Supplemental Information

"The mechanism and structural basis of indirect DNA sequence recognition and its impact on gene targeting by meganucleases"

Abigail R. Lambert, Jazmine P. Hallinan, Betty W. Shen, Jennifer K. Chik, Jill M. Bolduc, Nadia Kulshina, Lori I. Robins, Brett K. Kaiser, Jordan Jarjour, Kyle Havens, Andrew M. Scharenberg and Barry L. Stoddard

Supplemental Figures and Tables

Figure S1. Meganuclease thermal denaturation profiles and stabilities (Related to Figure 1)

Figure S2. Protein-DNA contact map for meganuclease N-terminal domains (Related to Figure 2)

Figure S3. Protein-DNA contact map for meganuclease C-terminal domains (Related to Figure 2)

Figure S4. Schematic of flow cytometric assays for (a) meganuclease expression (b) DNA binding and (c) DNA cleavage (Related to Figure 3)

Figure S5. Analysis and Quantification of Flow Cytometric Binding and Cleavage Data (Related to Figure 4)

Figure S6. Tethered flow cleavage assays for I-PanMI against DNA substrates containing all possible 'central 4' basepair sequence combinations (Related to Figure 5)

Figure S7. Overall DNA bending induced by binding of I-SmaMI to wildtype and mutated DNA target sequences (Related to Figure 6)

Figure S8. Central four cleavage specificity of I-SmaMI in the presence of Mg^{2+} vs. Mn^{2+} (Related to Figure 6)

Table S1. I-OnuI family meganucleases characterized in this study

Supplemental Data File S1 (zipped file). Binding and cleavage data file for the 9 individual meganucleases described in this study. Related to Figures 3 and 4.

Supplemental Experimental Procedures

- 1. Meganuclease Sequences (coding and translated)
- 2. Enzyme expression, purification, biochemical analyses, crystallization and X-ray data collection
- 3. Meganuclease Target Site Prediction
- 4. Generation of DNA Substrates for Assays of Binding and Cleavage

Figure S2, related to Figure 2. Protein-DNA contact map for N-terminal meganuclease domains. Colors match the

corresponding protein structures from Figure 1. Blacked out regions indicate the absence of a DNA contact for that particular position while dashes indicate the absence of the amino acid itself at that position.

Domain	Tertiary	Secondary	Position	Onul	GpeMI	CpaMI	Ltrl	LtrWI	PanMI	Gzell	SmaMI	AabMI	
	Structure	Structure	Name										
			A1_P1	200	19D	16D	27D	20D	18D	17D	18D	11D	
	LAGLIDADG	Alpha 1	A1_P2	21A	18A	17A	28A	21A	19G	18A	19A	12G	
			A1_P3	22E	19E	18E	29E	22E	20E	19E	20E	13E	
		LoopA1-B1	A1/B1_P1	23G	20G	19C	305	23G	21G	20G	21G	14G	
			B1_P1	24S	215	205	31S	24S	225	215	225	15C	
			B1_P2	25F	19F	21F	32F	25F	23F	22F	23F	16F	
		Beta 1	B1_P3	26L	231	225	33M	26G	24M	23M	24M	17R	
			B1_P4	27L	24L	231	34L	27V	25L	241	25V	181	
			B1_P5	28R	25R	24L	35T	28N	26T	25H	26R	195	
			B1_P6	30R	27R	26Q	375	30V	281	27E	28R	21T	
			B1/B2_P1	32N	29N	295	39D	32H	30D	29N	30N	22K	
			B1/B2_P2	34K	31K	30K	41K	34T	32K	-	32K		
		LoopB1-B2	B1/B2_P3	35S	325	31Y	42R	35N	33Y	•	33Y		
			B1/B2_P4	365	335	325	43N	36K	34K	32K	34K		
			B1/B2_P5	37V	34A	33T	44T	37T	35L		35T		
			B2_P1	40S	375	36R	475	40A	38R	34R	38L	30R	
			B2_P2	41T	38T	371	48V	41V	39V	35V	39V	31V	
			B2_P3	42E	39E	38K	49R	42L	40V	36R	40V	32Q	
	Beta Sheet N		B2_P4	44G	41G	40V	51R	44Y	42R	38T	421	34F	
	Terminal	Beta 2	B2_P5	46Q	43Q	42A	53R	46E	44V	40Q	44S	36Q	
			B2_P6	48T	45T	44G	55G	48A	46S	42K	46T	38N	
			B2_P7	49L	46L	45L	56L	49M	47L	43L	47V	39L	
			B2_P8	50H	47H	45H	57H	50N	48H	44D	48D	40H	
			B2_P9	53D	50D	49D	60D	53D	51D	47D	51D	43D	
		Beta 3	B3_P1	68V	65V	64K	751	69N	66N	63S	67S	58K	
N Terminal			Beta 3	B3_P2	70A	67A	66H	77T	71Y	68F	65N	69K	60H
				B3 P3	71N	68N	671	78S	72H	69L	66T	70K	611
			B3/B4 P1	725	695	68H	79D	73N	70M		715	625	
		LoopB3-B4	B3/B4 P2	73G	70G	69G	801	74P	71T	675	72G	63G	
			200000-04	B3/B4 D3	75N			_	760		69K	745	
			B4 P1	764	73.4	777	81D	787	745	705	745	661	
		Boto 4	P4_P1	795	756	740	920	804	760	701	775	680	
		beta 4	D4_F2	165	755	740	050	00K	700	744	700	700	
			04_P3	OUK	7/K	708	858	026	788	74K	79K	708	
		-	04/A3_P1	821	/91	780	8/1	843 95 N	80E	76K	816	720	
		LoopB4-A3	04/A3_P2	845	80K	/35	801	PCI PCI	813	701	825	731	
			D4/A3_P3	041	811	80P	89L	801	82L	78L	835	741	
			64/A3_P4	85E	82E	81K	90K	870	83K	79K	84E	750	
		Alpha 4	A4_P1	103K	100K	99K	108K	106K	118K	97K	103K	93K	
			A4/A5_P1	117M	114M	1131	1221	1201	1151	1111	117		
			A4/A5_P2	120K	117K	116K	125K	123K	118K	114Q	120K	110N	
		LoopA4-A5	A4/A5_P3	122H	119H	118H	127H	125H	120H	116H	122H	112H	
			A4/A5_P4	123L	120L	119L	128L	126L	121L	117L	123L	113L	
			A4/A5_P5	-	-	-	-	-	•	1185	-	-	
		Alpha 5	A5_P1	135K	132K	131K	140K	138K	133K	133R	135K	125K	
			A5/A6_P1	138L	135L	134L	143L	141M	1361	136M	1381	128L	
			A5/A6_P2	139N	136N	135N	144N	142N	137N	137N	139N	129N	
		LoopA5-A6	A5/A6_P3	140W	137W	136L	145L	143L	138N	138L	140K	130L	
			A5/A6_P4	141G	138G	137G	146G	144G	139G	139G	139G	131G	
			A5/A6_P5	143T	140T	139N	1485	146S	141N	141S	1435	1335	

