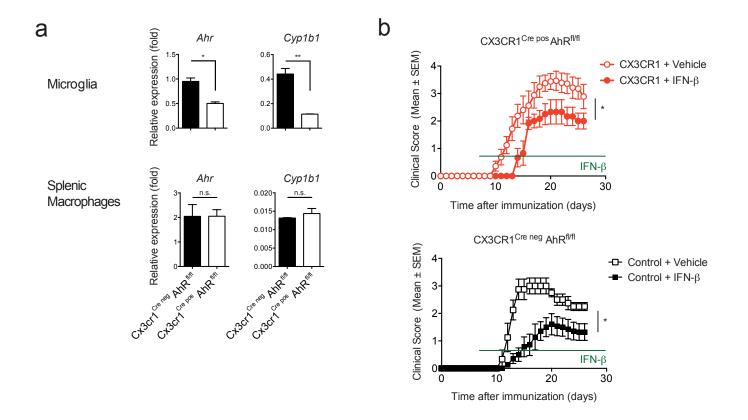
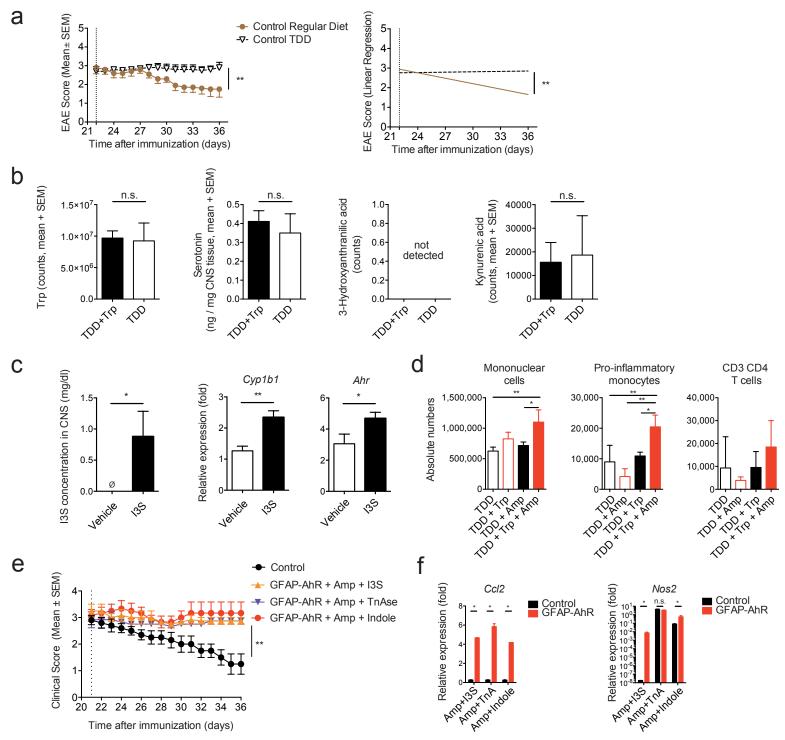


Supplementary Figure 1. FACS sorting, purity and effector molecule production of CNS cell populations during EAE. (a) FACS gating strategy for the purification of astrocytes, monocytes and microglia from mononuclear CNS cell suspensions. Purity of sorted astrocyte population was higher than 95% as determined by intracellular staining for glial fibrillary acidic protein (GFAP). Numbers indicate percentages. Representative for n > 10 experiments. (b,c) Relative expression of indicated genes in sorted cell populations from peak disease EAE mice (n = 3; representative of three independent experiments; normalized to Monocytes Itgam). (d) Relative abundance of indicated cell type in CNS of peak disease EAE mice (n = 3; representative of two independent experiments). (e) Relative expression of Ccl2, Nos2, and Csf2 in indicated cell types as normalized to the total abundance of each cell type in mouse EAE brain (n = 3; representative of two independent experiments).



