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Supplementary Figure 1. Generation and characterization of Srsf2 hemizygous mutant mice. (a) 
Srsf2P95H hemizygous mutant mice and littermate controls were generated by crossing Mx1-Cre+Srsf2+/fl 
mice to Srsf2P95H/+ mice. This generated Mx1-Cre+Srsf2+/+ control mice, Mx1-Cre+Srsf2+/fl mice 
(heterozygous knockout; Mx1-Cre+Srsf2+/–), heterozygous mutant (Mx1-Cre+Srsf2P95H/+) mice, and 
hemizygous mutant (Mx1-Cre+Srsf2P95H/–) mice. (b) Percentage of CD45.2+ chimerism in the peripheral 
blood of CD45.1 recipient mice (n = 10 mice/genotype) following pIpC administration in competitive BM 
transplantation. (c) Flow cytometric enumeration of CD45.2+ long-term hematopoietic stem (lineage-
negative Sca1-c-Kit+ (LSK) CD150+ CD48–) cells in the BM of recipient mice 18-weeks following 
transplantation with control (Srsf2+/+), heterozygous knockout (Srsf2+/–), heterozygous mutant 
(Srsf2P95H/+), and hemizygous mutant (Srsf2P95H/–) BM cells. (d) Wright-Giemsa staining of peripheral 
blood smears from non-competitively transplanted mice (scale bars, 5 µm) revealing hypolobated 
neutrophils in peripheral blood of Srsf2P95H/+ and Srsf2P95H/– mice. (e) Hemoglobin and (f) peripheral 
blood platelet count of each genotype of mice over 18-weeks of noncompetitive transplantation. (g) 
Gene Ontology analysis of differentially expressed genes in purified HSPCs from Srsf2+/–, Srsf2P95H/+ 
and Srsf2P95H/– mice relative to Srsf2+/+ control mice. Error bars represent mean ± SD. *P < 0.05; ***P < 
0.001; ****P < 0.0001.  
 
Supplementary Figure 2. The wildtype Srsf2 allele is required for leukemogenesis in the context 
of Srsf2P95H mutation. (a) Experimental schema used to generate MLL-AF9 murine leukemia model 
on the Srsf2P95H/– background. MLL-AF9 cDNA (in an MSCV-IRES-GFP vector) was retrovirally 
overexpressed in c-Kit-enriched E12.5-14.5 fetal liver cells from Srsf2P95H/fl or Mx1-Cre+Srsf2P95H/– mice, 
and transplanted into lethally irradiated CD45.1 recipient mice via tail-vein injection. Analysis of 
peripheral blood (PB) (b) white blood cell, (c) red blood cell, and (d) platelet counts over 6 weeks post-
polyI:C administration. (e) Analysis of PB GFP percentage and (f) donor-derived (CD45.2 percentage) 
contribution over 6 weeks post-polyI:C administration. (g) White blood cell count and GFP percentage 
of Srsf2P95H/fl (control) and Srsf2P95H/– (hemizygous) mice at week 3 post-pIpC administration. The 
animal indicated by the red square eventually developed AML. (h) Kaplan-Meier survival curves of 
primary MLL-AF9/Srsf2P95H/fl (control) and MLL-AF9/Srsf2P95H/– (hemizygous) mice (Mantel-Cox log-
ranked test). (i) Genotyping PCR of the Srsf2 flox allele. DNA samples were extracted from the PB of 
mice in the pre-leukemic phase (3 wk), and from BM cells at the time of leukemic onset (Sac). Mouse 
#4 is derived from the same animal boxed in red in (g). (j) Experimental schema to examine the effect 
of E7107 treatment on the Srsf2-wildtype (Mx1-Cre+Srsf2+/+) and Srsf2-mutant (Mx1-Cre+Srsf2P95H/+) 
BM LK (CD45.2+ lineage-negative Sca1- cKit+) population. Error bars represent mean ± SE. *P < 0.05; 
**P < 0.01; ***P < 0.001; ****P < 0.0001. 
 
