers 

were also generated in this step.  

STAGE 4: BIOLOGICAL VARIABLES 

The last stage is the generation of the biological variables. Widely accepted causal pathways that have 

been observed in cohort studies, were used to identify associations between biological and 

behavioural variables. F&V consumption was used as a proxy to healthy diet. Citations refer to specific 

evidence regarding the associations. BMI is associated with SBP16–19, TC20 and DM21. Thus, BMI was the 

first to be generated in the synthetic population dependent on 5-year age groups, sex, EQV5, F&V 

consumption22 and PA22–24, stratified by QIMD. Then, DM was generated dependent on 5-year age 

groups, sex, HPNSSEC8 and QIMD, stratified by BMI deciles. The TC was generated dependent on 5-

year age groups, sex, deciles of BMI, use of a statin and F&V consumption, stratified by QIMD. 

Similarly, for the SBP the 5-year age groups, sex, deciles of BMI, smoking status25,26 and deciles of salt 

consumption were used as predictors, stratified by QIMD. Socioeconomic variables were used as 

predictors for both behavioural and biological variables to allow for possible interaction between 

socioeconomic and behavioural variables. 

In the end, a synthetic population of 55 million synthetic individuals with similar characteristics to the 

non-institutionalised population of England in 2011. The synthetic population was validated against 

the original HSE11 sample (see p35, Synthetic population validation).  

IMPACTNCD implementation of individualised risk factor trajectories 

IMPACTNCD only applies the previous process for the initial year of the simulation. As the simulation 

evolves over time, all variables are recalculated to take into account age and period effects. This 

feature justifies the classification of IMPACTNCD as a dynamic microsimulation. The process depends 

on the nature of each variable and the available information but generally, it uses HSE01 – HSE1212,27–

37 to capture the time trends by age, sex, and QIMD and project them into the future.  

 

                                                           
* For PA, HSE2012 was used as HSE2011 did not measure PA. 
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AGE, SEX AND SOCIOECONOMIC VARIABLES 

As the simulation progress in annual circles the age of the synthetic individuals in the model increase 

by one year in each loop. The sex and socioeconomic variables remain unchanged. Therefore, social 

mobility is not simulated in the current version of IMPACTNCD. 

FRUIT & VEG CONSUMPTION AND PHYSICAL ACTIVITY 

Both F&V consumption (portions/day) and PA (days with more than 30 min of moderate or vigorous 

activity/week) were modelled as ordinal factor variables. A proportional odds logistic regression 

model* was fitted in the HSE01, HSE02, HSE04-11 individual level data with F&V consumption as the 

dependent variable and year, 2nd degree polynomial of age, sex, QIMD and their 1st order interactions. 

Similarly, for PA a similar model† was fitted in the HSE06, HSE08 and HSE12 data. These models were 

used for individual level predictions about the synthetic individuals as the simulation was evolving. 

Tables S3 and S4 present coefficients of the two models. Footnotes have the direct links to the actual 

R objects in the GitHub repository.  

SMOKING 

The ‘close to reality’ synthetic population is an accurate snapshot of active, ex-, and never smokers in 

2011, as it was observed in HSE11. Then IMPACTNCD uses transitional probabilities for smoking 

initiation‡, cessation§, and relapse**, to generate and record smoking histories of the synthetic 

individuals. For smoking initiation and cessation probabilities, logistic regression models were fitted 

in HSE data with age, sex, and QIMD as the independent variables. A similar approach was followed 

for relapse probabilities with years since cessation, sex and QIMD as the independent variables. Tables 

S5, S6, and S7 present coefficients of the models. Footnotes have the direct links to the actual R objects 

in the GitHub repository. 

ENVIRONMENTAL TOBACCO SMOKING 

For ETS we assumed a linear relation between smoking prevalence and ETS, stratified by QIMD. The 

models are estimated dynamically during the simulation. We assumed no intercept; when smoking 

prevalence reaches 0, ETS prevalence will be 0 too. 

CONTINUOUS BIOLOGICAL VARIABLES 

In IMPACTNCD the value of each continuous biological risk factor (BMI, SBP, and TC) is calculated in a 

two-stage process for each synthetic individual and each projected year. The first stage simulates 

                                                           
* https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/fv.svylr.rda 
† https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/pa.svylr.rda 
‡ https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/smok.start.svylr.rda 
§ https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/smok.cess.svylr.rda 
** https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/smok.cess.success.rda 
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ageing effects, while the second stage simulates period effects. We follow this approach mainly for 

two reasons. Firstly, to simulate physiological mechanisms of ageing. For example, the change of lipid 

profile in post-menopausal women, or the increase of SBP due to age-related stiffening of the arteries. 

Secondly, because the variance of the risk factor distributions increases with age, and we wanted to 

model this phenomenon. Below we describe the stages: 

Stage 1: Instead of tracking the actual biological risk factor values for the synthetic individuals, we 

track the percentile ranks* of the values by age, sex and QIMD. These percentile ranks remain fixed 

for each synthetic individuals throughout his/her life course. In each simulated year, the percentile 

ranks are converted back to actual risk factor values, by matching to the percentile ranks of a sample 

of the initial synthetic population of same age group, sex, and QIMD. 

For example, in 2011 a 20-year-old male synthetic individual living in a QIMD 3 area with SBP of 120 

mmHg has a SBP percentile rank of 0.52. Fifty years later, the same synthetic individual has preserve 

his percentile rank score for SBP. However, his SBP is now calculated to 137.6 mmHg in order to match 

the SBP of a 70-year old man living in a QIMD 3 area in 2006 with the same percentile rank of 0.52. 

Figure S2 illustrates the previous example. Despite, individuals preserve their percentile for the 

respective risk factor throughout the simulation (vertical position in Figure S2), this stage remains 

stochastic, because each time this stage is implemented a different sample from the synthetic 

population is drawn. Finally, the distance from the mean for each risk factor is calculated stratified by 

5-year age group, sex, and QIMD. For instance, if a synthetic individual has SBP of 140 mmHg and the 

mean SBP in the respective group of same age group, sex and QIMD is 130 mmHg, the distance from 

the mean is 140 – 130 = 10 mmHg. 

Stage 2: Similarly to the approach followed for other variables, we fitted regression models to the 

HSE01-12 data. For BMI†, year, age, sex, QIMD and PA were the independent variables. For SBP‡, year, 

age, sex, QIMD, smoking status, BMI, and PA were the independent variables. Finally, for TC§, year, 

                                                           
* For the percentile rank the formula  𝑅𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 =  (𝑅 − 1) (𝑛 − 1)⁄   is used, where 𝑅𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒  is the percentile 

rank and 𝑅 = (𝑅1, … , 𝑅𝑛)  is the rank vector constructed from a random observation vector (𝑋1, … , 𝑋𝑛). In 
IMPACTNCD specifically, vector 𝑋 is constructed from the subset of the respective continuous risk factor values, 
by 5-year age group, sex and QIMD, for each year of the simulation. 

† https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/bmi.svylm.rda 
‡ https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/sbp.svylm.rda 
§ https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/chol.svylm.rda 
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age, sex, QIMD, BMI, F&V consumption and PA were the independent variables.* These models are 

used to predict the mean of the relevant group. These predicted means are added then, to the 

distances calculated in previous stage. The result is the final value of the relevant risk factor that will 

be used for risk estimation. Tables S8, S9, and S10 present coefficients of the models. Footnotes have 

the direct links to the actual R objects in the GitHub repository. 

DIABETES MELLITUS 

As with smoking, the ‘close to reality’ synthetic population is an accurate snapshot of diagnosed and 

non-diagnosed diabetics in 2011, as it was observed in HSE11. We assumed DM is an incurable chronic 

condition. IMPACTNCD uses the validated for English population Qdiabetes algorithm (ex QDscore) to 

calculate annual transitional probabilities of non-diabetic synthetic individuals to develop DM.38 

 

 

                                                           
* As before, the independent variables for each risk factor were selected based on known associations from 
longitudinal studies. Therefore, only the magnitude of the association is informed by cross-sectional data and 
possibly attenuated due to reverse causality. 

Figure S2 Plot of the percentile rank against the systolic blood pressure of male synthetic individuals living in QIMD 3 area for 
age groups 20-24 and 70-74. 
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Lag times 

All the function that have been described above for risk factor trajectories include time and age (in 

years) as one of the independent variables. Therefore, lag times can be potentially considered on a 

per risk factor basis. For instance, let us consider a 50-year-old synthetic individual in 2015 and an 

assumed lag time of 5 years for F&V. When IMPACTNCD calculates the probabilities for F&V 

consumption of this individual, it will use time – (lag time) = 2015 – 5 = 2010 and age – (lag time) = 50 

– 5 = 45. So, when the ‘disease’ module of IMPACTNCD, uses the risk exposure to F&V to estimate a 

disease incidence transitional probability, the lag timed exposure will be used.  

For the sake of simplicity, in this study we assumed that the lag time between exposure and CVD is 5 

years.39–41. The lag time was roughly informed from risk reversibility trials, when available, or the 

median observation times of the cohort studies we used to inform the risk magnitude for each risk 

factor. 

Birth engine (Step 4) 

The Office for National Statistics (ONS) principal-assumption fertility projections for England are used 

to estimate the number of new synthetic individuals entering the model through birth, in every 

simulated year.42 The birth engine only becomes important for simulations featuring a horizon of more 

than 30 years. Therefore, we do not describe this step in detail here. 
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CHAPTER 2. DISEASE MODULE 

The disease module contains the last three steps of the model (Figure S1). The risk (probability) for 

each synthetic individual aged 30 – 84, to develop each of the modelled diseases is estimated in step 

5 conditional on the exposure to relevant risk factors. The step ends by selecting synthetic individuals 

to develop the modelled diseases. Finally, in steps 6 and 7 the risk of dying from one of the modelled 

diseases or any other cause is estimated and applied. Steps 2 to 7 are then repeated for the surviving 

individuals until the simulation horizon is reached.  

Estimating the annual individualised disease risk and incidence (Step 5) 

In order to estimate the individualised annual probability of a synthetic individual to develop a specific 

disease conditional on his/her relevant risk exposures we follow a 3-stage approach: 

1. The proportion of incidence attributable to each modelled risk factor by age group and sex is 

estimated, assuming a specific time lag. 

2. Assuming multiplicative risks, the portion of the disease incidence attributable to all the 

modelled risk factors is estimated and subtracted from the total incidence. 

3. For each individual in the synthetic population, the probability to develop the disease is 

estimated and then is used in an independent Bernoulli trial to select those who finally 

develop the disease. 

Next, the implementation of the above method is described in more detail using CHD as an example. 

The same process is used for stroke.  

Stage 1 

The population attributable risk (PAF) is an epidemiological measure that estimates the proportion of 

the disease attributable to an associated risk factor.43 It depends on the relative risk associated with 

the risk factor and the prevalence of the risk factor in the population. Specifically, for each modelled 

binary risk factors associated with CHD, PAF was calculated by 5-year age group and sex using the 

formula: 

𝑃𝐴𝐹 =  
𝑃 ∗ (𝑅𝑅 − 1)

𝑃 ∗ (𝑅𝑅 − 1) + 1
   , 

where 𝑃 is the prevalence of the risk factor in the population, and 𝑅𝑅 is the relative risk of the risk 

factor. For categorical risk factors with 𝑛 levels of exposure, we used the formula: 

𝑃𝐴𝐹 =  
∑ 𝑃𝑖 ∗ (𝑅𝑅𝑖 − 1)𝑛

𝑖=1

∑ 𝑃𝑖 ∗ (𝑅𝑅𝑖 − 1)𝑛
𝑖=1 + 1

   , 
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where 𝑃𝑖 is the prevalence of the risk factor at level 𝑖 in the population and 𝑅𝑅𝑖  is the relative risk 

associated with 𝑖 level of exposure. The same formula was used to approximate the PAF of continuous 

risk factors because they behave like discrete variables in the model. Consistent with findings from 

the respective meta-analyses that were used for IMPACTNCD (Error! Reference source not found.), SBP 

below 115 mmHg, TC below 3.8 mmol/l and BMI below 20 Kg/m2 were considered to have a relative 

risk of 1. Similarly, consumption of 8 or more portions of F&V and 5 or more days with more than 30 

minutes of moderate to vigorous activity per week were also considered to have a relative risk of 1. 