Supplementary Figure 2. Effects of adjuvant on CNS immune cell infiltration and pro-inflammatory molecule production. (a) Left: Clinical Score of mice immunized with CFA only or MOG_{35-55} /CFA immunized mice (n = 5, mean + s.e.m.). Middle: Percentage of initial body weight (BW) at day 23 after EAE induction (means + s.e.m., n = 5, one-way ANOVA followed by Tukey's post-hoc test). Right: relative fractions of total mononuclear and T cells (pie charts), as well as T cell cytokine distribution (parts of whole diagram) in brain, spinal cord, and optic nerve during EAE (d23). Representative out of two independent experiments with n = 5 mice each. (b) Left: Spleen, brain, spinal cord, and optic nerve infiltrating mononuclear cells were isolated separately and stained for CD3 and CD4. Numbers in dot plots indicate percentages in live cell gate (representative out of five independent experiments). Right: quantification of absolute cell numbers of mononuclear cells, T cells, and pro-inflammatory monocytes in spleen, brain, spinal cord, and optic nerve at peak disease (day 23; means + s.e.m, n = 5, one-way ANOVA followed by Tukey's post-hoc test). (c,d) qPCR for indicated transcripts from astrocytes sorted separately from brain and spinal cord at day 23 after immunization (n = 3, means + s.e.m., one-way ANOVA followed by Tukey's post-hoc test; normalized to Brain naïve *Ccl2*). Significance levels: * *P*<0.05; ** *P*<0.01; *** *P*<0.001. n.s. not statistically significant.

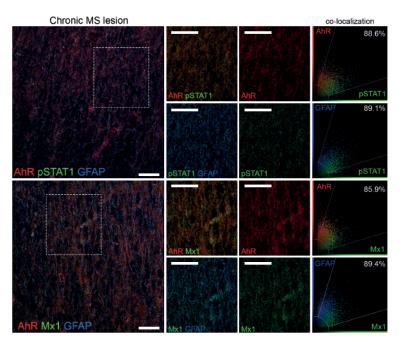

Supplementary Figure 3. IFNAR1 and AhR signaling in astrocytes modulate EAE.

(a) WT or IL27R KO astrocytes were treated with IFN- β or vehicle and indicated mRNAs were measured by qPCR (n = 3, representative of two independent experiments; one-way ANOVA followed by Tukey's multiple comparisons test; normalized to WT – IFN- β Ahr). (b) Clinical scores of shControl or shAhR injected mice after intracerebroventricular injection on day 7 and day 15 (mean ± SEM representative out of two independent experiments with n = 10 mice per group; Two-way ANOVA). (c) qPCR of indicated genes in astrocytes and microglia FACS-sorted separately from brains and spinal cords of shControl, shIfnar1, and shAhR injected mice (n = 3 per group, representative of two independent experiments, one-way ANOVA followed by Tukey's multiple comparisons test; normalized to Brain shControl *Ifnar1*). (d) Proliferation assay of splenocytes isolated from control or GFAP-AhR mice at peak of disease (n = 3; representative of three independent experiments). (e) FACS analysis of absolute numbers of CNS infiltrating immune cells at peak of disease (CD3+CD4+ T cells, CD3+ CD4+ IFN- γ - IL17+ Th17 cells, CD3+ CD4+ IL-17+ Ifn- γ + Th1 cells, CD3+ CD4+ IFN- γ - IL-17- Foxp3+ Treg cells). n = 5 per group, representative of 5 independent experiments, no significant difference as determined by Student's t-test. (f) Quantification of CD3+ CD4+ T cells, pro-inflammatory monocytes, and microglia of indicated cell populations in shControl, shIfnar1, and shAhR injected mice at day 30 after disease induction (n = 5 per group, representative of two independent experiments, one-way ANOVA, Tukey's multiple comparisons test). Significance levels: * P<0.05; ** P<0.01; n.s. not statistically significant.

Supplementary Figure 4. AhR expressed in microglia does not mediate the protecitve effects of intranasal IFN- β .