	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	1	2	3	4	5	6	7		9	10	11
I-AabMI	A	G	G	т	А	С	С	С	т	т	т	A	A	Α	С	С	Т	A	С	Т	A	Α
I-CpaMI	Т	A	G	С	С	С	А	С	A	A	т	А	т	Т	Α	Α	G	G	С	С	А	Т
I-GpeMI	Т	Т	т	С	С	G	С	т	т	A	т	т	С	Α	Α	С	С	С	Т	Т	Т	Α
I-GzeII	A	Т	G	G	G	т	А	С	С	A	т	А	т	Т	G	G	Т	A	С	А	А	Α
I-LtrI	A	A	т	G	С	т	С	С	т	A	т	А	С	G	Α	С	G	Т	Т	Т	А	G
I-LtrWI	A	G	т	А	G	т	G	А	A	G	т	А	т	G	Т	Т	A	Т	Т	Т	А	Α
I-OnuI	Т	Т	т	С	С	А	С	т	т	A	т	т	С	Α	Α	С	С	Т	Т	Т	Т	Α
I-PanMI	G	C	т	С	С	т	С	А	т	A	A	т	С	С	Т	Т	Α	Т	С	Α	A	G
I-SmaMI	Т	A	т	С	С	т	С	С	А	т	т	A	т	С	Α	G	G	Т	G	Т	A	С

Figure S3, related to Figure 2. Protein-DNA contact map for C-terminal meganuclease domains. Colors match the

corresponding protein structures from Figure 1. Blacked out regions indicate the absence of a DNA contact for that particular position while dashes indicate the absence of the amino acid itself at that position.