For the estimation of prevalence of risk factors, we used their prevalence in the synthetic population 

taking into account any assumed lag time. All the relative risks were taken from published meta-

analyses and cohort studies (Error! Reference source not found.). 

Stage 2 

Assuming multiplicative risk factors with no interactions, the incidence of CHD not attributable to the 

modelled risk factors can be estimated by the formula: 

𝐼𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

=  𝐼𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ∗ (1 − 𝑃𝐴𝐹1) ∗ (1 − 𝑃𝐴𝐹2) ∗ (1 − 𝑃𝐴𝐹3) ∗ … ∗ (1 − 𝑃𝐴𝐹𝑚) 

Where 𝐼𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the CHD incidence and 𝑃𝐴𝐹1…𝑚 are the PAF of each risk factor from Step 1. 

𝐼𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 represents CHD incidence if all the modelled risk factors were at optimal levels. 

The theoretical minimum incidence is calculated by 5-year age group and sex only in the initial year of 

the simulation and it is assumed stable thereafter.  

Stage 3 

Assuming that 𝐼𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 is the baseline annual probability of a synthetic individual to 

develop CHD for a given age and sex due to risk factors not included in the model (i.e. genetics etc.), 

the individualised annual probability to develop CHD, ℙ(CHD | age, sex, exposures), given his/her risk 

factors were estimated by the formula: 

ℙ(𝐶𝐻𝐷 | 𝑎𝑔𝑒, 𝑠𝑒𝑥, 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑠) =  𝐼𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ∗ 𝑅𝑅1 ∗ 𝑅𝑅2 ∗ 𝑅𝑅3 ∗ … ∗ 𝑅𝑅𝑚 

Where 𝑅𝑅1…𝑚 the relative risks that are related to the specific risk exposures of the synthetic 

individual, same as in stage 1. Depending on data availability this method can be further stratified by 

QIMD; however, data were not available for this in the current study. 

The above method can be used only when the incidence of the disease in the population is known. 

The true incidence of CHD (and stroke) though, is largely unknown. Several estimates exist 

nonetheless all have limitations. Therefore, for the estimation of CHD incidence by age and sex we 
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opted for a modelling solution to synthesise all the available sources of information and minimise bias. 

Specifically, we used ONS CHD mortality (ICD10 I20-I25) for England in 2011,44 self-reported 

prevalence of CHD from HSE11, incidence of angina from primary care data45 and incidence of acute 

myocardial infarction (AMI) from mortality and hospital statistics46 to inform the World Health 

Organisation (WHO) DISMOD II model.47 DISMOD II is a multi-state life table model that is able to 

estimate the incidence, prevalence, mortality, fatality and remission of a disease, when information 

about at least three of these indicators is available. A similar approach has been followed by the Global 

Burden of Disease team and others.48,49 We considered CHD an incurable chronic disease (i.e. 

remission rate was set to 0); therefore, the derived DISMOD II incidence refers to the first ever 

manifestation of angina or AMI excluding any recurrent episodes. For the DISMOD II calculations, we 

assumed that incidence and case-fatality had been declining by 3% (relative), over the last 20 years. 

The derived CHD incidence, prevalence, and fatality were used as an input for IMPACTNCD. Similar 

approach was used for stroke. 

For the initial year of the simulation, some synthetic individuals need to be allocated as prevalent 

cases for each of the modelled diseases. DISMOD II model47 is used again to estimate the number of 

prevalent cases of the disease by age and sex. Then, the estimated number of prevalent cases are 

sampled independently from the individuals in the population with weights proportional to their 

relevant exposures to the associated risk factors.  

Simulating disease histories (Step 6) 

In the current stage of development, IMPACTNCD does not contain a detailed disease history module. 

However, Step 6 is used to simulate significant aspects of the disease. For CVD, this was used to 

simulate the observable spike of short-term (30 days) mortality after the first event of AMI or stroke. 

Data about short term mortality were used from the ‘Coronary heart disease statistics 2012 edition’ 

report.45 

Simulating mortality (Step 7) 

All synthetic individuals are exposed to the risk of dying from any of their acquired modelled diseases 

or any other non-modelled cause. However, the algorithm behaves differently depending on the age 

and life course trajectory of the synthetic individual. 

For ages 0 to 29, we used all-cause mortality rate by age, sex, and QIMD to inform an independent 

Bernoulli trial and select synthetic individuals that die every year. For years 2011 to 2013 we used the 

observed mortality rates as were reported from ONS.44 For years after 2013, functional demographic 

models by sex and QIMD were fitted to the ONS reported annual mortality rates, from years 2002 to 

2013, and then they were projected to the simulation horizon using the R package ‘demography’.50 
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Functional demographic models are generalisations of the Lee-Carter demographic model, influenced 

by ideas from functional data analysis and non-parametric smoothing.51 

The same approach as above was followed for synthetic individuals aged 85 to 100. We considered a 

mortality rate of 1 for all synthetic individuals reaching the age of 100. Hence, IMPACTNCD maximum 

synthetic individual age is 100 years.  

Finally, for synthetic individuals with ages between 30 and 84 the all-cause mortality was decomposed 

into modelled-diseases specific mortality and any-other cause mortality. The former applies only to 

the prevalent cases of each modelled disease in the synthetic population. For this, case-fatality rates 

by age and sex were estimated by DISMOD II for each modelled disease, as described before. Then 

case-fatality rates are used in a Bernoulli trial to select prevalent cases that die from the disease in a 

year. 

For the any-other cause mortality, a process similar to the one described for ages 0 to 29 and 85 to 

100. However, this time CHD and stroke specific mortality are removed from the observed mortality 

and mortality projections to avoid double counting.  

The case mortality and fatality rates are further parametrised and individualised based on established 

epidemiological evidence. The ‘male British doctors’ and DECODE studies have showed that smokers 

and diabetics have increased overall mortality even when CVD was excluded52,53. IMPACTNCD adjusts 

for that by inflating the any-other cause mortality rate for smokers and diabetics and deflating it for 

non-smokers and non-diabetics, while it constrains the sum to remain the same as before the 

adjustments. Furthermore, we assumed that CVD case-fatality is improving by 3%, and that there is a 

constant case-fatality socioeconomic gradient of approximately 5% by QIMD level (halved for ages 

over 70) for CHD, and 2% for stroke. The socioeconomic gradient forces the more deprived to 

experience worse disease outcomes. These assumptions are based on empirical evidence.45  

Finally, synthetic individuals who remain alive after this step progress to the next year and start again 

from step 1, unless the simulation horizon has been reached.  
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CHAPTER 3. SCENARIOS 

The method described above, is used to for the baseline scenario. In general, primary prevention 

interventions or policies can then be modelled as counterfactual scenarios, through their estimated 

effects on the relevant risk factors. The modelled scenarios are generated from alterations of the 

baseline scenario, mainly in three ways:  

1. Population-wide interventions can be modelled, by altering the intercept or the coefficients 

of the regression equations that are used to estimate risk factor exposures. For example, when 

continuous risk factors are considered, adding or subtracting from the intercept increases or 

decreases the related risk factor for each synthetic individual; therefore, the mean of the risk 

factor for the whole population. Altering the year coefficient accelerates, decelerates or 

reverses the trend for the whole population. Likewise, altering the QIMD coefficients or/and 

the coefficient of the interaction between year and QIMD can simulate differential effects and 

trends by QIMD. A similar approach sometimes can be used also for the non-continuous risk 

factors. The benefit is that by just altering a few parameters the changes are translated down 

to individual level characteristics in a computationally efficient way. 

2. Targeted interventions can be modelled by selecting synthetic individuals with a specific trait 

or combination of traits, and apply an intervention to them, by changing their attributes. For 

example, to simulate the effect of statins a simple approach would be to randomly select 30% 

of the synthetic individuals with TC higher than 4 mmol/l not currently on statins; and apply a 

25% reduction of their TC between steps 4 and 5 (Figure S1). 

3. Some hybrid combination of the previous methods or some ‘exotic’ approaches like have the 

time stop at a specific year, or running backwards to simulate disaster scenarios etc. 

In the following paragraphs, we highlight some details of the scenarios that we used in the main paper.  

They are meant to be read in conjunction with the scenario description in the main text. 

Universal screening 

This was a typical targeted intervention, so this scenario was built with the second approach, as 

described above. The high-risk synthetic participants eligible for treatment were selected based on 

the QRISK2 score.54 The score requires extra information about the synthetic individual that was not 

originally modelled and at the current stage is used exclusively for the calculation of the QRISK2 score. 

This includes information about ethnicity, specific type of diabetes (I or II), family history of CVD, 

chronic kidney disease (stage 4 or 5), atrial fibrillation, rheumatoid arthritis, and the TC/HDL ratio. To 

model these extra attributes for the synthetic individuals we fitted multinomial, logistic or generalised 

linear regression models to HSE data, and then we used the models to predict synthetic individuals’ 



19 
 

status. Exceptions, to this approach were type I diabetes and rheumatoid arthritis prevalence. We 

assumed a prevalence of 0.5% for type I diabetes and we extracted age and sex specific rheumatoid 

arthritis prevalence from published data.55 

To simulate ethnicity of synthetic individuals, a multinomial model was fitted to HSE data with 5-year 

age group, sex and QIMD as the independent variables.* To simulate family history of CVD, a logistic 

regression model was fitted in HSE06 data that contained this information, with age and QIMD as the 

independent variables.† For the prevalence of atrial fibrillation, a logistic regression model was fitted 

in HSE11 data that contained this information, with age and QIMD and smoking status as the 

independent variables.‡ To model the prevalence of chronic kidney disease a logistic regression model 

with age, sex, and QIMD as independent variables was fitted to HSE10 data.§ Finally, for TC/HDL ratio 

a GLM was fitted to HSE data, with TC, age, sex, QIMD, BMI, PA, and smoking status as the independent 

variables.** 

To model the effect of Atorvastatin 20mg we used evidence from Law at al. and Edwards et al. and we 

estimated ~32% reduction in TC.56,57 To estimate the individualised effectiveness of Atorvastatin, we 

used the formula:  

 

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖𝑠𝑒𝑑 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 ∗ 𝑃𝑟𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 ∗ 𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒 ∗ 𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒 

 

Where Prescription is a binary variable (whether Atorvastatin was prescribed (1), or not (0)), 

Persistence is a binary variable (whether the synthetic individual continue with the medication (1), or 

not (0)), and Adherence is a value between 0 and 1 modelling the proportion of daily dose taken. For 

these variables, values where drawn from distributions (Table S14). 

A similar approach was used for antihypertensive medication. Given the numerous antihypertensive 

treatment combinations, we assumed that medication could fully control hypertension for all 

synthetic individuals down to a target of 115mmHg of SBP. We applied the same approach as above 

to adjust treatment effectiveness to prescription, persistence, and adherence. 

Information regarding medication prescription after a Health Check was extracted from Forster et al.58 

This study was conducted while the recommendation for primary prevention statin prescription was 

                                                           
* https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/origin.multinom.rda 
† https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/famcvd.svylr.rda 
‡ https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/af.svylr.rda 
§ https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/kiddiag.svylr.rda 
** https://github.com/ChristK/IMPACTncd/blob/CVD-policy-options/Lagtimes/tctohdl.svylm.rda 



20 
 

based on 20% risk for a CVD event in 10 years. Yet, statin prescription was low in this group and statins 

were prescribed to individuals with lower than 20% risk. We chose to inflate the reported from Forster 

et al. prescription rate for participants with a risk between 10% and 20%. This was made to reflect the 

recent change in recommendation about statin prescription for primary prevention, which lower the 

threshold from 20% to 10% risk for a CVD event in 10 years. We avoided making it equal to the 

prescription rate of those with a risk higher than 20% based on finding from Usher-Smith et al. that 

reported reluctant statin uptake to the newly eligible population.59 

In one of the simulated scenarios for sensitivity analysis, we assumed a treatment threshold of 20% 

risk for a CVD event in 10 years. For this scenario, we used prescription rates as reported from Forster 

et al. for the participants with a risk higher than 20%.58 Yet, we also allowed synthetic participants to 

be prescribed medication with a risk higher than 10% as was reported by Forster et al. The justification 

was that despite the recommended 20% threshold to offer treatment to high-risk individuals, when 

the study from Forster et al. was contacted, participants with lower risk were still prescribed 

medication. 