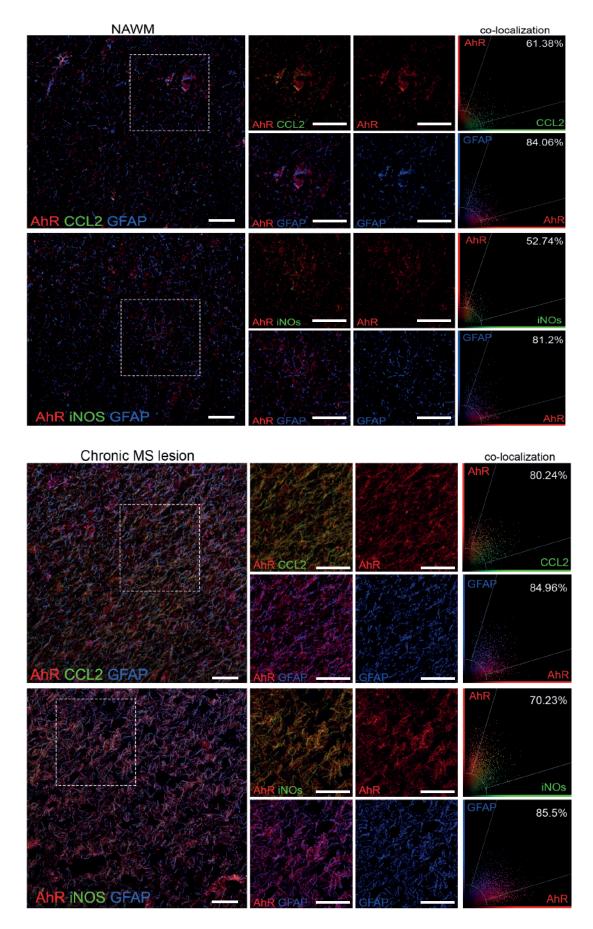
(a) CX3CR1^{CreERT2}AhR^{fl/fl} or Cre negative littermates were injected with tamoxifen. Microglia and splenic macrophages were FACS-sorted 30 days after tamoxifen injection and relative expression of *Ahr* and *Cyp1b1* determined by qPCR (n = 2, representative of two independent experiments; one-way ANOVA followed by Tukey's post-hoc test; normalized to control microglia *Ahr*). (b) 30 days after Cre induction, CX3CR1^{CreERT2}AhR^{fl/fl} or Cre negative littermates were immunized with MOG₃₅₋₅₅/CFA. Treatment with intranasal IFN- β was initiated daily at day 7 after disease induction. Clinical scores (mean ± SEM; representative out of two independent experiments with n = 4 mice per group; two-way ANOVA). Signifance levels: **P*<0.05, ***P*<0.01, n.s. not statistically significant.

Supplementary Figure 5. Effects of TDD on EAE, CNS metabolites and astrocyte activation.


(a) Control animals were treated as indicated starting on day 22 after EAE induction (TDD: Tryptophan depleted diet; Trp: Tryptophan) Clinical scores (left) and linear regression (right) (mean ± s.e.m. in left graph; linear regression in right diagram; representative out of two independent experiments with n = 10 mice per group; two-way ANOVA). (b) Trp, Serotonin, 3-Hydroxyanthranilic acid, and Kynurenic acid levels in the CNS of EAE mice after 14 days of TDD or control diet as measured by mass spectrometry (Trp, 3-Hydroxyanthranilic acid, Kynurenic acid) or ELISA (Serotonin); n = 5 per group, mean + SEM, Student's t-test. (c) Naive WT mice were treated with daily intraperitoneal injections of I3S for three days. Thereafter, mice were sacrificed and perfused extensively. CNS was isolated, minced and sonicated. After removal of cellular debris I3S levels were determined by Indican ELISA (left). (I3S levels normalized to CNS tissue weight; representative of two independent experiments, n = 3, Student's t-test). Astrocytes from I3S or contrl treated mice were FACS-sorted, and relative RNA abundances of Cyp1b1 and Ahr were determined by qPCR (representative of two independent experiments, n = 3; Student's t-test; normalized to Vehicle Cyp1b1). (d) Quantification of absolute cell numbers of indicated populations in antibiotics or diet treated experiments (representative of two independent experiments, n = 5; one-way ANOVA followed by Tukey's post-hoc test). (e) Control or GFAP-AhR animals were treated as indicated starting on day 22 after EAE induction. Clinical scores (mean \pm s.e.m., representative out of two independent experiments with n = 5 mice per group; two-way ANOVA). (f) Treatment groups from e were sacrificed at day 36, astrocytes were FACS-sorted and total RNA subjected to qPCR for Cc/2 and Nos2. (representative out of two independent experiments with n = 5 mice per group; one-way ANOVA followed by Tukey's post-hoc test; normalized to GFAP-AhR Amp+Indole). Significance levels: * P<0.05, ** P<0.01, *** P<0.001, n.s. not statistically significant, ø not detected).