Supplementary Figure 3. Generation of MLL-rearranged Srsf2-wildtype or mutant murine 
leukemias and sensitivity to E7107. (a) Schematic of protocol used to generate MLL-AF9 
overexpressing leukemias on Srsf2 wildtype (Srsf2+/+) or mutant (Srsf2P95H/+) backgrounds. MLL-AF9 
cDNA (in an MSCV-IRES-GFP vector) was retrovirally overexpressed in bone marrow (BM) 
mononuclear cells harvested from 5-fluorouracil (5-FU)-treated Vav-Cre+Srsf2+/+ or Vav-Cre+Srsf2P95H/+ 
mice. Lethally irradiated CD45.1 recipient mice were reconstituted with MLL-AF9;Srsf2+/+ or MLL-
AF9;Srsf2P95H/+ BM cells by tail-vein injection. (b) Kaplan-Meier survival curves of primary transplant 
recipient mice (Mantel-Cox log-ranked test). (c) Liver and spleen weight from MLL-AF9;Srsf2+/+ and 
MLL-AF9;Srsf2P95H/+ mice at the time of sacrifice. (d) Gene Ontology analysis of differentially expressed 
genes in purified leukemic cells (Mac1+ GFP+) from MLL-AF9;Srsf2+/+ and MLL-AF9;Srsf2P95H/+ mice. (e) 
Flow cytometric characterization of BM, spleen, and peripheral blood of primary recipients from MLL-
AF9;Srsf2+/+ or MLL-AF9;Srsf2P95H/+ murine leukemias. (f) H&E staining of BM, spleen (scale bars, 100 
µm) and liver (scale bars, 200 µm), and (g) BM cytospin (scale bars, 50 µm) from primary MLL-
AF9;Srsf2+/+ and MLL-AF9;Srsf2P95H/+ mice at the time of sacrifice. (h) H&E staining of BM (scale bars, 
100 µm) and liver (scale bars, 200 µm) from recipient mice following 10 days of E7107 treatment. 
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Peripheral blood hemoglobin (i), and platelet (j) counts following 10 days of E7107 or vehicle treatment 
in secondary transplant mice. Error bars represent mean ± SD. *P < 0.05; **P < 0.01; ***P < 0.001. 
 
Supplementary Figure 4. Global splicing and coding gene expression changes in myeloid 
leukemias treated with E7107 in SRSF2-wildtype or mutant background. (a) Summary of the 
numbers of up-/down-regulated splicing events and coding genes identified when comparing E7107- 
treated to untreated samples. (b) Heat map based on most variable cassette exons or retained introns 
or (c) coding genes in MLL-AF9;Srsf2+/+ or MLL-AF9;Srsf2P95H/+ leukemias following E7107 or vehicle 
treatment in vivo. The majority of the observed variation is genotype-specific. Sample colors as in Fig. 
3. Gene expression was normalized with the TMM method1, and all values were z-score standardized. 
(d) Cumulative distribution function (CDF) analyses comparing cassette exon splicing (top) and intron 
retention (bottom) in MLL-AF9;Srsf2+/+ or MLL-AF9;Srsf2P95H/+ leukemias following E7107 or vehicle 
treatment in vivo, using median Ψ values across replicates. Only cassette exons and introns within 
mouse homologs of genes containing differentially spliced events in at least one of the human SRSF2-
mutant, MLL-rearranged AML samples from Fig. 2c are included. Insert in each plot is zoomed-in to 
display the difference between the two genotypes. (e) Gene Ontology analysis of differentially 
expressed genes in purified leukemic cells (Mac1+ GFP+) from MLL-AF9;Srsf2+/+ and MLL-
AF9;Srsf2P95H/+ mice. (f) Western blot analysis of Meis1 and histone H3 lysine 79 dimethylation 
(H3K79me2) levels in MLL-AF9;Srsf2+/+ and MLL-AF9;Srsf2P95H/+ leukemic cells following 3 days of 
E7107 treatment (0.5 nM) in vitro. Cells were also separately treated with a DOT1L inhibitor, EPZ-4777 
(EPZ; 10 µM), as a positive control for H3K79me2 level following DOT1L inhibition. Actin and histone 
H3 were used as loading controls. (g) Relative protein levels were quantified by densitometry relative to 
DMSO-treated cells. Error bars represent mean ± SD. ***P < 0.001; ****P < 0.0001. 
 
Supplementary Figure 5. Effects of Dot1l and Meis1 restoration on E7107-mediated growth 
inhibition and rescue of E7107-mediated effects via the SF3B1 R1074H mutation. (a) Confirmation 
of  DOT1L cDNA overexpression by western blot of H3K79me2 in MLL-AF9;Srsf2+/+ and MLL-
AF9;Srsf2P95H/+ leukemia cells in vitro. Histone H3 was used as a loading control. (b) Relative 
proliferation of MLL-AF9;Srsf2+/+ (n = 3 independent biological clones) and MLL-AF9;Srsf2P95H/+ (n = 4 
independent biological clones) leukemia cells overexpressing DOT1L 6 days post E7107 (0.5 nM) or 
DMSO exposure. (c) Confirmation of Meis1 cDNA overexpression by qRT-PCR. (d) Relative 
proliferation of MLL-AF9;Srsf2+/+ (n = 3 independent biological clones) and MLL-AF9;Srsf2P95H/+ (n = 4 
independent biological clones) leukemia cells overexpressing Meis1 6 days post E7107 (0.5 nM) or 
DMSO exposure. (e) Experimental schema to generate stable cell lines expressing N-terminal FLAG 
tagged SF3B1 wildtype (WT) or SF3B1R1074H using the PiggyBac Transposon system. Confirmation 
of SF3B1WT or SF3B1R1074H plasmid integration into MLL-AF9 leukemia cells by (f) Sanger 
sequencing (using PCR primers specific for the codon-optimized SF3B1 wildtype or R1074H cDNA), 
and (g) validation of protein expression by Western blotting. (h) In vitro cell viability assay following 48 
hours of E7107 treatment in MLL-AF9;Srsf2P95H/+ parental, (white circle), MLL-
AF9;Srsf2P95H/+SF3B1WT- (blue diamond) and MLL-AF9;Srsf2P95H/+ SF3B1R1074H- (red square) 
expressing cells. The numbers in the parentheses correspond to the IC50 value of each cell line 48 
hours after E7107 exposure. (i) Qualitative RT-PCR (left) and qRT-PCR (right) analyses quantifying the 
relative levels of exclusion (EX) and inclusion (IN) isoforms of Dot1l and Meis1 in MLL-AF9;Srsf2P95H/+ 
parental, MLL-AF9;Srsf2P95H/+;SF3B1 WT- and MLL-AF9;Srsf2P95H/+;SF3B1R1074H-expressing cells, 3 
and 6 hours after E7107 (10 nM) or DMSO exposure in vitro. Error bars represent mean ± SD. *P < 
0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. 
 