Population-wide intervention 

Many of the interventions in this scenario were modelled by altering the coefficients of the models 

that were used to estimate the attributes of the synthetic individuals. Specifically, this approach was 

followed for BMI and SBP. Smoking and F&V consumption interventions were modelled by altering 

the attributes of synthetic individuals after they were estimated in step 2 (Figure S1). Given the 

existing limitations to measure the direct effect of a structural population-wide intervention, we 

inflated the uncertainty around the inputs we have used for this scenario (Table S14). 

Risk factors trajectories 

The effects of all modelled scenarios on population risk factors are summarised in the following 

graphs, for ages 30 to 84. 
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Figure S3 Proportion of the synthetic population achieving the target of five or more portions of fruit and vegetable per day 
for each scenarios. Error bars represent 95% uncertainty intervals. 

 

 

Figure S4 Proportion of the synthetic population achieving the target of five or more portions of fruit and vegetable per day 
for each scenarios, by sex and quintile group of multiple deprivation (QIMD, 1=most affluent, 5= most deprived). Error bars 
represent 95% uncertainty intervals. 
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Figure S5 Proportion of the synthetic population achieving the target of five or more active days per week for each 
scenarios. Error bars represent 95% uncertainty intervals. 

 

 

 

Figure S6 Proportion of the synthetic population achieving the target of five or more active days per week for each 
scenarios, by sex and quintile group of multiple deprivation (QIMD, 1=most affluent, 5= most deprived). Error bars represent 
95% uncertainty intervals. 
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Figure S7 Smoking prevalence in the synthetic population for each scenario. Error bars represent 95% uncertainty intervals. 

 

 

Figure S8 Smoking prevalence in the synthetic population for each scenario, by sex and quintile group of multiple deprivation 
(QIMD, 1=most affluent, 5= most deprived). Error bars represent 95% uncertainty intervals. 
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Figure S9 Environmental tobacco smoking prevalence in the synthetic population for each scenario. Error bars represent 
95% uncertainty intervals. 

 

 

Figure S10 Environmental tobacco smoking prevalence in the synthetic population for each scenario, by sex and quintile group 
of multiple deprivation (QIMD, 1=most affluent, 5= most deprived). Error bars represent 95% uncertainty intervals. 
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Figure S11 Mean body mass index in the synthetic population for each scenario. Error bars represent 95% uncertainty 
intervals. 

 

 

Figure S12 Mean body mass index in the synthetic population for each scenario, by sex and quintile group of multiple 
deprivation (QIMD, 1=most affluent, 5= most deprived). Error bars represent 95% uncertainty intervals. 
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Figure S13 Mean systolic blood pressure in the synthetic population for each scenario. Error bars represent 95% uncertainty 
intervals. 

 

 

Figure S14 Mean systolic blood pressure in the synthetic population for each scenario, by sex and quintile group of multiple 
deprivation (QIMD, 1=most affluent, 5= most deprived). Error bars represent 95% uncertainty intervals. 
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Figure S15 Mean total cholesterol in the synthetic population for each scenario. Error bars represent 95% uncertainty 
intervals. 

 

 

Figure S16 Mean total cholesterol in the synthetic population for each scenario, by sex and quintile group of multiple 
deprivation (QIMD, 1=most affluent, 5= most deprived). Error bars represent 95% uncertainty intervals. 

 



28 
 

 

Figure S17 Diabetes prevalence in the synthetic population for each scenario. Error bars represent 95% uncertainty intervals. 

 

 

Figure S18 Diabetes prevalence in the synthetic population for each scenario, by sex and quintile group of multiple deprivation 
(QIMD, 1=most affluent, 5= most deprived). Error bars represent 95% uncertainty intervals. 
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CHAPTER 4. SENSITIVITY ANALYSIS 

Here we present the full output of the three scenarios that were produced as variations of the main 

scenarios with modified assumptions; namely the ‘20% treatment threshold universal screening’, the 

‘socioeconomic differential uptake universal screening’, and the ‘diet-only population-wide 

intervention’. Tables S11, S12, and S13 summarise the results. 
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CHAPTER 5. UNCERTAINTY 

IMPACTNCD implements a 2nd order Monte Carlo approach to estimate uncertainty distributions of the 

outputs for each scenario.60,61 Each simulation runs 1000 times. For each iteration, a different set of 

input parameters is used, by sampling from the respective distributions* of input parameters, and a 

different sample of the synthetic population is drawn. However, the scenarios are ‘paired’. For 

instance, the nth iteration of all scenarios runs with the same set of input parameters and on the same 

initial synthetic population sample for all of them.† This explains why the uncertainty of in-between 

scenarios comparisons is significantly smaller than the uncertainty of isolated scenarios.  

The framework allows stochastic uncertainty, parameter uncertainty and individual heterogeneity to 

be reflected in the reported uncertainty intervals (UI). The following example illustrates the different 

types of uncertainty that were considered in IMPACTNCD. Let us assume that the annual risk for CHD is 

5%. If we apply this risk to all individuals and randomly draw from a Bernoulli distribution with 𝑝 = 5% 

to select those who will manifest CHD, we only consider stochastic uncertainty. If we allow the annual 

risk for CHD to be conditional on individual characteristics (i.e. age, sex, exposure to risk factors), then 

individual heterogeneity is considered. Finally, when the uncertainty of the relative risks due to 

sampling errors is considered in the estimation of the annual risk for CHD, the parameter uncertainty 

is considered. From these three types of uncertainty, only the parameter uncertainty can be reduced 

from better studies in the future.  

Due to lack of information and for computational efficiency, not all three types of uncertainty are 

considered in every step (Figure S1) of IMPACTNCD. Specifically, stochastic uncertainty is included in 

every step, individual heterogeneity in every step except 1 and 4 and parameter uncertainty in step 5. 

Of course, parameter uncertainty of scenario targets are also estimated in steps 2 and 3.  

The structure of the model is grounded on fundamental epidemiological ideas and well-established 

causal pathways; therefore, we considered this type of uncertainty relatively small and did not study 

it. However, mortality from each of the modelled diseases and any-other cause (steps 6 and 7) is 

calculated serially, one modelled disease at a time. To avoid bias that this approach might introduce, 

the order of the modelled diseases in each mortality estimation is randomised.  

                                                           
* We assumed lognormal distributions for relative risks and hazard ratios, normal distributions for coefficients 
of regression equations, and PERT distributions for scenario-specific and other parameters. Specifically for 
relative risks and hazard ratios, the distributions were bounded above 1 when the mean was above 1 and vice 
versa. 
† Individual life-course trajectories however, are not. The same normotensive individual may evolve and develop 
hypertension under scenario ‘A’ but not under scenario ‘B’ due to chance, and not as a direct effect of the 
scenarios. 
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From our experience in communicating our results to policy makers and researchers, we realised that 

they tend to misinterpret 95% UIs as 95% confidence intervals (CI) and overlapping UIs as ‘evidence 

against statistical significance’. This does not apply in our model because the scenarios share common 

sources of uncertainty as explained above; therefore, scenarios are not independent. We decided to 

present medians and interquartile ranges (IQRs) exactly to avoid this misunderstanding with UIs and 

CIs. We hope that readers will mentally visualise the distribution from medians and IQRs rather than 

attempt to apply frequentist statistical inference and hypothesis testing rules, which do not apply in 

this particular situation. In any case, all our output distributions were approximately normal and their 

standard deviation can be approximated by dividing IQR with 1.35. Then, z scores can be used to 

approximate any probability of UI. 
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CHAPTER 6. EQUITY METRICS  

Absolute and relative equity slope index 

The ‘absolute equity slope index’ and the ‘relative equity slope index’ are two regression-based 

metrics, to measure the impact of the modelled interventions on absolute and relative socioeconomic 

health inequalities. They are inspired by the slope index of inequality (SII) and the relative index of 

inequality (RII);62 however, instead of directly measuring inequalities in a population, like SII and RII 

do, they measure the impact of an intervention to existing inequalities.   

The basic principles of the metrics are illustrated in this simplified example. Let us consider the simple 

example of a population that consists of only two mutually exclusive and same-sized socioeconomic 

groups, the ‘deprived’ and the ‘affluent’. The two groups experience different incidence of a disease; 

supposedly, 50 and 10 incident cases among the deprived and the affluent, respectively, every year. 

Hence, the absolute socioeconomic inequality for disease incidence is 50 – 10 = 40 cases and the 

relative socioeconomic inequality is 50 / 10 = 5. If a hypothetical intervention ‘A’ prevents the same 

number of cases in both groups, absolute inequality will remain stable. Similarly, if intervention ‘A’ 

prevents more cases in the affluent group, absolute inequality will increase and vice versa. For relative 

inequality to remain stable, the decrease in cases need to be proportional to the observed number of 

cases. For example, a hypothetical intervention ‘B’ that reduces 10% of cases in each group will have 

no effect on relative inequality. If the proportional reduction is higher in the affluent group compared 

to the deprived, then relative inequality will increase and vice versa.  

As in many real-world examples, IMPACTNCD uses QIMD to classify population in five socioeconomic 

groups of unequal sizes. In this case, SII and RII can be used to measure absolute and relative 

socioeconomic inequalities in health, respectively. The same principles about intervention 

effectiveness and inequalities described in the previous paragraph, also apply here. If an intervention 

prevents equal number of cases in all QIMD groups SII will remain unchanged, while if the proportional 

reductions of cases in all QIMD groups are equal, RII will remain unchanged.* Inspired by SII and RII, 

the absolute equity slope index is the slope of the regression line fitted in the number of cases 

prevented or postponed by an intervention (dependent variable), on ridit scores63 of QIMD 

(independent variable). Ridit scores reflect the average cumulative frequency of each QIMD group†. 

As in SII and RII they are used to account for the different sizes of each QIMD group (the distribution 

                                                           
* Assuming that the deaths prevented by the intervention does not change the relative size of the socioeconomic 
groups. 
† So, if in QIMD 1,2,3,4 and 5 areas live 14%, 22%, 22%, 24% and 18% of the population respectively, the 
cumulative frequency is 14%, 36%, 58%, 82% and 100% and the rigid scores are 0+0.14/2 = 0.07, (0.14+0.36)/2 
= 0.25, (0.36+0.58)/2 = 0.45, (0.58+0.82)/2 = 0.7 and (0.82+1)/2 = 0.91 
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of inequality), and allow for comparisons between populations. A positive slope means that the 

intervention prevents more cases in the more deprived QIMD groups and reduces absolute inequality 

in the population, and vice versa. The magnitude of the slope is proportional to the reduction in 

absolute inequality. The relative equity slope index is constructed and interpreted similarly, except 

that the proportion of cases prevented or postponed over the total cases in each socioeconomic group 

is the independent variable, and it measures the effect on relative inequality.  

Equity summary chart 

The equity summary chart presents, in a simple two-dimensional chart, the impact of the interventions 

on disease incidence, and absolute and relative socioeconomic inequality. The horizontal axis 

represents the number of cases prevented or postponed and the vertical axis represents the decrease 

(or increase) in absolute inequality. An ‘equity’ curve (or line) divides the graph in two parts. 

Interventions above the equity curve decrease relative inequality and interventions below it increase 

relative inequality. The underlying assumption of the equity summary chart and the equity curve is 

that for a given overall reduction of disease burden in the whole population, attributable to an 

intervention, there is one and only one way to distribute the reduction among the socioeconomic 

groups that can reduce absolute socioeconomic inequality and have no impact on relative 

socioeconomic inequality.  