			A7_P1		176S	1815		1755		182A	179E		185D		1755		1775		1675							
	LAGLIDADG	Alpha 7	A7_P2		177G	182G		176G		183G	180G		176A		176G		178G		168A							
			A7_P3		178E	183E		177D		184E	181E		177E		177E		179D		169E							
			B5_P1		179G	184G		1785		185G	182A		178G		176G		180G		170G							
			B5_PZ		1800	1850		1795		1865	183C		179C		1795		1815		1710							
			B5_P3		1816	186F	_	180F		1876	184F		180F		1806		1826		1/2F							
			B5_P4		182F	187F		181N		188Y	185F		1815		1815		183K		173M							
		Beta 5	B5_P5		183V	188V		182V		189	186V		182V		182V		1845		174V							
			B5_P6		184N	1895		183K	_	190R	1875		183V		183Y		1851									
			B5_P7		185L	190L		1841	_	1911	1881		184F		184T		186L		1761							
			B5_P8		1861	1911	_	1855		192A	189Y		185F		1851		187K		177A							
			B5_P9		187K	192K		186N		193K	190N		186K		1865		188K		178K							
			B5/B6_P1	L	1885	1935		1875		194N	1915		1875		187D		1895		1795							
		LoopB5-B6	B5/B6_P2	2	189K	194K		189T		196T	193K		189T				1915		181A							
			B5/B6_P3	3	1905	1955		1905		197L	194S		190S				1921		1825							
			B5/B6_P4	1	191K	196K		191L		198K	195K		191K		-		193K		1835							
			B6_P1		195Q	200Q		195R		202Q	199A		195A		190Y		197Q	1	187Q							
			B6_P2		196V	201V		196V		203V	200V		196V		191V		1985		188V							
			B6_P3		197Q	202Q		197Q		204Q	201Q		197K		1925		1991		189Y							
		Beta 6	B6_P4		199V	204V		199R		206V	203V		1995		194 S		201V	_	191T							
			B6_P5		2015	206S		201G		208Q	205K		2011		196R		203Q		1931							
	Beta Sheet C		B6_P6		203T	208T		203G		210T	207T		203T		198S		205T		195T							
	Terminal		B6_P7		204Q	209Q		204L		211Q	208Q		204Q		199Q		206Q	:	196Q							
		LoopB6-A8	B6/A8_P1	L	205H	210H		205N		212D	209H		205S		200H		207H	1	197H							
			B6/A8_P2	2	207K	212R		207R		214R	211R		207R		202K		209R		199R							
C Terminal			B7_P1		-	-		226K		-	-		-				-		-							
			B7_P2		222Y	228Y		227N		230N	227R		223N		217G		225F		215R							
		Beta 7	B7_P3		2231	2291		2281		2311	228V		224T		218F		2261		216							
			Beta 7	Beta 7	Beta 7	B7_P4		225K	230K		229Y		232R	229E		225S		220N		227E		217A				
			B7_P5		227K	232K				234R	231R		227D		222H		229D		219K							
				B7_P6		228N	233K				235K	232K		228P		223N	2305									
			B7_P7		229K	234K								224K		231R		220R								
			B8_P1		232F	237F																				
		Beta 8	Beta 8	Beta 8	B8_P2		2335	2385				245T	235E		230G		227K		233P		221N					
					Beta 8	Beta 8	Beta 8	Beta 8	Beta 8	B8_P3		234W	239W		2345		246C	236A		231T		228A		234W		222V
						B8_P4		236D	241E		236R		248D	238D		233D		2301		236Y		224E				
			B8_P5		238V	243V		238E		250V	242T		235K		232V		238T		226Q							
			B8/A9_P1	L	240T	245T		240V		252T	241V		237T		234R		240T		2285							
			B8/A9_P2	2	241K	246K		241K		253N	242S		238N		235K		241N		229K							
		гоорва-ча	B8/A9_P3	3	242F	247F		242F		254L	2441		239F		236F		242F		230F							
			B8/A9_P4	ŧ	243S	248S		2435		255D	245K		2405		237E		243S		2315							
		Alaba 10	A10_P1		262K	267K		262K		274K	264K		259K		256K		262K		249K							
		Alpha IU	A10_P2		265D	284K		265D		277D	267N		262D		259D		265D		252D							
		LoonA10-	A10/A11 P	21	281H	286H		281H		293H	283H		278H		275H		281H		268H							
		A11		-	20211	20011		2021		20011	20011		27011		076		2021		200							
			A10/A11_F	-2	282L	287L		2821		294L	284L		279L		276L		282L		269L							
			A11_P1		294K	299K		294K		306K	296K		291R		288K		294K		281K							
		Al-L. Pr	A11_P2		297M	302M		297M		309M	299M		294M		291M		297M		284M							
		Alpha 11	A11_P3		298N	303N		298N		310N	300N		295N		292N		298N		285N							
			A11_P4		239K	304K				311K	3011		2301		2933		233N		2001							
	Tertient	Secondary	AI1_P5												2941											
Domain	Structure	Structure	Name		Onul	GpeMI		CpaMI		Ltrl	LtrWI		PanMI		Gzell	1	SmaMI	A	abMI							
	_				-	-	_	_		-	_	-	_	_	_	-	_	-	_							
I-AabM	I A	G (G T	A	С	C C	Т	T	Т	A	A A	С	С	т	A	С	т	А	A							
T-CnaM	T m	D	а с	C	C	AC	А	Z	η.	ک ا	<mark>т</mark> т	Δ	Δ	G	G	C	C	Δ	ጥ							
I-CPam				<u> </u>	<u> </u>			-	1		- 1	17	17	J	9	C	C	11	-							
I-GpeM	I T	T 5	гс	С	G	СТ	\mathbf{T}	A	Т	т	C A	А	С	С	С	т	т	т	А							
•																										
I-Gzel	I A	T (G G	G	Т	A C	С	A	Т	A	г т	G	G	т	А	С	А	А	А							
T T A T	_			~		a a		7.				7	~	C	m	m	m	7	c							
I-LtrI	А	A	r G	C	т	CC	T	A	T	A	G	A	C	G	Т	.Т.	T	А	G							
I-LtrW	I A	G	ГА	G	т	G A	А	G	т	A '	r G	ፓ	ፓ	А	ፓ	ፓ	ፓ	А	А							
	_ **			_				_			_ J	-	-		-	-	-									
I-OnuI	т	T 2	гс	С	Α	СТ	\mathbf{T}	A	г	T	C A	А	С	С	Т	т	т	т	А							
	-			~		a -	_	_	_	_	~ ~	æ	-	-	-	~	-	-	~							
I-PanM	I G	C	гС	С	Т	CA	т	A	A	T	C C	Т	т	A	Т	С	A	A	G							
T_SmaM	T m	<u>א</u> ר	гс	С	τ μ	c c	Z	- m	T.	י ב	r c	Δ	G	G	ጥ	G	т	Δ	C							
· · · · · · · · · · · · · · · · · · ·			- No.				100	-	-			47		5	+	0		11								

Figure S4, related to Figure 3. Schematic of flow cytometric assays for (a) meganuclease expression (b) DNA binding and (c) DNA cleavage. *Panel a:* A plot of PE (N-terminal stain) vs. FITC (C-terminal stain) was examined for each enzyme to verify expression of full-length, stable protein on the surface of the yeast. *Panel b:* Yeast with surface-expressed meganuclease are stained with a FITC antibody to the C-terminal Myc epitope tag and incubated with fluorescently labeled DNA duplexes (A647 fluorophore) containing a sequence corresponding either to the wild-type target or to a target containing a single basepair substitution. By assaying the relative signal for bound DNA (A647) at concentrations corresponding to the approximate wild-type K_D, basepair substitutions that significantly reduce affinity can be identified. *Panel c:* Yeast with surface-expressed meganuclease are incubated with an anti-HA-biotin antibody, a streptavidin-PE stain, and fluorescently labeled DNA substrate (A647 fluorophore) containing a sequence corresponding to either to the wild-type target or a target containing a single basepair substitution. The biotin and streptavidin molecules create a physical tether of the DNA target substrate to the N-terminus of the protein. A plot of PE (N-term protein) vs. A647 (DNA) signals is collected for each DNA construct in both the presence of calcium (which facilitates binding but prevents cleavage) and in the presence of magnesium (which supports cleavage). By superimposing the calcium and magnesium plots, one can determine the relative cleavage activity against each DNA target by comparing loss of the A647 signal (representing cleavage of the tethered DNA target substrate, indicated by arrow.)

Figure S5, related to Figure 4. Analysis and Quantification of Flow Cytometric Binding and Cleavage Data. *Panel a:* Use the "no stain" control to draw a range gate that will include all cells with signal from bound DNA (A647/APC). This gate excludes the negative population. *Panel b:* Using the wild-type sample, draw a tight gate around the cells with signal for the bound DNA. Let the top of the gate extend upwards to include any samples that might have higher signal than wild-type. Activate the number/statistic for COUNT (number of cells) inside this gate. Use the numbers of cells inside the gate for quantification of binding relative to the wild-type sample. *Panel c:* Use a "no stain" control to draw a range gate for "Expressed" cells (cells with FITC signal). Apply to all samples. From this point forward, you will only be looking at cells with a FITC signal (cells with full-length expressed protein). *Panel d:* Draw a rectangular gate to capture a "slice" of the expressed cells (can be a thin or wide rectangle, but positioned at a FITC level that is uniform across all samples). Apply this gate to all samples. *Panel e:* Draw a second rectangular gate (thin) to create a "PE slice". Apply to all samples. Activate the statistical value/number for MEDIAN APC signal inside this gate. For each sample, record values for the matched Ca^{2+} and the Mg^{2+} samples. The shift observed in this assay can be quantified by calculating the Ca^{2+}/Mg^{2+} ratio.