			co-localization
	and the second s	and a	AhR 80.98%
	AhR pSTAT1	AhR	pSTAT1 GFAP 56%
AhR pSTAT1 GFAP	pSTAT1 GFAP	pSTAT1	pSTAT1
			AhR 65.31%
	AhR Mx1	AhR I A	Mx1
AhR Mx1 GFAP	Muticente	My1	GFAP 46.36%
Active MS lesion		IIIX I	co-localization
		* A the	AhR 88.2%
	AHR PSTAT1	AhR	pSTAT1
CALL AND AND A PARTY AND A	and a second a second from	e la	GFAP 89.1%

co-localization


NAWM

ARR pSTATTI GFAP BSTATTI GFAP

Supplementary Figure 6. IFN-I signaling is activated in MS tissue.

Immunofluorescence staining of human white matter brain tissue of NAWM, active and chronic MS lesions for AhR (red), pSTAT1 or Mx1 (green), and GFAP (blue). The co-expression of AhR with Mx1 and pSTAT1 is shown in the colocalization scatter graphs (right panels). Data shown are representative of n = 10 fields per tissues type from two distinct MS brains. Scale bar: 20 µm.

Supplementary Figure 7. CCL2, iNOS and AhR colocalize in GFAP+ astrocytes in MS lesions.

Immunofluorescence staining of human white matter brain tissue from NAWM and chronic MS lesions for AhR (red), CCL2 (green, top), iNOS (green, bottom) and GFAP (blue). The co-expression of AhR with CCL2 and iNOs is shown in the colocalization scatter graphs (right panels). Data shown are representative of n = 12 fields per tissues type from three distinct MS brains. Scale bar: 20 µm.

Name of gene set	Gene set	Overlap	p-value
Signal transduction	1634	151	6.4 x 10 ⁻²⁰
Interferome Type I Interferon responsive genes	988	271	5.2 x 10 ⁻¹⁹
Reactome Interferon Signaling	159	41	2.1 x 10 ⁻¹⁸
Interferon-beta response up	102	32	1.6 x 10 ⁻¹⁶
Interferon-beta1 targets	95	27	1.8 x 10 ⁻¹⁵
IkB-Kinase - NF-kB Cascade	114	28	3.1 x 10 ⁻¹⁴
Positive regulation of cell proliferation	149	24	2.0 x 10 ⁻⁸
Regulation of cellular metabolic processes	787	64	6.4 x 10 ⁻⁷
Cytokine activity	113	18	1.4 x 10 ⁻⁶
Cell migration	96	16	2.9 x 10 ⁻⁶
Chemokine activity	42	10	8.1 x 10 ⁻⁶
Inflammatory response	129	17	3.6 x 10⁻⁵

Supplementary Table 1. Ingenuity pathway analysis of the transcriptional profile of astrocytes in EAE or healthy mice.