Let us consider the simple example of a population that consists of only two mutually exclusive 

socioeconomic groups, the ‘deprived’ and the ‘affluent’, with different disease incidence. Then the 

disease incident cases of the whole population  𝐼 = 𝐼𝑑𝑒𝑝𝑟𝑖𝑣𝑒𝑑 +  𝐼𝑎𝑓𝑓𝑙𝑢𝑒𝑛𝑡 , where 𝐼𝑑𝑒𝑝𝑟𝑖𝑣𝑒𝑑 is the cases 

in the ‘deprived’ group and 𝐼𝑎𝑓𝑓𝑙𝑢𝑒𝑛𝑡 is the cases in the ‘affluent’ group. Also by definition, absolute 

inequality  𝐸𝑎𝑏𝑠 =  𝐼𝑑𝑒𝑝𝑟𝑖𝑣𝑒𝑑 −  𝐼𝑎𝑓𝑓𝑙𝑢𝑒𝑛𝑡 , and relative inequality  𝐸𝑟𝑒𝑙 =  𝐼𝑑𝑒𝑝𝑟𝑖𝑣𝑒𝑑  𝐼𝑎𝑓𝑓𝑙𝑢𝑒𝑛𝑡⁄  . 

For a given overall reduction in disease incident cases across groups (𝛥𝐼), the distribution of the 

reduction among the 2 groups can be described as 𝐼𝑑𝑒𝑝𝑟𝑖𝑣𝑒𝑑 − 𝑎 and 𝐼𝑎𝑓𝑓𝑙𝑢𝑒𝑛𝑡 − 𝑏, where 𝑎 + 𝑏 =

𝛥𝐼. The post intervention absolute and relative inequality is 𝐸𝑎𝑏𝑠
′ =  𝐼𝑑𝑒𝑝𝑟𝑖𝑣𝑒𝑑 − 𝐼𝑎𝑓𝑓𝑙𝑢𝑒𝑛𝑡 − 𝑎 + 𝑏 

and 𝐸𝑟𝑒𝑙
′ = (𝐼𝑑𝑒𝑝𝑟𝑖𝑣𝑒𝑑 − 𝑎) (𝐼𝑎𝑓𝑓𝑙𝑢𝑒𝑛𝑡 − 𝑏)⁄ , respectively. Assuming that after the intervention the 

two subgroups remain approximately of equal size, for 𝐸𝑟𝑒𝑙 = 𝐸𝑟𝑒𝑙
′  then it can be shown that 𝑎 =

𝐸𝑟𝑒𝑙 ∗ 𝑏 and 𝐸𝑎𝑏𝑠 − 𝐸𝑎𝑏𝑠
′ = 𝛥𝛪 ∗ (𝐸𝑟𝑒𝑙 − 1) (𝐸𝑟𝑒𝑙 + 1)⁄ , which on the equity summary chart is a line 

that represents the ‘equity line’ for this population (Figure S19). Interventions above the equity line 

decrease relative socioeconomic inequalities and interventions bellow the line increase it.  Moreover, 

the vertical distance from the equity line is proportional to the impact of the intervention on relative 

socioeconomic inequalities.  
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The generalisation of the previous example to populations with more than two levels of 

socioeconomic deprivation and unequal sizes of the socioeconomic groups is explained below. 

Complex measures to summarise absolute and relative socioeconomic inequalities already exist for 

this situation62,64. We will use slope index of inequality (SII) to summarise absolute inequality in the 

population and relative index of inequality (RII) to summarise relative inequality. They are regression-

based approaches with the first, representing the health measure difference between the most and 

least deprived individuals and the second, the health measure ratio between the most and least 

deprived individuals. 

 

 

Figure S19 Simplified summary equity chart assuming only two mutually exclusive socioeconomic groups and assuming that 
interventions do not alter the size of each group.  

 

Hence, using the notation of the previous example 𝑆𝐼𝐼 =  𝐼𝑑𝑒𝑝𝑟𝑖𝑣𝑒𝑑 − 𝐼𝑎𝑓𝑓𝑙𝑢𝑒𝑛𝑡 and 𝑅𝐼𝐼 =

 𝐼𝑑𝑒𝑝𝑟𝑖𝑣𝑒𝑑 𝐼𝑎𝑓𝑓𝑙𝑢𝑒𝑛𝑡⁄ , where this time 𝐼𝑑𝑒𝑝𝑟𝑖𝑣𝑒𝑑 and 𝐼𝑎𝑓𝑓𝑙𝑢𝑒𝑛𝑡 are not directly observed but are 

extrapolated from the linear regression that was used for the SII. Therefore, incident cases 𝐼 for the 

whole population are not equal to  𝐼𝑑𝑒𝑝𝑟𝑖𝑣𝑒𝑑 +  𝐼𝑎𝑓𝑓𝑙𝑢𝑒𝑛𝑡 . From these formulas it can be shown that 



35 
 

𝐼𝑎𝑓𝑓𝑙𝑢𝑒𝑛𝑡 = 𝑆𝐼𝐼 (𝑅𝐼𝐼 − 1)⁄   and  𝐼𝑑𝑒𝑝𝑟𝑖𝑣𝑒𝑑 = 𝑅𝐼𝐼 ∗ 𝑆𝐼𝐼 (𝑅𝐼𝐼 − 1)⁄ . For the incident cases 𝐼 of the whole 

population holds that  𝐼 = 𝑟 ∗ 𝐼𝑑𝑒𝑝𝑟𝑖𝑣𝑒𝑑 + (1 − 𝑟) ∗ 𝐼𝑎𝑓𝑓𝑙𝑢𝑒𝑛𝑡, where 0 ≤ 𝑟 ≤ 1 and 𝑟 depends on the 

distribution of inequality in the population. From the previous formulas it can be shown that  𝑟 =

𝐼 𝑆𝐼𝐼⁄ − 1 (𝑅𝐼𝐼 − 1)⁄ . 

After the intervention, the new incidence 𝐼′ = 𝑟′ ∗ 𝐼𝑑𝑒𝑝𝑟𝑖𝑣𝑒𝑑
′ + (1 − 𝑟′) ∗ 𝐼𝑎𝑓𝑓𝑙𝑢𝑒𝑛𝑡

′  and will result in a 

new 𝑆𝐼𝐼′ and 𝑅𝐼𝐼′. Because 𝑟′ is dependent on the impact of intervention on the different 

socioeconomic groups, the ‘equity line’ cannot be defined as in the previous simplified example. 

However for a given intervention, 𝑟′ can be estimated and assuming there is an 𝑆𝐼𝐼′′ for  𝑅𝐼𝐼 = 𝑅𝐼𝐼′. 

It can be shown that 𝑆𝐼𝐼′′ = 𝐼′ ∗ (𝑅𝐼𝐼 − 1) (𝑟′ ∗ (𝑅𝐼𝐼 − 1) + 1)⁄   and  𝑆𝐼𝐼′′ increases monotonically 

as 𝑅𝐼𝐼 increases. Therefore, 𝑆𝐼𝐼 − 𝑆𝐼𝐼′′ decreases monotonically as 𝑅𝐼𝐼 increases.  

The horizontal axis of the equity summary chart represents 𝛥𝐼 = 𝐼 − 𝐼′ =

𝐶𝑎𝑠𝑒𝑠 𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑒𝑑 𝑜𝑟 𝑝𝑜𝑠𝑡𝑝𝑜𝑛𝑒𝑑 and the vertical axis  ΔSII = SII − SII′. The graph in the main text 

was created by plotting 𝛥𝐼 and ΔSII for each scenario (in year 2015). Then each scenario was plotted 

on the graph. For each scenario (ΔΙ, 𝑆𝐼𝐼 − 𝑆𝐼𝐼′′) was also plotted. To improve readability of the graph 

and for presentation purposes only, a constrained b-spline curve was fitted to them to represent the 

‘equity’ curve. Scenarios above the equity curve decrease relative inequality and scenarios below the 

equity curve increase it. The vertical distance from the curve, roughly represents the impact of the 

scenario on relative inequality. Consequently, the health equity impact chart presents on a two axes 

chart, the impact of the intervention on CVD incidence, absolute and relative inequality.  
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CHAPTER 7. VALIDATION 

In this chapter, we first present the internal validation of the synthetic population and the risk factor 

trends, as an evidence that the synthetic population used in IMPACTNCD was similar to English 

population. Then, we present the predictive validation of IMPACTNCD by comparing observed to 

predicted mortality rates for years 2006 to 2013 by age group, sex, QIMD, and modelled disease. 

Specifically for the predictive validation, IMPACTNCD was calibrated to data up to 2006. The only 

exception was the regression models that were used in for individual predictions of exposure to risk 

factors (steps 2 and 3 in Figure S1). These models were fitted in data from 2001 to 2012 as described 

before. This is appropriate, as the main use of IMPACTNCD is to translate changes in risk factor into 

changes in CVD* incidence and mortality, and not forecasting. Finally, we present the comparison of 

IMPACTNCD baseline scenario with BAMP, a Bayesian age-period-cohort model.65 

Synthetic population validation 

The following graphs compare a random sample of 400,000 synthetic individuals from the synthetic 

population to the original sample of HSE11 (n = 10,617). Mosaic plots† were used for the categorical 

variables and cumulative distribution plots were used for the continuous variables. Specifically in this 

document, the area of each tile of the mosaic plots is proportional to the proportion of each subgroup 

in the respective population. Only graphs that were relevant to the analysis for this study are 

presented here. 

The graphs support the argument that the final synthetic population is close to reality, at least as it 

was captured through the HSE11, and are useful for the internal validation of the method. Alfons et 

al. used a statistical simulation approach to validate the process and showed that this method 

produces synthetic populations very similar to the original survey.9 Of course, the method cannot 

overcome any limitations of the original survey, such as selection bias, or misclassification. 

                                                           
* Other non-communicable diseases will be included in the future. 
† Mosaic plots are graphical representations of a contingency table of two or more categorical variables, using 

tiles with areas proportional to the frequencies in each cell of the table.66 
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Figure S3 Comparison between the Health Survey for England 2011 (n = 10,617) and a random sample (n=400,000) from the synthetic population. Distribution of age group, sex and quintile 
groups of index of multiple deprivation (1=least deprived, 5=most deprived) is presented. 
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Figure S4 Comparison between the Health Survey for England 2011 (n = 10,617) and a random sample (n=400,000) from the synthetic population. Distribution of age group, sex, quintile groups 
of index of multiple deprivation (1=least deprived, 5=most deprived) and smoking status is presented. The small circles represent sub-groups with no participants. Their number was reduced in 
the synthetic population sample, highlighting the capability of the method to create individuals with traits not present in the original survey. 
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Figure S5 Comparison between the Health Survey for England 2011 (n = 10,617) and a random sample (n=400,000) from the synthetic population. Distribution of age group, sex, quintile groups 
of index of multiple deprivation (1=least deprived, 5=most deprived) and exposure to environmental tobacco is presented. 
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Figure S6 Comparison between the Health Survey for England 2011 (n = 10,617) and a random sample (n=400,000) from the synthetic population. Distribution of age group, sex, quintile groups 
of index of multiple deprivation (1=least deprived, 5=most deprived) and portions of fruit and vegetable consumed per day is presented. 
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Figure S7 Comparison between the Health Survey for England 2012 (n = 10,333) and a random sample (n=400,000) from the synthetic population. Distribution of age group, sex, quintile groups 
of index of multiple deprivation (1=least deprived, 5=most deprived) and exposure to days of more than 30 min of physical activity (PA) per week is presented.  
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Figure S8 Comparison between the Health Survey for England 2011 (n = 10,617) and a random sample (n=400,000) from the synthetic population. Distribution of age group, sex, quintile groups 
of index of multiple deprivation (1=least deprived, 5=most deprived) and diabetes mellitus is presented. 
Figure S9 Comparison of body mass index cumulative distributions in Health Survey for England 2011 (n = 10,617) and a random sample (n=400,000) from the synthetic population. Each panel 
depicts a different subgroup of the population based on quintile groups of index of multiple deprivation (QIMD, 1=least deprived, 5=most deprived), sex and age group. 
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Figure S10 Comparison of systolic blood pressure cumulative distributions in Health Survey for England 2011 (n = 10,617) and a random sample (n=400,000) from the synthetic population. Each 
panel depicts a different subgroup of the population based on quintile groups of index of multiple deprivation (QIMD, 1=least deprived, 5=most deprived), sex and age group. 
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Figure S11 Comparison of plasma total cholesterol cumulative distributions in Health Survey for England 2011 (n = 10,617) and a random sample (n=400,000) from the synthetic population. 
Each panel depicts a different subgroup of the population based on quintile groups of index of multiple deprivation (QIMD, 1=least deprived, 5=most deprived), sex and age group. 
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Risk factor trends validation 

Here we compare mean exposure of IMPACTNCD synthetic population to the observed exposure 

through relevant national representative surveys. We stratified by sex, age group and when data 

allowed by QIMD. Overall, the plots provide evidence that the regression models used (steps 2 and 3 

Figure S1), have captured trends by age, sex and QIMD well enough. 