Figure S6, related to Figure 5. Raw data from the flow cytometric tethered cleavage assay for I-PanMI against DNA substrates containing all possible 'central 4' basepair sequences.

Figure S7, related to Figure 6. 3DNA structural analysis of overall DNA bending induced by binding of I-SmaMI to wildtype and mutated DNA target sequences.

Figure S8, related to Figures 4 and 6. Central four cleavage specificity of I-SmaMI in the presence of Mg²⁺ vs. Mn²⁺.

Central Four Specificity of I-SmaMI in the Presence of Mg²⁺

Central Four Specificity of I-SmaMI in the Presence of Mn²⁺

Table S1, related to Figure 1. I-OnuI family meganucleases characterized in this study.

Nuclease	Host organism	Host Gene	Surface Expression	Cleavage Activity	Crystal structure
I-AabMI	Ascocalyx abietina	Small subunit ribosomal RNA gene	✓	✓	✓
I-AaeMIP	Agrocybe aegerita	Small subunit ribosomal RNA gene			
I-ApaMIP	Amoebidium parasiticum	Large subunit ribosomal RNA gene			
I-CkaMI	Cordyceps kanzashiana	Small subunit ribosomal RNA gene	✓	✓	
I-CpaMI	Cryphonectria parasitica	Small subunit ribosomal RNA gene	~	✓	1
I-CpaMIIP	Cryphonectria parasitica	S5 ribosomal protein	✓		
I-CpaMIIIP	Cryphonectria parasitica	Small subunit ribosomal RNA gene	✓		
I-CraMI	Cordyceps ramosopulvinata	Small subunit ribosomal RNA gene	✓	✓	
I-GpeMI	Grosmannia penicillata	Large subunit ribosomal RNA gene	✓	✓	✓
I-Gpil	Grosmannia piceiperda	Large subunit ribosomal RNA gene	✓	~	
I-Gzel	Gibberella zeae	NADH:ubiquinone oxidoreductase subunit 3	✓	✓	
I-Gzell	Gibberella zeae	NADH:ubiquinone oxidoreductase subunit 2	✓	~	✓
I-GzeMIIIP	Gibberella zeae	NADH:ubiquinone oxidoreductase subunit 2			
I-HjeMII	Hypocrea jecorina	NADH dehydrogenase subunit 2	~	✓	
I-Ltrl	Leptographium truncatum	Large subunit ribosomal RNA gene	✓	✓	✓
I-LtrWI	Leptographium truncatum	Small subunit ribosomal RNA gene	✓	✓	✓
I-MpeMI	Moniliophthora perniciosa	NADH dehydrogenase subunit 4	1	✓	
I-MveMIP	Mortierella verticillata	Small subunit ribosomal RNA gene	✓		
I-NcrMIP	Neurospora crassa	ATPase subunit 8			
I-Onul	Ophiostoma novo-ulmi	Large subunit ribosomal RNA gene	✓	✓	✓
I-OsoMI	Ophiocordyceps sobolifera	Small subunit ribosomal RNA gene	✓	✓	
I-OsoMII	Ophiocordyceps sobolifera	Small subunit ribosomal RNA gene	✓	~	
I-OsoMIIIP	Ophiocordyceps sobolifera	Small subunit ribosomal RNA gene			
I-OsoMIVP	Ophiocordyceps sobolifera	Small subunit ribosomal RNA gene			
I-PanMI	Podospora anserina	NADH dehydrogenase subunit 2	✓	~	✓
I-PanMIIP	Podospora anserina	cytochrome c oxidase cox1			
I-PanMIIIP	Podospora anserina	Dod ND4L i2 grp IC protein			
I-PnoMI	Phaeosphaeria nodorum	NADH dehydrogenase subunit 5	✓		
I-ScuMIP	Smittium culisetae	Large subunit ribosomal RNA gene			
I-ScuMIIP	Smittium culisetae	cytochrome c oxidase cox1			
I-ScuMIIIP	Smittium culisetae	cytochrome c oxidase cox1			
I-ScuMIVP	Smittium culisetae	cytochrome c oxidase cox1			
I-SmaMI	Sordaria macrospora	cytochrome c oxidase cox1	~	✓	✓
I-SscMI	Sclerotinia sclerotiorum	Small subunit ribosomal RNA gene	✓	✓	

Supplemental Experimental Procedures

1. Meganuclease Sequences (coding and translated)

Note: Highlighted residues are mutations designed to decrease surface hydrophobicity

I-AabMI (AF284853)

STSDNNGNIKINPWFLTGFIDGEGCFRISVTKINRAIDWRVQLFFQINLHEKDRALLESIKDYLGVGKIHISGKN LVQYRIQTFDELTILIKHLKEYPLVSKKRADFELFNTAHKLIK<mark>N</mark>NEHLNKEGI<mark>N</mark>KLVSLKASLNLGLSE<mark>S</mark>LKLA FPNVISATRLTDFTVNIPDPHWLSGFASAEGCFMVGIAKSSASSTGYQVYLTFILTQHVRDE<mark>N</mark>LMKCLVDYFN WGRLARKRNVYEYQVSKFSDVEKLL<mark>S</mark>FFDKYPILGEKAKDL<mark>Q</mark>DFCSVSDLMKSKTHLTE<mark>E</mark>GVAKIRKIKEGM NRGR

I-CpaMI (AAB84212.1)