		Na	nostring arra	ау		
Ahr	Chi3l3	Fgf2	<i>ll18</i>	Mbp	Sirt2	Traf3ip2
Arg1	Ciita	Fos	ll18r1	Mcam	Sirt3	Tubb5
Arnt	Cltc	Fosb	ll18rap	Megf10	Sirt4	Tyro3
Axl	Cntf	Fosl1	ll1b	Meig1	Sirt5	Vcam1
B2m	Csf1	Fosl2	<i>II</i> 2	Mertk	Sirt6	Vegfa
B4galt6	Csf2	Foxj1	ll21	Mmp11	Sirt7	Vim
Bach1	Csf3	Gapdh	ll21r	Mmp12	Slc1a2	Traf3ip2
Bag3	Cspg4	Glul	ll23a	Mmp2	Socs3	Tubb5
Bcan	Ctla4	Glycam1	<i>II</i> 27	Mmp3	Sox8	Tyro3
Bcl2	Cx3cl1	Gusb	ll27ra	Mmp9	Spp1	Vcam1
Bcl3	Cx3cr1	H2 -Aa	1/33	Cd206	Sra1	Vegfa
Beclin1	Cxcl10	H2 - Ab1	114	Msx1	Stat1	Vim
Ccl1	Cxcl11	H2 -Ea	ll4ra	Msx2	Stat2	
Ccl17	Cxcl12	Helz2	115	сМус	Stat3	
Ccl19	Cxcl13	Hif1a	116	Ncan	Stat4	
Ccl2	Cxcl14	Hmox1	ll7r	Nfe2l2	Stat5a	
Ccl20	Cxcl15	Hprt1	Irf1	Nfil3	Stat6	
Ccl3	Cxcl16	Hsp90	Irf2	Ngf	Tbk1	
Ccl4	Cxcl2	lcam1	Irf3	Nos2	Tgfb1	
Ccl5	Cxc/3	lfih1	Irf 4	Nqo1	Tgfb2	
Ccl7	Cxcl9	lfnar1	Irf5	Nr1d1	Tgfb3	
Ccl8	Cxcl8	lfnb1	Irf6	Cd73	Timp1	
Ccr2	Cxcr4	lfng	Irf7	Ntf3	Tiparp	
Ccr5	Cyp1a1	lgf1	Irf8	Ntf4	Tlr1	
Cd14	Cyp1b1	<i>II10</i>	Irf9	Pdgfa	Tlr11	
Cd163	Ddx58	ll10ra	ltga7	Pdgfb	Tlr12	
Cd209	Dhx58	1111	Itgam	Pgk1	Tlr2	
Cd24a	Ebi3	ll12a	Itgax	Ptgs1	Tlr3	
Cd36	Emr1	ll12b	Keap1	Ptgs2	Tlr4	
Cd38	Entpd1	ll12rb1	Lif	Rela	Tlr5	
Cd40	Era	ll12rb2	Lifr	Relb	Tlr6	
Cd80	Esrra	<i>ll13</i>	Ly6c1	Retnla	Tlr7	
Cd83	Esrrb	<i>ll15</i>	Ly6g	Runx1	Tlr8	
Cd86	Fas	ll15ra	Maf	Sele	Tlr9	
Brunol4	Fasl	ll17ra	Marco	Sirt1	TNF	

Supplementary Table 2. Custom-made NanoString nCounter code set.

Pro-inflammatory gene cluster					
Ccl4	Cd83	H2-ab	ll15	ll23a	
Ccl5	Cd86	H2-Ea	ll15ra	Irf5	
Ccl8	Cxcl9	Marco	ll12a	Nos2	
Ccl19	Cxcl10	lcam	ll12b	Ptgs2	
Ccl20	Cxcl11	ll1b	ll12ra	Socs3	
Cd40	Cxcl13	<i>II6</i>	<i>ll18</i>	Stat1	
Cd80	H2-Aa	ll7r	ll18r	Tnf	

Supplementary Table 3. Pro-inflammatory gene cluster used for Nanostring Analyses.

	Control	GFAP-AhR	р
Onset (day)	12.18 ± 0.1822	10.96 ± 0.4598	0.0054
Peak (score)	3.413 ± 0.07984	3.761 ± 0.1024	0.0099
End (score)	1.75 ± 0.4257	3.25 ± 0.5379	0.027
Mortality	0/40	1/23	n.s.

Supplementary Table 4. EAE in GFAP-AhR deficient and Control mice. n.s. not statistically significant.