 

 

 

 

 

 

Figure S29 Mean systolic blood pressure for ages 30 – 84 between years 2001 and 2012. Observed in the population through 
Health Survey for England vs. IMPACTNCD synthetic population estimates. Error bars represent 95% confidence intervals of the 
mean. 
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Figure S30 Mean systolic blood pressure for ages 30 – 84 by quintile group of index of multiple deprivation (QIMD, 1 = least 
deprived) between years 2001 and 2012. Observed in the population through Health Survey for England vs. IMPACTNCD 

synthetic population estimates. Error bars represent 95% confidence intervals of the mean. 

 

Figure S31 Mean systolic blood pressure for ages 30 – 84 by age group, between years 2001 and 2012. Observed in the 
population through Health Survey for England vs. IMPACTNCD synthetic population estimates. Error bars represent 95% 
confidence intervals of the mean. 
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Figure S32 Mean total plasma cholesterol for ages 30 – 84 between years 2001 and 2012. Observed in the population through 
Health Survey for England vs. IMPACTNCD synthetic population estimates. Error bars represent 95% confidence intervals of the 
mean. 

 

Figure S33 Mean total plasma cholesterol for ages 30 – 84 by quintile group of index of multiple deprivation (QIMD, 1 = least 
deprived) between years 2001 and 2012. Observed in the population through Health Survey for England vs. IMPACTNCD 

synthetic population estimates. Error bars represent 95% confidence intervals of the mean. 
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Figure S34 Mean total plasma cholesterol for ages 30 – 84 by age group, between years 2001 and 2012. Observed in the 
population through Health Survey for England vs. IMPACTNCD synthetic population estimates. Error bars represent 95% 
confidence intervals of the mean. 

 

Figure S35 Mean body mass index for ages 30 – 84 between years 2001 and 2012. Observed in the population through Health 
Survey for England vs. IMPACTNCD synthetic population estimates. Error bars represent 95% confidence intervals of the mean. 
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Figure S36 Mean body mass index for ages 30 – 84 by quintile group of index of multiple deprivation (QIMD, 1 = least deprived) 
between years 2001 and 2012. Observed in the population through Health Survey for England vs. IMPACTNCD synthetic 
population estimates. Error bars represent 95% confidence intervals of the mean. 

 

Figure S37 Mean body mass index for ages 30 – 84 by age group between years 2001 and 2012. Observed in the population 
through Health Survey for England vs. IMPACTNCD synthetic population estimates. Error bars represent 95% confidence 
intervals of the mean. 
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Figure S38 Smoking prevalence for ages 30 – 84 between years 2001 and 2012. Observed in the population through Health 
Survey for England vs. IMPACTNCD synthetic population estimates. Error bars represent 95% confidence intervals of the mean. 

 

Figure S39 Smoking prevalence for ages 30 – 84 by quintile group of index of multiple deprivation (QIMD, 1 = least deprived) 
between years 2001 and 2012. Observed in the population through Health Survey for England vs. IMPACTNCD synthetic 
population estimates. Error bars represent 95% confidence intervals of the mean. 
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Figure S40 Smoking prevalence for ages 30 – 84 by age group between years 2001 and 2012. Observed in the population 
through Health Survey for England vs. IMPACTNCD synthetic population estimates. Error bars represent 95% confidence 
intervals of the mean. 

 

Figure S41 Diabetes mellitus prevalence for ages 30 – 84 between years 2001 and 2012. Observed in the population through 
Health Survey for England vs. IMPACTNCD synthetic population estimates. Error bars represent 95% confidence intervals of the 
mean. 
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Figure S42 Diabetes mellitus prevalence for ages 30 – 84 by quintile group of index of multiple deprivation (QIMD, 1 = least 
deprived) between years 2001 and 2012. Observed in the population through Health Survey for England vs. IMPACTNCD 
synthetic population estimates. Error bars represent 95% confidence intervals of the mean. 

 

Figure S43 Diabetes mellitus prevalence for ages 30 – 84 by age group between years 2001 and 2012. Observed in the 
population through Health Survey for England vs. IMPACTNCD synthetic population estimates. Error bars represent 95% 
confidence intervals of the mean. 
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Figure S44 Five or more portions of fruit & veg per day prevalence for ages 30 – 84 between years 2001 and 2012. Observed 
in the population through Health Survey for England vs. IMPACTNCD synthetic population estimates. Error bars represent 95% 
confidence intervals of the mean. 

 

Figure S45 Five or more portions of fruit & veg per day prevalence for ages 30 – 84 by quintile group of index of multiple 
deprivation (QIMD, 1 = least deprived) between years 2001 and 2012. Observed in the population through Health Survey for 
England vs. IMPACTNCD synthetic population estimates. Error bars represent 95% confidence intervals of the mean. 



 

54 
 

 

Figure S46 Five or more portions of fruit & veg per day prevalence for ages 30 – 84 by age group between years 2001 and 
2012. Observed in the population through Health Survey for England vs. IMPACTNCD synthetic population estimates. Error bars 
represent 95% confidence intervals of the mean. 

 

Figure S47 Five or more active days per week prevalence for ages 30 – 84 between years 2001 and 2012. Observed in the 
population through Health Survey for England vs. IMPACTNCD synthetic population estimates. Error bars represent 95% 
confidence intervals of the mean. 
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Figure S48 Five or more active days per week prevalence for ages 30 – 84 by quintile group of index of multiple deprivation 
(QIMD, 1 = least deprived) between years 2001 and 2012. Observed in the population through Health Survey for England vs. 
IMPACTNCD synthetic population estimates. Error bars represent 95% confidence intervals of the mean. 

 

Figure S49 Five or more active days per week prevalence for ages 30 – 84 by age group between years 2001 and 2012. 
Observed in the population through Health Survey for England vs. IMPACTNCD synthetic population estimates. Error bars 
represent 95% confidence intervals of the mean. 
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Mortality concurrent and predictive validation 

Here we validate the IMPACTNCD estimated mortality against the observed mortality in England 

between 2006 and 2013. Furthermore, we present the comparison of IMPACTNCD predicted CVD 

mortality rates, with forecasts from BAMP v1.3.0.1.65 BAMP is a software that performs Bayesian-age-

period-cohort forecasting and we used it to fit a model, with 2nd order random walks priors, to the 

observed CVD mortality in England for years 2002 to 2013 and then project it up to 2030. A more 

detailed description of the BAMP forecasting can be found elsewhere.67 

Overall, the plots support the argument that IMPACTNCD is capable to translate changes in risk factors 

prevalence into changes in disease mortality, rather accurately. 
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Figure S12 Coronary heart disease mortality (ICD10: I20 – I25) for men by age group and quintile group of index of multiple deprivation (QIMD, 1 = least deprived) between years 2002 and 2013. 
Observed in the population through mortality registries vs. IMPACTNCD synthetic population estimates. Error bars represent 95% uncertainty intervals. 
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Figure S13 Coronary heart disease mortality (ICD10: I20 – I25) for women by age group and quintile group of index of multiple deprivation (QIMD, 1 = least deprived) between years 2002 and 
2013. Observed in the population through mortality registries vs. IMPACTNCD synthetic population estimates. Error bars represent 95% uncertainty intervals. 
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Figure S14 Stroke mortality (ICD10: I60 – I69) for men by age group and quintile group of index of multiple deprivation (QIMD, 1 = least deprived) between years 2002 and 2013. Observed in the 
population through mortality registries vs. IMPACTNCD synthetic population estimates. Error bars represent 95% uncertainty intervals. 
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Figure S15 Stroke mortality (ICD10: I60 – I69) for women by age group and quintile group of index of multiple deprivation (QIMD, 1 = least deprived) between years 2002 and 2013. Observed in 
the population through mortality registries vs. IMPACTNCD synthetic population estimates. Error bars represent 95% uncertainty intervals. 
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Figure S16 Coronary heart disease (ICD10: I20 – I25) mortality rates for men by age group and quintile group of index of multiple deprivation (QIMD, 1 = least deprived) between years 2002 and 
2030. BAMP vs. IMPACTNCD estimates. Error bars represent 95% uncertainty intervals for IMPACTNCD. 
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Figure S17 Coronary heart disease (ICD10: I20 – I25) mortality rates for women by age group and quintile group of index of multiple deprivation (QIMD, 1 = least deprived) between years 2002 
and 2030. BAMP vs. IMPACTNCD estimates. Error bars represent 95% uncertainty intervals for IMPACTNCD. 
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Figure S18 Stroke (ICD10: I60 – I69) mortality rates for men by age group and quintile group of index of multiple deprivation (QIMD, 1 = least deprived) between years 2002 and 2030. BAMP vs. 
IMPACTNCD estimates. Error bars represent 95% uncertainty intervals for IMPACTNCD. 
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Figure S19 Stroke (ICD10: I60 – I69) mortality rates for women by age group and quintile group of index of multiple deprivation (QIMD, 1 = least deprived) between years 2002 and 2030. BAMP 
vs. IMPACTNCD estimates. Error bars represent 95% uncertainty intervals for IMPACTNCD. 
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TABLES 

Table S1 IMPACTNCD data sources. 

Parameter Outcome Details Comments Source 

Fertility rates Births Principal-assumption 
fertility projections 
for England 

Stratified by age National Population Projections, 2012-based Statistical Bulletin 
[Internet]. Office for National Statistics; 2013 [cited 2014 Nov 11]. 
Available from: http://www.ons.gov.uk/ons/rel/npp/national-
population-projections/2012-based-projections/index.html 
 

Mortality rates Deaths from 
non-
modelled 
causes 

Mortality and mid-
year population 
estimates for 
England  

Stratified by age, sex, QIMD and cause 
of death. Years 2002-2013. 

Data requested and obtained by the Office for National Statistics. 
Available from: http://www.ons.gov.uk/ons/about-ons/business-
transparency/freedom-of-information/what-can-i-
request/published-ad-hoc-data/health/december-2014/number-
of-registered-deaths-by-sex--cause--year--the-adjusted-index.xls 
 

Exposure to risk 
factors 

Exposure of 
individuals 

Health survey for 
England 

Anonymised, individual-level datasets. 
Years 2001-2012. 

Health survey for England 2001-2012. Data available to researchers 
from http://ukdataservice.ac.uk/ 
 

Relative risk for 
active smoking 

CHD and 
stroke 
(ICD10: I20 – 
I25 and I60 – 
I69) 

Re-analysis of 
American Cancer 
Society’s Cancer 
Prevention Study II. 
Prospective cohort 
study, 6 years of 
follow up 

Stratified by age and sex. Adjusted for 
age, race, education, marital status, 
“blue collar” employment in most 
recent or current job, weekly 
consumption of vegetables and citrus 
fruit, vitamin (A, C, and E) use, alcohol 
use, aspirin use, body mass index, 
exercise, dietary fat consumption, 
hypertension and diabetes at baseline. 
 

Ezzati M, Henley SJ, Thun MJ, Lopez AD. Role of smoking in global 
and regional cardiovascular mortality. Circulation 2005;112:489–
97. (Table 1 Model B) 

 Other 
mortality 
(except CHD 
and stroke) 
 

Male British doctors 
prospective cohort 
study 

Age-standardised Doll R, Peto R, Boreham J, Sutherland I. Mortality in relation to 
smoking: 50 years’ observations on male British doctors. BMJ 
2004;328:1519. (Table 1) 
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Parameter Outcome Details Comments Source 
Relative risk for 
ex-smoking 

CHD (ICD10: 
I20 – I25) 

Meta- analysis. 
Multiple-adjusted 
pooled estimates 
from 19 prospective 
studies 
 

Multiply-adjusted Huxley RR, Woodward M. Cigarette smoking as a risk factor for 
coronary heart disease in women compared with men: a 
systematic review and meta-analysis of prospective cohort studies. 
The Lancet 2011;378:1297–305. (Web-figure 8) 

 Stroke 
(ICD10 I60 – 
I69) 

The Framingham 
study. Prospective 
cohort study  

Stroke risk decreased significantly by 
two years and was at the level of non-
smokers by five years after cessation 
of cigarette smoking. Hence, we 
considered no risk for ex-smokers. 
 