NTSSSFNPWFLTGFSDAECSFSILIQANSKYSTGWRIKPVFAIGLHKKD<mark>N</mark>ELLKRIQSYLGVGKIHIHGKDSIQF RIDSPKELEVIINHFENYPLVTAK<mark>Q</mark>ADYTLFKKALDVI<mark>KN</mark>KEHLSQKGLLKLVGIKASLNLGLNGSLKEAFPN WEELQIDRPSYV<mark>N</mark>KGIPDPNWISGFASGDSSFNVKISNSPTSLLNKRVQLRFGIGLNIREKALIQYLVAYFDLSD NLKNIYFDLNSARFEVVKFSDITDKIIPFFDKYSIQGKKS<mark>Q</mark>DY<mark>Q</mark>NFKEVADIIKSKNHLTSEGFQEILDIKASMN K

I-GpeMI (ACV41146.1)

PTRNESINPWVLTGFADAEGSFILRIRNNNKSSAGYSTELGFQITLHKKD<mark>K</mark>SILENIQSTWKVGVIANSGDNAVS LKVTRFEDLRVVLNHFEKYPLITQKLGDYLLFKQAFSVMENKEHLKIEGIKRLVGIKANLNWGLTDELKEAF VASGGENIFVASGGERSLINKNIPNSGWLAGFTSGEGCFFVSLIKSKSKLGVQVQLVFSITQHARDR<mark>E</mark>LMDNLV TYLGCGYIKEKKKSEFSWLEFVVTKFSDIKDKIIPVFQ<mark>E</mark>NNIIGVKLEDFEDWCKVAKLIEEKKHLTESGLEEI RNIKLNMNKGRVL

CCAACTAGAAACGAATCTATCAACCCATGGGTCCTGACTGGTTTCGCTGACGCTGAAGGTTCTTTCATCCTGAG AATCAGAAAACAACAACAACAACGACCACGGTTATTCTACTGAACTGGGTTTCCAGATCACTCTGCACAAAAGAAGG

I-GzeII (ABC86622.1)

<mark>DLSTS</mark>INPWFVTGFTDAEGSFMIHLEKNKDKWRVRPTFQIKLDIRD<mark>K</mark>SLLEEIK<mark>N</mark>YFNNTGSINTSNKECVYKV RSLKDISIIISHFDKYNLITQKKADFELFK<mark>K</mark>IINKLNSQEHLSYEVGATVLQEIISIRASMNLGLSSSVKEDFPHIIP <mark>SN</mark>RPLIENM<mark>N</mark>IPHPEWMAGFVSGEGSFSVYTTSDDKYVSLSFRVSQHNKDKQLLKSFVDFFGCGGFNYHNKG NKAVIFVTRKFEDINDKIIPLFNEYKIKGVKYKDFKDWS<mark>K</mark>VAKMIESKSHLTTNGYKEICKIKENMNSYRKSSV N

I-LtrWI (ADN05145.1)

MINLKNNIEYLNWYICGLVDAEGSFGVNVVKHATNKTGYAVLTYFELAMNSKDKQLLELIKKTFDLECNIYH NPSDDTLKFKVSNIEQIVNKIIPFFEKYTLFSQKRGDFILFCKVVELIKNKEHLTLNGL<mark>N</mark>KILSIKAAMNLGLSE NLKKEFPGCLSVKRPEFGLSNLNKRWLAGFIEGEACFFVSIYNSPKSKLGKAVQLVFKITQHIRDKILIESIVEL LNCGRVEVRKSNEACDFTVTSIKEIENYIIPFFNEYPLIGQKLKNYEDFK<mark>K</mark>IFDMMKTKDHLTEEGLSKIIEIKN KMNTNR

I-PanMI (NP_074914.1)

STLESKLNPSYISGFVDGEGSFMLTIIKDNKYKLGWRVVCRFVISLHKKDLSLLNKIKEFFDVGNVFLMTKDSA QYRVESLKGLDLIINHFDKYPLITKKQADYKLFKMAHNLIKNKSHLTKEGLLELVAIKAVINNGLNNDLSIAFP GINTILRPDTSLPQILNPFWLSGFVDAEGCFSVVVFKSKTSKLGEAVKLSFILTQSNRDEYLIKSLIEYLGCGNT

SLDPRGTIDFKVTNFSSIKDIIVPFFIKYPLKGNKNLDFTDFCEVVRLMENKSHLTKEGLDQIKKIRNRMNTNR K

I-SmaMI (XP_003342391.1)

SKGENSKLNPWAVVGFIDAEGSFMVRVRKNSKYKTGWLVVAIFSVTVDKKDLFLLESLKTFFGGLGSIKKSG NSTFSYRIESSEQLTKIILPFFDKYSLITEKLGDYLLFKKVLELMGTKEHLTQRGLEKIVSLKASINKGLSEELQ AAFPQCVPTPRPEINNK<mark>N</mark>IPDPFWLAGFVSGDGSFKSILKKSESIKVGFQSILVFQITQHARDVKLMESLISYLG CGFIEKDSRGPWLYYTVTNFSDIQGKIIPFFHQYKIIGSKYGDY<mark>Q</mark>DWCKIALIMQNKNHLTPEGLNEIRALKG GMNKGRL

2. Enzyme expression, purification, biochemical analyses, crystallization and X-ray data collection

Sequence verified plasmids were transformed into BL21(DE3) RIL *E.coli* cells and plated on LB-Amp plates to grow at 37°C. Colonies were grown in 10 mL overnight cultures of LB + Amp (100 μ g/mL) and diluted 1:100 the next day to a final volume of 1 L. Cell cultures were shaken at 37°C until the cells reached an OD₆₀₀ between 0.6-0.8. Cells were then incubated on ice for 30 minutes, induced with 200 mM IPTG, and incubated overnight at 16°C. Induced cells were pelleted and stored at -20°C. Successful protein induction was verified by SDS-PAGE.