Supplementary Figure 6. Efficacy of pharmacologic inhibition of splicing in human myeloid 
leukemias and primary normal human cells. (a) Variant allele frequencies (VAF) of somatic 
mutations in primary human AML peripheral blood mononuclear cells (PB MNCs) (x-axis) and hCD45+ 
cells purified from 3 vehicle-treated mice engrafted from each patient (y-axis). (b) VAF of mutations 
from hCD45+ cells purified from E7107- (y-axis) versus vehicle-treated (x-axis) mice (n = 3 mice per 
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treatment group). Percentage of (c) human stem (hCD45+ hCD34+ hCD38-) and progenitor (hCD45+ 
hCD34+ hCD38+), (d) lymphoid (hCD45+ hCD3+ hCD19+) and (e) myeloid (hCD45+ hCD33+) fractions in 
bone marrow (BM) of NSG mice following 10 days of vehicle or E7107 treatment based on spliceosome 
mutational status. (f) Experimental schema used to examine the effect of E7107 treatment on apoptosis 
and cell cycle in vivo using primary human AML patient-derived xenograft (PDX) models. Following 
stable engraftment of human leukemia cells, mice were treated with E7107 (4 mg/kg/day) or vehicle for 
5 consecutive days. BrdU was injected 24 hours prior to the last treatment, and mice were sacrificed 3 
hours after the fifth E7107 treatment. Apoptosis and cell cycle status of human leukemia cells (hCD45+) 
were determined by Annexin V/PI staining and BrdU incorporation, respectively. Error bars represent 
mean ± SD. *P < 0.05; **P < 0.01; ***P < 0.001. 
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Supplementary Table 1: Median normalized gene expression values across replicates in each of 
the murine mRNA sequencing experiments shown in Figures 1-3. Gene expression values 
averaged across replicates within each dataset are provided.  
 
 
Supplementary Table 2: Frequency of differential splicing for different classes of splicing events 
associated with Srsf2 alterations. From top to bottom, numbers indicate the percentage of 
increases/decreases in usage of intron-proximal 5' splice sites, usage of intron-proximal 3' splice sites, 
inclusion of cassette exons, canonical splicing of annotated constitutive splice junctions, removal of 
introns annotated as alternative, and removal of introns annotated as constitutive. Frequency is relative 
to the total number of splicing events that could be detected within each comparison.  
 

 
 
 
Supplementary Table 3: Median exon inclusion rates (PSI (percent spliced in) values (ψ)) for 
cassette exons across replicates in each of the murine mRNA sequencing experiments shown 
in Figures 1-3. PSI values averaged across replicates within each dataset are shown.  
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Supplementary Table 4: Genetic characteristics of primary AML patients used in patient-derived 
xenograft (PDX) models. Spliceosomal gene mutations are shown in red font.  
 
Patient 
ID 

Diagnosis &  
Blast 
percentage 

Cytogenetics Somatic Mutations 

Pt_009 Relapsed AML 
Blast = 40.1% 

Add (1p) 
Del5q 
Del11q 
Del12p 
Inv chromosome 5 
 

WT1_R380fs*72 

Pt_011 Relapsed AML 
Blast = 40% 

MLL-ENL FBXO11_P49_Q50insQ 
KRAS_G12C 
WT1_R370fs*15 

Pt_026 Relapsed AML 
Blast = 57% 

Trisomy 4 
Inv chromosome 3 
 

NPM1_W288fs*10 
TET2_Q690* 

Pt_008 Relapsed AML 
Blast = 60% 

Del1p 
Trisomy 13 
MLL-EP300 

ASXL1_M723fs*3 
IDH1_R132C 
JAK2_V617F 
RUNX1_P383fs*101 
ZRSR2_splice_399+1G>C 

Pt_038 De novo AML 
Blast = 33.6% 

Trisomy 13 ASXL1_E635fs*15 
FLT3_D835Y 
KRAS_G12D 
KRAS_Q61L 
SRSF2_P95_P96insR 
STAG2_splice_894-2A>G 
TET2 deletion 

Pt_050 Relapsed AML 
Blast = 55% 

Del7q 
 

CEBPA_R165fs*6 
NPM1_W288fs*10 
SRSF2_P95L 
TET2_Q417* 
TET2_S1286F 
TP53_R175H 
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