Wolf PA, D’Agostino RB, Kannel WB, Bonita R, Belanger AJ. 
Cigarette smoking as a risk factor for stroke: The Framingham 
study. JAMA 1988;259:1025–9.  

Relative risk for 
environmental 
tobacco smoking 

CHD (ICD10: 
I20 – I25) 

Meta-analysis of 10 
cohort and case-
control studies 

Adjusted for important CHD risk 
factors. 

He J, Vupputuri S, Allen K, Prerost MR, Hughes J, Whelton PK. 
Passive Smoking and the Risk of Coronary Heart Disease — A Meta-
Analysis of Epidemiologic Studies. N Engl J Med 1999;340:920–6. 
(Table 3. Adjusted RR) 
 

 Stroke 
(ICD10 I60 – 
I69) 

Meta-analysis of 20 
prospective, case-
control and cross-
sectional studies 
 

13 studies adjusted for important CHD 
risk factors. The overall effect from all 
20 studies was used. 

Oono IP, Mackay DF, Pell JP. Meta-analysis of the association 
between second hand smoke exposure and stroke. J Public Health 
2011;33:496–502. (Figure 1) 

Relative risk for 
systolic blood 
pressure 

CHD and 
stroke 
(ICD10: I20 – 
I25 and I60 – 
I69) 

Meta-analysis of 
individual data from 
61 prospective 
studies 

Stratified by age and sex. Adjusted for 
regression dilution and total blood 
cholesterol and, where available, lipid 
fractions (HDL and non-HDL 
cholesterol), diabetes, weight, alcohol 
consumption, and smoking at 
baseline. 
 

Age-specific relevance of usual blood pressure to vascular 
mortality: a meta-analysis of individual data for one million adults 
in 61 prospective studies. The Lancet 2002;360:1903–13. (Figures 3 
and 5) 

Relative risk for 
total cholesterol 

CHD and 
stroke 
(ICD10: I20 – 
I25 and I60 – 
I69) 

Meta-analysis of 
individual data from 
61 prospective 
studies 

Stratified by age and sex. Adjusted for 
regression dilution and age, sex, 
study, systolic blood pressure and 
smoking. 

Prospective Studies Collaboration. Blood cholesterol and vascular 
mortality by age, sex, and blood pressure: a meta-analysis of 
individual data from 61 prospective studies with 55 000 vascular 
deaths. The Lancet 2007;370:1829–39. (Web-table 6 fully adjusted 
and Figure 3) 
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Parameter Outcome Details Comments Source 
Relative risk for 
body mass index 

CHD and 
stroke 
(ICD10: I20 – 
I25 and I60 – 
I69) 
 

Meta-analysis of 58 
prospective studies 

Stratified by age. Adjusted for age, 
sex, smoking status, systolic blood 
pressure, history of diabetes, and total 
and HDL cholesterol. We used the age 
gradient from the adjusted only for 
age, sex, and smoking status  reported 
estimates. 
 

The Emerging Risk Factors Collaboration. Separate and combined 
associations of body-mass index and abdominal adiposity with 
cardiovascular disease: collaborative analysis of 58 prospective 
studies. The Lancet 2011;377:1085–95. (Table 1 and Figure 2) 

Relative risk for 
diabetes mellitus 

CHD and 
stroke 
(ICD10: I20 – 
I25 and I60 – 
I69) 
 

Meta-analysis of 102 
prospective studies 

Stratified by age. Adjusted for age, 
smoking status, body-mass index, and 
systolic blood pressure. 

The Emerging Risk Factors Collaboration. Diabetes mellitus, fasting 
blood glucose concentration, and risk of vascular disease: a 
collaborative meta-analysis of 102 prospective studies. The Lancet 
2010;375:2215–22. (Figure 2) 

 Other 
mortality 
(except CHD 
and stroke) 
 

DECODE. A 
collaborative 
prospective study of 
22 cohorts in Europe 

Adjusted for BMI, blood pressure, 
smoking and serum cholesterol. 

The DECODE Study Group. Is the current definition for diabetes 
relevant to mortality risk from all causes and cardiovascular and 
noncardiovascular diseases? Diabetes Care 2003;26:688–96. 

Relative risk for 
physical activity 

CHD and 
stroke 
(ICD10: I20 – 
I25 and I60 – 
I69) 
 

Meta-analysis of 18 
cohort studies for 
CHD and 8 cohort 
studies for ischaemic 
stroke 

Stratified by age and sex. Adjusted for 
measurement error, age, sex, 
smoking, blood pressure and 
cholesterol. 

Bull FC, Armstrong TP, Dixon T, Ham S, Neiman A, Pratt M. 
Comparative quantification of health risks. Chapter 10: physical 
inactivity. Geneva: World Health Organisation; 2004. (Tables 10.19 
and 10.20) 

Relative risk for 
fruit and 
vegetable 
consumption 
 

CHD (ICD10: 
I20 – I25) 

Meta-analysis of 9 
cohort studies 

RR per portion of F&V. Multiply-
adjusted. 

Dauchet L, Amouyel P, Hercberg S, Dallongeville J. Fruit and 
Vegetable Consumption and Risk of Coronary Heart Disease: A 
Meta-Analysis of Cohort Studies. J Nutr 2006;136:2588–93. 

 Stroke 
(ICD10: I60 – 
I69) 

Meta-analysis of 7 
cohort studies 

RR per portion of F&V. Multiply-
adjusted. 

Dauchet L, Amouyel P, Dallongeville J. Fruit and vegetable 
consumption and risk of stroke A meta-analysis of cohort studies. 
Neurology 2005;65:1193–7. 
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Table S2 IMPACTNCD main assumptions and limitations 

Population module Immigration is not considered. 

 Social mobility is not considered. 

 
Quintile groups of index of multiple deprivation (QIMD) is a relative marker of (area) deprivation with several versions since 
2003. We considered all version of QIMD identical. 

 
We assume that the surveys used, are truly representative of the population. For example, the adjustments for selection bias 
in the Health Surveys for England are perfect.  

Disease module We assume multiplicative risk effects. 

 We assume log-linear dose-response for the continuous risk factors. 

 
We assume that the effects of the risk factors on incidence and mortality are equal and risk factors are not modifying 
survival. 

 We assume all stroke types have common risk factors. 

 We assume 5-year lag time for CVD. 

 We assume 100% risk reversibility. 

 We assume that trends in disease incidence are attributable only to trends of the relevant modelled risk factors. 

 
Only well accepted associations between upstream and downstream risk factors that have been observed in longitudinal 
studies are considered. However, the magnitudes of the associations are extracted from a series of nationally representative 
cross-sectional surveys (Health Survey for England). 
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Table S3 Coefficients of the model for fruit and vegetable consumption per day predictions. Brackets contain 95% confidence 
intervals for the coefficients 

 Dependent variable: Portions of fruit and veg per day 

Year 0.1*** (0.1, 0.1) 

Age -0.03*** (-0.05, -0.01) 

Age2 0.001 (-0.01, 0.01) 

Sex = Woman -0.1*** (-0.1, -0.1) 

QIMD.L 0.03* (-0.01, 0.1) 

QIMD.Q -0.2*** (-0.2, -0.2) 

QIMD.C -0.2*** (-0.2, -0.1) 

QIMD.4 -0.2*** (-0.2, -0.2) 

Year : Age -0.003 (-0.01, 0.01) 

Year : Age2 0.000 (-0.01, 0.01) 

Year : Sex = Woman -0.01 (-0.03, 0.02) 

Year : QIMD.L 0.01 (-0.01, 0.03) 

Year : QIMD.Q -0.01 (-0.03, 0.01) 

Year : QIMD.C 0.002 (-0.02, 0.03) 

Year : QIMD.4 -0.02 (-0.04, 0.01) 

Age : Age2 -0.000 (-0.01, 0.01) 

Age : Sex = Woman 0.02** (0.002, 0.04) 

Age : QIMD.L -0.01 (-0.03, 0.004) 

Age : QIMD.Q 0.002 (-0.02, 0.02) 

Age : QIMD.C 0.002 (-0.02, 0.02) 

Age : QIMD.4 0.01 (-0.01, 0.02) 

Age2 : Sex = Woman -0.000 (-0.02, 0.02) 

Age2 : QIMD.L 0.000 (-0.02, 0.02) 

Age2 : QIMD.Q -0.000 (-0.02, 0.02) 

Age2 : QIMD.C 0.000 (-0.02, 0.02) 

Age2 : QIMD.4 -0.000 (-0.02, 0.02) 

Sex = Woman : QIMD.L -0.1*** (-0.1, -0.02) 

Sex = Woman : QIMD.Q 0.02 (-0.02, 0.1) 

Sex = Woman : QIMD.C 0.02 (-0.01, 0.1) 

Sex = Woman : QIMD.4 -0.02 (-0.1, 0.02) 

Notes:  *p<0.1; **p<0.05; ***p<0.01 
: denotes interaction 
QIMD was used as an ordered factor and its contrasts are based on 
orthogonal polynomials. L, C, Q, and 4 represent the linear, quadratic, 
cubic, and in the power of 4 effects, respectively. 
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Table S4 Coefficients of the model for active days per week predictions. Brackets contain 95% confidence intervals for the 
coefficients 

 Dependent variable: Active days per week 

Year 0.02** (0.001, 0.04) 

Age -0.2*** (-0.3, -0.1) 

Age2 0.01 (-0.1, 0.1) 

Age3 -0.000 (-0.1, 0.1) 

Sex = Woman -1.9*** (-1.9, -1.8) 

QIMD.L 0.2*** (0.1, 0.2) 

QIMD.Q 0.1*** (0.03, 0.1) 

QIMD.C -0.01 (-0.1, 0.04) 

QIMD.4 -0.2*** (-0.3, -0.2) 

Year : QIMD.L -0.05** (-0.1, -0.001) 

Year : QIMD.Q 0.01 (-0.03, 0.1) 

Year : QIMD.C 0.001 (-0.04, 0.04) 

Year : QIMD.4 0.001 (-0.04, 0.04) 

Age : Age3 0.000 (-0.02, 0.02) 

Age : Sex = Woman 0.1*** (0.02, 0.1) 

Age : QIMD.L -0.02 (-0.1, 0.1) 

Age : QIMD.Q -0.01 (-0.1, 0.1) 

Age : QIMD.C -0.002 (-0.1, 0.1) 

Age : QIMD.4 0.004 (-0.1, 0.1) 

Age2 : Age3 -0.0 (-0.02, 0.02) 

Age2 : Sex = Woman -0.001 (-0.04, 0.04) 

Age3 : QIMD.L 0.000 (-0.05, 0.05) 

Age3 : QIMD.Q 0.000 (-0.05, 0.05) 

Age3 : QIMD.C 0.000 (-0.05, 0.05) 

Age3 : QIMD.4 0.000 (-0.04, 0.04) 

Notes:  *p<0.1; **p<0.05; ***p<0.01 
: denotes interaction 
QIMD was used as an ordered factor and its contrasts are based on 
orthogonal polynomials. L, C, Q, and 4 represent the linear, quadratic, 
cubic, and in the power of 4 effects, respectively. 
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Table S5 Coefficients of the model for smoking initiation predictions. Brackets contain 95% confidence intervals for the 
coefficients 

 Dependent variable: Smoking initiation 

Year -0.02 (-0.1, 0.05) 

Sex = Woman -0.3*** (-0.5, -0.1) 

Age -0.1*** (-0.1, -0.1) 

QIMD > 1 0.3*** (0.1, 0.5) 

Constant -1.0*** (-1.4, -0.5) 

Notes: *p<0.1; **p<0.05; ***p<0.01 
QIMD was used as binary variable with levels: 1 (least deprived 
quintile) and 2 (all other more deprived quintiles) 

 

Table S6 Coefficients of the model for smoking cessation predictions. Brackets contain 95% confidence intervals for the 
coefficients 

 Dependent variable: Smoking cessation 

Year 0.03*** (0.02, 0.05) 

Age 2.8*** (2.2, 3.5) 

Sex = Woman 1.0*** (0.3, 1.7) 