Meganuclease purification. Cell pellets were resuspended in a buffer containing 25 mM Tris/HCl pH 7.5, 200 mM NaCl, and 5% glycerol. PMSF and benzonase (Sigma-Aldrich) were added to 1 mM concentrations prior to sonication. Cell debris was pelleted and the supernatant was filtered through a 0.20 µm filter. Untagged protein samples were loaded onto a 5 mL Heparin HP HiTrap column (GE Life Sciences) and eluted with a linear salt gradient (Buffer A: 25 mM Tris/HCl pH 7.5, 200 mM NaCl, 5% glycerol, Buffer B: 25 mM Tris/HCl pH 7.5, 1M NaCl). The meganuclease constructs eluted between 400 mM and 800 mM NaCl.

His-tagged proteins were incubated with pre-equilibrated Nickel-NTA resin (approximately 3 mL bed volume), gravity-loaded onto a column, and washed with buffer containing increasing concentrations of imidazole at pH 8.0. Fractions containing eluted protein were concentrated and exchanged to a thrombin cleavage buffer (0.3 M NaCl, 25 mM Tris pH 7.5, and 5% v/v glycerol). The His-tag was

removed with an overnight incubation at 4°C with biotinylated thrombin. The following morning, streptavidin-conjugated agarose resin was added to the sample and incubated for 30 minutes at room temperature. Thrombin was then removed by gravity filtration over an empty column, and pure, tagless protein was collected.

All untagged constructs were then concentrated to 5 - 20 mg/mL and passed over a size exclusion column (15 mL Superdex 200 10/300 GL, GE Life Sciences) in the presence of 25 mM Tris/HCl pH 7.5, 200 mM NaCl, and 5% glycerol.

Meganuclease thermal stability assays. Purified recombinant meganuclease constructs were diluted to between 10-20 µM concentration and dialyzed overnight into 10 mM potassium phosphate buffer at pH 8.0. Circular dichroism (CD) thermal denaturation experiments were performed on a JASCO J-815 CD spectrometer with a Peltier thermostat. Initial wavelength scans (190-250 nm) were carried out for each construct at 20°C and 80°C; the wavelength where the change in CD signal strength was greatest (210 nm) was used for the variable temperature scan. Thermal denaturation was monitored over a temperature range of 4°C to 95°C (0.1cm pathlength cell), with measurements taken every 2 degrees. Sample temperature was allowed to equilibrate for 30 seconds before each measurement. Thermal denaturation half-points (Tm values) were determined by curve-fitting using the SpectraManager software supplied by the instrument manufacturer.

DNA cleavage assays. To complement our flow cytometric DNA cleavage assay results, we also performed a *non-tethered* cleavage assay using either enzyme released from the surface of yeast or purified recombinant protein (as was used in our structural studies). For enzyme released from the surface of yeast, 5 million induced yeast cells were washed with OCB and mixed in a 45 μL volume with 10 mM DTT (breaks the disulfide bond linking the protein to the yeast cell surface), OCB, 20 nM A647-labeled DNA target substrate, and 5 mM CaCl₂ (no cleavage control), MgCl₂ (cleavage), or MnCl₂ (reduced specificity). For purified recombinant enzyme, the same reactions were set up with a final enzyme concentration of 10 nM and no DTT. The digest reactions were incubated at 37°C for 30 minutes. A colorless FicoII loading dye was added to each reaction before loading samples onto an 11.5% acrylamide gel (120 volts for 1 hour). Cleavage products were visualized with the red laser (633nM) and a 670 BP 30 filter on a Typhoon Trio imaging system (GE Healthcare), and quantification of bands was performed using Image Studio (LICOR) software.

Meganuclease-DNA crystallization and data collection. Recombinant proteins were incubated with either CaCl₂ or MgCl₂ and a double-stranded DNA oligonucleotide (IDT) containing the enzyme's 22 bp target site with various lengths of flanking random sequence with either blunt ends, single base 3' overhangs or single base 5' overhangs. The mixtures were set up at a 1 : 1.15 protein:DNA ratio. Crystallization of the protein/DNA complexes was initially screened in 96-well trays using a mosquito robot (TPP Labtech) with three pre-made crystallization grids: PEGs Suite (Qiagen), Index I & II (Hampton Research), and Wizard Classic (Rigaku/Emerald BioStructures). Crystal hits from initial screens were further optimized in larger scale 24-well hanging drop trays. Detailed crystallization and cryoprotection conditions for each meganuclease are provided in the **Supplemental Experimental Procedures**.

Data was collected either on a Rigaku Micromax 007HF rotating anode generator with a RaxisIV++ or Saturn 944+ detector or at the Advanced Light Source (Beamline 5.0.1 or 5.0.2). Data was processed using HKL2000 (Otwinowski and Minor, 1997). Phases were obtained by molecular replacement with Phaser (McCoy et al., 2007) using either the I-OnuI structure (PDB ID 3QQY) or the I-LtrI structure (PDB ID 3R7P) as a search model. Model building and refinement were performed using Coot (Emsley et al., 2010) and Refmac (Murshudov et al., 1997), respectively.

I-AabMI crystallized in 25% (w/v) PEG 550 MME, 0.1M HEPES pH 7.5, and 20mM CaCl₂ with a 25bp duplex DNA + a single base 3' overhang:

Top: 5'-CAGGTACCCTTTAAACCTACTAACCC-3' Bottom: 5'-GGTTAGTAGGTTTAAAGGGTACCTGG-3'

The crystal was cryoprotected in artificial mother liquor with 25% sucrose and flash frozen in liquid nitrogen. Data was collected with a Rigaku Micromax-007HF rotating anode generator on a Saturn944+ detector.

I-CpaMI crystallized in 26% (w/v) PEG 3350, 0.1M Tris/HCl pH 7.5, 5mM DTT, and 5mM CaCl₂ with a 27bp duplex DNA + a single base 3' overhang:

Top: 5'-CCTAGCCCACAATATTAAGGCCATCCCA-3' Bottom: 5'-GGGATGGCCTTAATATTGTGGGCTAGGT-3'

The crystal was cryoprotected and then flash frozen in liquid nitrogen. Data was collected with a Rigaku Micromax-007HF rotating anode generator on a Saturn944+ detector.