QIMD.L -0.4*** (-0.6, -0.3) 

QIMD.Q -0.2** (-0.4, -0.1) 

QIMD.C -0.1 (-0.3, 0.1) 

QIMD.4 -0.1 (-0.3, 0.1) 

Age2 -0.1*** (-0.2, -0.1) 

Age3 0.002*** (0.002, 0.003) 

Age4 -0.000*** (-0.000, -0.000) 

Year : QIMD.L -0.02 (-0.05, 0.02) 

Year : QIMD.Q -0.03** (-0.1, -0.003) 

Year : QIMD.C -0.02 (-0.1, 0.01) 

Year : QIMD.4 -0.01 (-0.04, 0.02) 

Age : Sex = Woman -0.04** (-0.1, -0.005) 

Age2 : Age3 0.000*** (0.000, 0.000) 

Sex = Woman : Age2 0.000* (-0.000, 0.001) 

Constant -26.8*** (-32.0, -21.6) 

Notes:  *p<0.1; **p<0.05; ***p<0.01 
 : denotes interaction 
QIMD was used as an ordered factor and its contrasts are based on 
orthogonal polynomials. L, C, Q, and 4 represent the linear, quadratic, 
cubic, and in the power of 4 effects, respectively. 
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Table S7 Coefficients of the model for smoking relapse predictions. Brackets contain 95% confidence intervals for the 
coefficients 

 Dependent variable: Smoking relapse 

(years since cessation + 1)-2 4.3*** (3.5, 5.1) 

Sex = Woman 0.04 (-0.2, 0.3) 

QIMD.L -0.5*** (-0.8, -0.2) 

QIMD.Q 0.02 (-0.3, 0.3) 

QIMD.C 0.002 (-0.3, 0.3) 

QIMD.4 0.3* (0.01, 0.5) 

Constant -0.4*** (-0.6, -0.2) 

Notes: *p<0.1; **p<0.05; ***p<0.01 
 : denotes interaction 
QIMD was used as an ordered factor and its contrasts are based on 
orthogonal polynomials. L, C, Q, and 4 represent the linear, quadratic, 
cubic, and in the power of 4 effects, respectively 

 

Table S8 Coefficients of the model for body mass index predictions. Brackets contain 95% confidence intervals for the 
coefficients 

 Dependent variable: Body mass index (kg/m2) 

Year 0.01 (-0.04, 0.1) 

Age 0.3*** (0.3, 0.3) 

Sex = Woman -0.8*** (-1.3, -0.2) 

QIMD.L 0.3*** (0.1, 0.6) 

QIMD.Q -0.1 (-0.3, 0.2) 

QIMD.C 0.2 (-0.04, 0.4) 

QIMD.4 0.1 (-0.1, 0.3) 

Active days per week -0.1*** (-0.1, -0.1) 

Age2 -0.003*** (-0.003, -0.002) 

Year : Age 0.001*** (0.000, 0.002) 

Year : QIMD.L 0.04** (0.01, 0.1) 

Year : QIMD.Q 0.02 (-0.02, 0.1) 

Year : QIMD.C 0.02 (-0.02, 0.1) 

Year : QIMD.4 0.01 (-0.02, 0.04) 

Age : Sex = Woman 0.01** (0.002, 0.02) 

Sex = Woman : QIMD.L 1.1*** (0.8, 1.4) 

Sex = Woman : QIMD.Q 0.1 (-0.1, 0.4) 

Sex = Woman : QIMD.C -0.1 (-0.4, 0.2) 

Sex = Woman : QIMD.4 -0.02 (-0.3, 0.3) 

Sex = Woman : Active days per week -0.1*** (-0.1, -0.03) 

Constant 20.4*** (19.6, 21.1) 

Notes:  *p<0.1; **p<0.05; ***p<0.01 
 : denotes interaction 
QIMD was used as an ordered factor and its contrasts are based on 
orthogonal polynomials. L, C, Q, and 4 represent the linear, 
quadratic, cubic, and in the power of 4 effects, respectively 
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Table S9 Coefficients of the model for systolic blood pressure predictions. Brackets contain 95% confidence intervals for the 
coefficients 

 Dependent variable: Systolic blood pressure (mmHg) 

Year -0.1** (-0.2, -0.03) 

Age 23.3*** (8.7, 37.9) 

Age2 -0.5*** (-0.6, -0.3) 

Age3 0.01*** (0.002, 0.01) 

Sex = Woman 134.1*** (47.0, 221.3) 

QIMD.L -3.5*** (-5.6, -1.4) 

QIMD.Q 0.6 (-1.5, 2.7) 

QIMD.C 1.4 (-0.7, 3.5) 

QIMD.4 -0.02 (-2.1, 2.1) 

ln(BMI) -534.9*** (-939.2, -130.5) 

(ln(BMI))2 219.8*** (99.8, 339.7) 

Active smoker = Yes 11.8*** (3.7, 19.8) 

Active days per week 0.1*** (0.05, 0.2) 

Age : Sex = Woman -0.6*** (-1.1, -0.2) 

Age : QIMD.L 0.1*** (0.04, 0.2) 

Age : QIMD.Q -0.04 (-0.1, 0.03) 

Age : QIMD.C -0.04 (-0.1, 0.03) 

Age : QIMD.4 -0.01 (-0.1, 0.1) 

Age : ln(BMI) -13.1*** (-21.8, -4.3) 

Age : (ln(BMI))2 2.2*** (0.9, 3.5) 

Age2 : Sex = Woman 0.02*** (0.01, 0.03) 

Age2 : ln(BMI) 0.2*** (0.1, 0.2) 

Age2 : (ln(BMI))2 -0.03*** (-0.04, -0.01) 

Age2 : Active smoker = Yes 0.001*** (0.000, 0.001) 

Age3 : Age2 0.000*** (0.000, 0.000) 

Age3 : Year -0.000*** (-0.000, -0.000) 

Age3 : Age -0.000*** (-0.000, -0.000) 

Age3 : Sex = Woman -0.000*** (-0.000, -0.000) 

Age3 : QIMD.L -0.000** (-0.000, -0.000) 

Age3 : QIMD.Q 0.000* (-0.000, 0.000) 

Age3 : QIMD.C 0.000 (-0.000, 0.000) 

Age3 : QIMD.4 0.000 (-0.000, 0.000) 

Sex = Woman : ln(BMI) -83.6*** (-136.6, -30.7) 

Sex = Woman : (ln(BMI))2 12.3*** (4.3, 20.3) 

Sex = Woman : Active smoker = Yes 0.7 (-0.2, 1.6) 

ln(BMI) : (ln(BMI))2 -28.3*** (-40.8, -15.7) 

ln(BMI) : Active smoker = Yes -3.7*** (-6.2, -1.2) 

Constant 487.6** (10.6, 964.7) 

Note:  *p<0.1; **p<0.05; ***p<0.01 
 : denotes interaction 
QIMD was used as an ordered factor and its contrasts are based on 
orthogonal polynomials. L, C, Q, and 4 represent the linear, 
quadratic, cubic, and in the power of 4 effects, respectively 
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Table S10 Coefficients of the model for total cholesterol predictions. Brackets contain 95% confidence intervals for the 
coefficients 

 Dependent variable: Total cholesterol mmol/l 

Year -0.01 (-0.03, 0.01) 

Age 0.1*** (0.1, 0.1) 

Sex = Woman -0.5*** (-0.7, -0.3) 

QIMD.L 0.2*** (0.1, 0.3) 

QIMD.Q -0.01 (-0.1, 0.1) 

QIMD.C 0.02 (-0.1, 0.1) 

QIMD.4 0.1 (-0.02, 0.2) 

Active days per week -0.02*** (-0.04, -0.01) 

BMI 0.02** (0.01, 0.04) 

F&V portions per day -0.02*** (-0.02, -0.01) 

I(Age2) -0.001*** (-0.001, -0.001) 

BMI-1 -47.5*** (-57.8, -37.1) 

Year : Age -0.001** (-0.001, -0.000) 

Age : Sex = Woman 0.02*** (0.02, 0.02) 

Age : QIMD.L -0.01*** (-0.01, -0.004) 

Age : QIMD.Q -0.001 (-0.003, 0.001) 

Age : QIMD.C -0.001 (-0.003, 0.001) 

Age : QIMD.4 -0.002* (-0.004, 0.000) 

Age : Active days per week 0.001*** (0.000, 0.001) 

Age : BMI -0.001*** (-0.001, -0.001) 

Sex = Woman : BMI -0.02*** (-0.02, -0.01) 

Constant 4.7*** (3.9, 5.6) 

Note :  *p<0.1; **p<0.05; ***p<0.01 
 : denotes interaction 
QIMD was used as an ordered factor and its contrasts are based 
on orthogonal polynomials. L, C, Q, and 4 represent the linear, 
quadratic, cubic, and in the power of 4 effects, respectively 

 

 

Table S11 Estimated cases and deaths prevented or postponed under each scenario, by 2030. Brackets contain the respective 
interquartile ranges (IQR). 

Scenarios Cases prevented or postponed 
by 2030 (IQR) 

Deaths prevented or postponed by 
2030 (IQR) 

20% treatment threshold 
universal screening 
 

7,000 (-2,000 to 15,000) 2,300 (-1,200 to 5,600) 

Socioeconomic differential 
uptake universal screening 
 

19,000 (10,000 to 27,000) 700 (-2,400 to 4,000) 

Diet-only population-wide 
intervention 

47,000 (37,000 to 56,000) 5,600 (2,700 to 8,700) 
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Table S12 Cases prevented or postponed per quintile groups of the index of multiple deprivation (QIMD), by 2030. The absolute 
equity slope index for each scenario is also presented. Brackets contain the respective interquartile ranges (IQR). 

QIMD 20% treatment 
threshold universal 
screening 

Socioeconomic 
differential uptake 
universal screening 

Diet-only population-
wide intervention 

1 (least deprived) 
 

1,400 (-3,600 to 6,200) 3,200 (-1,800 to 7,800) 8,600 (4,100 to 13,400) 

2 
 

700 (-4,800 to 5,500) 3,900  (-900 to 9,000) 9,100 (4,000 to 13,900) 

3 
 

1,100 (-4,100 to 6,700) 4,400 (-1,500 to 9,400) 9,400 (4,700 to 14,600) 

4 
 

1,100 (-3,500 to 6,400) 3,400 (-1,300 to 8,900) 9,100 (4,200 to 13,700) 

5 (most deprived) 
 

2,900 (-2,800 to 8,400) 4,300 (-1,300 to 9,600) 10,400 (5,500 to 15,800) 

Absolute equity slope 
index 

2,000 (-6,700 to 10,600) 300 (-6900 to 9,000) 2,200 (-5,300 to 9,900) 

 

 

Table S13 Relative percentage reduction in cardiovascular disease cases per quintile groups of the index of multiple 
deprivation (QIMD), by 2030. The relative equity slope index for each scenario is also presented. Brackets contain the 
respective interquartile ranges (IQR). 