I-GpeMI crystallized in 22.5% (w/v) PEG 3000, 0.1M Tris/HCl pH 8.5, and 50mM CaCl₂ with a 26bp duplex DNA + a single base 3' overhang:

Top: 5'-CCTTTCCGCTTATTCAACCCTTTACCC-3' Bottom: 5'-GGTAAAGGGTTGAATAAGCGGAAAGGG-3'

The crystal was cryoprotected in artificial mother liquor with 15% ethylene glycol and flash frozen in liquid nitrogen. Data was collected at the Advanced Light Source (Beamline 5.0.1).

I-GzeII crystallized in 30% (w/v) PEG 6000, 0.1M HEPES pH 7.5, and 2mM CaCl₂ with a 26bp duplex DNA + a single base 3' overhang:

Top: 5'-CCTTTGTACCAATATGGTACCCATCCC-3' Bottom: 5'-GGATGGGTACCATATTGGTACAAAGGG-3'

The crystal was cryoprotected in artificial mother liquor with 20% glycerol and flash frozen in liquid nitogren. Data was collected at the Advanced Light Source (Beamline 5.0.2).

I-LtrWI crystallized in 30% (w/v) PEG-MME 550, 0.1M Bis-Tris pH 6.5, and 50mM CaCl₂ with a 25bp duplex DNA + a single base 3' overhang:

Top: 5'-CAGTAGTGAAGTATGTTATTTAACCC-3' Bottom: 5'-GGTTAAATAACATACTTCACTACTGG-3'

No cryoprotectant was used prior to freezing. Data was collected with a Rigaku Micromax-007HF rotating anode generator on a RaxisIV++ detector.

I-PanMI crystallized in 28% PEG 3350, 0.1M Tris pH 7.0 with a 26bp duplex DNA + a single base 5' overhang:

Top: 5'-CCCGCTCCTCATAATCCTTATCAAG-3' Bottom: 5'-GGGCTTGAATAAGGATTATGAGGAGC-3'

The crystal was cryoprotected with 15% sucrose and then flash frozen in liquid nitrogen. Data was collected with a Rigaku Micromax-007HF rotating anode generator on a Saturn944+ detector.

I-SmaMI crystallized in 28 to 32% (w/v) PEG-MME 550, 0.1M HEPES pH 7.5 and 10 to 20 mM CaCl₂ with a 25bp blunt duplex DNA:

Top: 5'-CGTACACCTGATAATGGAGGATACC-3' Bottom: 5'-GGTATCCTCCATTATCAGGTGTACG-3'

No cryoprotectant was used prior to freezing. Data was collected with a Rigaku Micromax-007HF rotating anode generator on a RaxisIV++ detector.

I-SmaMI with the "**TTCT**" one-off DNA substrate crystallized in 25% PEG 3350, 10mM Bis-Tris pH 6.5, and 5mM $CaCl_2$ with a 27bp duplex DNA + a single base 3' overhang:

Top: 5'-CCTATCCTCCATTCTCAGGTGTACCACC-3' Bottom: 5'-GTGGTACACCTGAGAATGGAGGATAGGG-3'

The crystal was cryoprotected in artificial mother liquor with 15% glycerol and flash frozen in liquid nitrogen. Data was collected at the Advanced Light Source (Beamline 5.0.2).

I-SmaMI with the "**TTGT**" one-off DNA substrate crystallized in 25% PEG 2000 MME, 10mM Tris pH 6.0, and 5mM CaCl₂ with a 25bp duplex DNA + a single base 3' overhang:

Top: 5'-CTATCCTCCATTGTCAGGTGTACCCC-3' Bottom: 5'-GGGTACACCTGACAATGGAGGATAGG-3'

The crystal was cryoprotected in artificial mother liquor with 15% ethylene glycol and flash frozen in liquid nitrogen. Data was collected with a Rigaku Micromax-007HF rotating anode generator on a RaxisIV++ detector.

3. Meganuclease Target Site Prediction (Example shown for I-GpeMI)

Run a BLAST search to find a meganuclease of interest in its natural host gene:

Amino acid sequence of GpeMI (trimmed to match the N- and C-termini of I-OnuI):

PTRNESINPWVLTGFADAEGSFILRIRNNNKSSAGYSTELGFQITLHKKDISILENIQSTWKVGVIANSGDNAVSLKVTRFEDLR VVLNHFEKYPLITQKLGDYLLFKQAFSVMENKEHLKIEGIKRLVGIKANLNWGLTDELKEAFVASGGENIFVASGGERSLINK NIPNSGWLAGFTSGEGCFFVSLIKSKSKLGVQVQLVFSITQHARDRALMDNLVTYLGCGYIKEKKKSEFSWLEFVVTKFSDIK DKIIPVFQVNNIIGVKLEDFEDWCKVAKLIEEKKHLTESGLEEIRNIKLNMNKGRVL

Hit from BLAST search for I-GpeMI sequence:

Organism: Grosmannia penicillata (straing WIN(M)27) **Host gene**: ribosomal protein 3 **Meganuclease/homing endonuclease coding sequence**: highlighted in **yellow**