QIMD 20% treatment 
threshold universal 
screening 

Socioeconomic 
differential uptake 
universal screening 

Diet-only population-
wide intervention 

1 (least deprived) 
 

0.6% (-1.4 to 2.4%) 1.2% (-0.7 to 3.0%) 3.3% (1.6 to 5.1%) 

2 
 

0.2% (-1.6 to 1.9%) 1.4% (-0.4 to 3.1%) 3.1% (1.4 to 4.8%) 

3 
 

0.4% (-1.4 to 2.3%) 1.5% (-0.5 to 3.2%) 3.3% (1.6 to 5.0%) 

4 
 

0.4% (-1.3 to 2.3%) 1.2% (-0.5 to 3.2%) 3.3% (1.5 to 5.0%) 

5 (most deprived) 
 

1.0% (-0.9 to 2.7%) 1.4% (-0.4 to 3.1%) 3.4% (1.8 to 5.3%) 

Relative equity slope 
index 

0.6 (-2.4 to 3.8) 0.0 (-2.6 to 3.0) 0.4 (-2.2 to 3.0) 
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Table S14 Distributions that were used as inputs for the simulations. Numbers are rounded 

Variable Sex Ages Distribution 

Relative risks of relevant risk factors for CHD 
 
Active smoking68 table 1 model B Men 30 - 44 Log-Normal (mean = ln(5.51), sd = ln(12.3 / 5.51) / 1.96) 

 
  45 - 59 Log-Normal (mean = ln(3.04), sd = ln(3.48 / 3.04) / 1.96) 

 
  60 - 69 Log-Normal (mean = ln(1.88), sd = ln(2.08 / 1.88) / 1.96) 

 
  70 - 79 Log-Normal (mean = ln(1.44), sd = ln(1.63 / 1.44) / 1.96) 

 
 Women 30 - 44 Log-Normal (mean = ln(2.26), sd = ln(6.14 / 2.26) / 1.96) 

 
  45 - 59 Log-Normal (mean = ln(3.78), sd = ln(4.62 / 3.78) / 1.96) 

 
  60 - 69 Log-Normal (mean = ln(2.53), sd = ln(2.87 / 2.53) / 1.96) 

 
  70 - 79 Log-Normal (mean = ln(1.68), sd = ln(1.93 / 1.68) / 1.96) 

 
  80 - 84 Log-Normal (mean = ln(1.38), sd = ln(1.77 / 1.38) / 1.96) 

 
Ex-Smoking69 web-figure 8 Men 30 - 84 Log-Normal (mean = ln(1.25), sd = ln(1.32 / 1.25) / 1.96) 

 
 Women 30 - 84 Log-Normal (mean = ln(1.2), sd = ln(1.34 / 1.2) / 1.96) 

 
ETS70 table 3 adjusted RR Both 30 - 84 Log-Normal (mean = ln(1.26), sd = ln(1.38 / 1.26) / 1.96) 

 
SBP71 figure 5 Men 30 - 49 Log-Normal (mean = ln(0.5), sd = ln(0.54 / 0.5) / 1.96) 

 
  50 - 59 

 
Log-Normal (mean = ln(0.5), sd = ln(0.52 / 0.5) / 1.96) 
 

  60 - 69 Log-Normal (mean = ln(0.55), sd = ln(0.57 / 0.55) / 1.96) 
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Variable Sex Ages Distribution 

  70 - 74 Log-Normal (mean = ln(0.62), sd = ln(0.64 / 0.62) / 1.96) 
 

  80 - 84 Log-Normal (mean = ln(0.69), sd = ln(0.73 / 0.69) / 1.96) 
 

 Women 30 - 49 Log-Normal (mean = ln(0.4), sd = ln(0.49 / 0.4) / 1.96) 
 

  50 - 59 Log-Normal (mean = ln(0.49), sd = ln(0.54 / 0.49) / 1.96) 
 

  60 - 69 Log-Normal (mean = ln(0.5), sd = ln(0.61 / 0.5) / 1.96) 
 

  70 - 74 Log-Normal (mean = ln(0.55), sd = ln(0.58 / 0.55) / 1.96) 
 

  80 - 84 Log-Normal (mean = ln(0.64), sd = ln(0.68 / 0.64) / 1.96) 
 

TC72 web-table 6 Both 30 - 49 Log-Normal (mean = ln(0.49), sd = ln(0.52 / 0.49) / 1.96) 
 

  50 - 59 Log-Normal (mean = ln(0.62), sd = ln(0.65 / 0.62) / 1.96) 
 

  60 - 69 Log-Normal (mean = ln(0.74), sd = ln(0.76 / 0.74) / 1.96) 
 

  70 - 74 Log-Normal (mean = ln(0.84), sd = ln(0.86 / 0.84) / 1.96) 
 

  80 - 84 Log-Normal (mean = ln(0.87), sd = ln(0.9 / 0.87) / 1.96) 
 

BMI73 table 1 and figure 2 Both 30 - 59 Log-Normal (mean = ln(1.21), sd = ln(1.28 / 1.21) / 1.96) 
 

  60 - 69 Log-Normal (mean = ln(1.06), sd = ln(1.12 / 1.06) / 1.96) 
 

Diabetes74 figure 2 Both 40 - 59 Log-Normal (mean = ln(2.51), sd = ln(2.8/ 2.51) / 1.96) 
 

  60 - 69 Log-Normal (mean = ln(2.01), sd = ln(2.26/ 2.01) / 1.96) 
 

  70 - 84 Log-Normal (mean = ln(1.78), sd = ln(2.05/ 1.78) / 1.96) 
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Variable Sex Ages Distribution 

PA75 table 10.19 Both 30 - 69 No active days: Log-Normal (mean = ln(1.71), sd = ln(1.85/ 1.71) / 1.96) 
 
1 – 4 active days: Log-Normal (mean = ln(1.44), sd = ln(1.62/ 1.44) / 1.96) 
 

  70 - 79 No active days: Log-Normal (mean = ln(1.5), sd = ln(1.61/ 1.5) / 1.96) 
 
1 – 4 active days: Log-Normal (mean = ln(1.31), sd = ln(1.48/ 1.31) / 1.96) 
 

  80 - 84 No active days: Log-Normal (mean = ln(1.4), sd = ln(1.41/ 1.4) / 1.96) 
 
1 – 4 active days: Log-Normal (mean = ln(1.2), sd = ln(1.35/ 1.2) / 1.96) 
 

F&V76   Log-Normal (mean = ln(0.96), sd = ln(1.0.99/ 0.96) / 1.96) 
 

Relative risks of relevant risk factors for stroke 
 
Active smoking68 table 1 model B Men 30 - 59 Log-Normal (mean = ln(3.12), sd = ln(4.64 / 3.12) / 1.96) 

 
  60 - 69 Log-Normal (mean = ln(1.87), sd = ln(2.44 / 1.87) / 1.96) 

 
  70 - 79 Log-Normal (mean = ln(1.39), sd = ln(1.77 / 1.39) / 1.96) 

 Women 30 - 59 Log-Normal (mean = ln(4.61), sd = ln(6.37 / 4.61) / 1.96) 
 

  60 - 69 Log-Normal (mean = ln(2.81), sd = ln(3.58 / 2.81) / 1.96) 
 

  70 - 79 Log-Normal (mean = ln(1.95), sd = ln(2.45 / 1.95) / 1.96) 
 

ETS77 figure 1 Both 30 - 84 Log-Normal (mean = ln(1.25), sd = ln(1.38 / 1.25) / 1.96) 
 

SBP71 figure 3 Men 30 - 49 Log-Normal (mean = ln(0.33), sd = ln(0.38 / 0.33) / 1.96) 
 

  50 - 59 Log-Normal (mean = ln(0.34), sd = ln(0.37 / 0.34) / 1.96) 
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Variable Sex Ages Distribution 

  60 - 69 Log-Normal (mean = ln(0.41), sd = ln(0.44 / 0.41) / 1.96) 
 

  70 - 74 Log-Normal (mean = ln(0.48), sd = ln(0.51 / 0.48) / 1.96) 
 

  80 - 84 Log-Normal (mean = ln(0.68), sd = ln(0.75 / 0.68) / 1.96) 
 

 Women 30 - 49 Log-Normal (mean = ln(0.41), sd = ln(0.49 / 0.41) / 1.96) 
 

  50 - 59 Log-Normal (mean = ln(0.45), sd = ln(0.5 / 0.45) / 1.96) 
 

  60 - 69 Log-Normal (mean = ln(0.47), sd = ln(0.51 / 0.47) / 1.96) 
 

  70 - 74 Log-Normal (mean = ln(0.53), sd = ln(0.56 / 0.53) / 1.96) 
 

  80 - 84 Log-Normal (mean = ln(0.65), sd = ln(0.71 / 0.65) / 1.96) 
 

TC72 figure 3 Both 40 - 49 Log-Normal (mean = ln(0.87), sd = ln(1 / 0.87) / 1.96) 
 

  50 - 59 Log-Normal (mean = ln(0.91), sd = ln(0.97 / 0.91) / 1.96) 
 

  60 - 69 Log-Normal (mean = ln(0.93), sd = ln(0.97 / 0.93) / 1.96) 
 

BMI73 table 1 and figure 2 Both 30 - 59 Log-Normal (mean = ln(1.18), sd = ln(1.26 / 1.18) / 1.96) 
 

  60 - 69 Log-Normal (mean = ln(1.08), sd = ln(1.15 / 1.08) / 1.96) 
 

Diabetes74 figure 2 Both 40 - 59 Log-Normal (mean = ln(3.74), sd = ln(4.58/ 3.74) / 1.96) 
 

  60 - 69 Log-Normal (mean = ln(2.06), sd = ln(2.58/ 2.06) / 1.96) 
 

  70 - 84 Log-Normal (mean = ln(1.8), sd = ln(2.27/ 1.8) / 1.96) 
 

PA75 table 10.20 Both 30 - 69 No active days: Log-Normal (mean = ln(1.53), sd = ln(1.79/ 1.53 / 1.96) 
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Variable Sex Ages Distribution 

  70 - 79 No active days: Log-Normal (mean = ln(1.38), sd = ln(1.6/ 1.38) / 1.96) 
 

  80 - 84 No active days: Log-Normal (mean = ln(1.24), sd = ln(1.45/ 1.24) / 1.96) 
 

F&V78   Log-Normal (mean = ln(0.95), sd = ln(0.97/ 0.95) / 1.96) 
 

Universal screening and variations 
 
Proportion of participants with a QRISK2 score between 10% 
and 20%79 
 

Both 40 - 74 PERT (min = 0.2, mode = 0.25, max = 0.3, shape = 4) 

Proportion of participants with a QRISK2 score higher than 
20%79 
 

Both 40 - 74 PERT (min = 0.04, mode = 0.05, max = 0.1, shape = 4) 

Atorvastatin 20mg relative reduction on TC56,57 
 

Both 40 - 74 Normal (mean = 0.32, sd = 0.14) 

Atorvastatin prescription uptake58 
(QRISK2: 10% - 20%) 
 

Both 40 - 74 PERT (min = 0.07, mode = 0.17, max = 0.24, shape = 4) 

Atorvastatin prescription uptake58 
(QRISK2: > 20%) 
 

Both 40 - 74 PERT (min = 0.2, mode = 0.24, max = 0.3, shape = 4) 

Antihypertensive medication prescription uptake58 
(QRISK2: 10% - 20%) 
 

Both 40 - 74 PERT (min = 0.05, mode = 0.13, max = 0.2, shape = 4) 

Antihypertensive medication prescription uptake58 
(QRISK2: > 20%) 
 

Both 40 - 74 PERT (min = 0.15, mode = 0.23, max = 0.3, shape = 4) 

Persistence with medication80 
 

Both 40 - 74 PERT (min = 0.5, mode = 0.8, max = 1, shape = 4) 

Adherence to medication80 
 

Both 40 - 74 PERT (min = 0.3, mode = 0.7, max = 1, shape = 4) 

1st year smoking cessation success rate81,82 
 

Both 40 - 74 Bernoulli (probability = 0.1) 
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Variable Sex Ages Distribution 

Relative BMI reduction Both 40 - 74 1 - PERT (min = 0.97, mode = 0.99, max = 1, shape = 4) 
 

Proportion of high-risk participants to increase F&V 
consumption by a portion per day 
 

Both 40 - 74 Bernoulli (probability = 0.5) 

Proportion of high-risk participants to increase PA by a day per 
week 
 

Both 40 - 74 Bernoulli (probability = 0.5) 

Universal screening (20% treatment threshold)  
 
Atorvastatin prescription uptake58 
(QRISK2: 10% - 20%) 
 

Both 40 - 74 PERT (min = 0.01, mode = 0.07, max = 0.10, shape = 4) 

Population-wide intervention 
 
Smoking prevalence relative reduction83 
 

Both 30 - 84 PERT (min = 0.05, mode = 0.13, max = 0.14, shape = 4) 

BMI rate of increase relative reduction84–86 
 

Both 30 - 84 1 - PERT (min = 0.98, mode = 0.99, max = 1, shape = 4)* 

SBP absolute decrease (mmHg)87,88 
 

Both 30 - 84 PERT (min = 0.18, mode = 0.81, max = 1.10, shape = 4) 

Proportion of the population to increase their F&V 
consumption by 1 portion89,90 

Both 30 - 84 PERT (min = 0.2, mode = 0.5, max = 0.8, shape = 4) 

 

                                                           
* The reduction is applied for five consecutive year so the overall reduction is the distribution to the fifth power. 
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