>gi 257097851 gb FJ607136.1 Grosmannia penicillata strain WIN(M)27 large subunit ribosomal RNA (rnl) gene, partial
sequence; and ribosomal protein 3/homing endonuclease-like fusion protein (rps3/HEG fusion) gene, complete cds;
mitochondrial
${\tt GGGTTAATTTCAAGAATTACTTATACTATAAGTAAATTTGAAGCGAAGTTTATTTA$
${\tt ACCCAACACTTTTTTTTTTTTTTTTTTTTTTTTTTTTT$
${\tt CCATTGAATACTAGAATTAATTTTGTTGGTGAAACTAGATATTTCCCTTCTGATTTTAAAGAATGAACTAATAGTGTTTAATACTTTAAATACTAAAAAATTTTCCCATTTAAAGAATGAACTAGAATTAATACTTAAATACTAAAAAATTTTCCCATTTAAATACTAAAAAA$
${\tt TGACTTAAAATGTAAAGTAAATTATTAAAAAGGTTATTTTGATTATATATTTGATCGTGAAAAATATAAAAATTGAAATTAAAAATCTTATGAAAAAAAA$
AAATCTTTGTAAGTAAACCTGAAATAAAACATACTAATTCTAAAGCCATAATAACTATTTATGTTTATAATAGAGAAAAGAGTTATTTTTGTTAAAATAAAATAAATTAAATCAATTAAATAAGGA
attttaggactaaataaattttttattatgtaaaaaaaatctctggggatttatatatgtaaatattataaacaagttttatataaagaattcttatttttaagaagatctaaattaaaaaaatttataaaaaattttataaaaaaa
${\tt ACTTAATCTTAATGGATTAAAATTCCAAGATAAATTCTTATTTAAAATTAAGTAAATTAAGTAAATTTATAAAAAAA$
${\tt TGAATCCTAATATATTTACTGAAATAATGGCAAAAAAATTTATGAATAGAAATGCAATCTATTATGCAAAATAATGAAAATTTATCTTAGATAAAAGTATTATTTTAAAATGAAGGATGGCGGCGC$
atagtttcactagcctcatccggtgtaacctccggatcaggattagaaaaagtagaaaaattaaaaatgtaaaatttaaaatttaaaatttaaaatataaaaaa
${\tt CTCTATAGTTACTGATGGAGATATAAAATGATAATAAAAAAAA$
${\tt AAGGAAGATTGACTAGACGTTATAGAGGCGGATAGAGCAGTATCTAAAGTTAATATAAAAGGAGGATTGAAAAATATAGATTCATCTTACAAAGGTTTATCTTCTATTAAAATATAGAGATGAAAAATATAGATTCATCTTACAAAGGTTAATTATATAGAGAAGAATATAGAATATAGATTCATCTTACAAAGGTTAATTATATAGAGAAGAATATAGAATATAGATTCATCTTACAAAGGTTAATTATATAGAAGAAGAATATAGAATATAGAATATAAAAGGAAGGATGAAAAATATAGAATATAAAAGGAAGGATGAAAAATATAGAATATAAAAGGAAGGATGAAAAATATAGAATATAAAAGGAAGGATGAAAAATATAGAATAAAAGGAAGGAAGAA$
a a a a transmission of the second
TGAAAGTATAAATCCTTGAGTTCTTACTGGGTTTGCAGATGCTGAAGGTAGTTTTATACTAAGAATAAGAATAATAATAATAAAAGTTCTGCAGGTTATTCTACAGAATTAGGATTTCCAAA
TTACTTTGCATAAAAAAGACATATCTATCCTAGAAAATATTCAATCTACTTGAAAAGTAGGAGTTATAGCTAATAGCGGTGATAACGCCGTAAGTTTAAAAGTAACACGGTTTGAGGAT
TTAAGAGTAGTATTAAATCATTTTGAGAAATATCCTTTGATAACTCAAAAATTAGGTGATTATCTATTATTTAAACAAGCCTTTAGTGTTATGGAAAACAAAGAACATTTAAAAAATTGA
AGGTATAAAAAGATTAGTTGGAATTAAGGCCAATTTAAATTGAGGTCTTACTGATGAACTAAAGGAGGCTTTTGTCGCCTCCGGCGGTGAAAATATTTTGTCGCCTCCGGCGGTGAAA
GATCTCTAATAAAAAAATATACCTAATTCTGGATGATTAGCTGGCTTTACTTCTGGTGAGGGTTGTTTTTTTGTTAGTTA
TTGGTATTTTCTATTACTCAACACGCGAGAGATAGAGCATTGATGGATAATTTAGTAACATATCTTGGATGTGGATATATTAAGGAAAAAAAGAAATCTGAGTTTTCATGATTAGAATT
TGTTGTTACAAAGTTTTCAGACATTAAGGATAAAATTATTCCAGTTTTTCAAGTAAATAATAATAATAGGTGTAAAATTGGAAGACTTTGAAGATTGATGTAAAAGTCGCTAAATTAATT
AAGAAAAAAAACATTTAACTGAATCAGGCTTGGAAGAAATACGTAATATAAAATTTAAACATGAATAAAGGAAGAGTTCTT
ATTTAAACTCTAGTATATTTTAATACTACGTTAGCAAGCTCCCATACTTCGTATGAGAATAAGCGGAAAATAATTTTTTTT
AGTCTGAACCATTTTGTGAAAAA

Run a BLAST search on the sequence prior to the meganuclease (the host gene in which the meganuclease resides):

In the list of results, look for a match of the same host gene (in this case, large subunit ribosomal RNA gene) with no mention of a homing endonuclease.

For this example, the second hit on the list of BLAST results is the SAME host gene in a different strain of Grosmannia penicillata. This is a perfect match to show us what the original host gene looked like before it was invaded by a meganuclease.

>gi 257097855 gb FJ607138.1 Grosmannia penicillata strain WIN(M)136 large subunit ribosomal RNA (rnl) gene, partial sequence;
and ribosomal protein 3 (rps3) gene, complete cds; mitochondrial
${\tt CTCATATTTTTTTAATGATAACATATTGGGTTAATTTCAAGAATTACTTATACTATAAGTAAATTTGAAGCGAAGTTTATTTA$
${\tt CAATAATCCCTTATTAATAACACCAACACTTTTTTTTTT$
${\tt AAATCTATACCATTGAATACTAGAATTAATTTTGTTGGTGAAACTAGATATTTCCCTTCTGATTTTAAAGAATGAACTAATAGTGTTTAATTACTATAATAATAATAATAATAATAATAATTTCCCATTTAAAGAATGAACTAATAGTGTTTAATACTATAATAATAATAATAATAATAATAATTTCCCATTTAAAGAATGAACTAAGAATGAACTAATAGTGTTTAATAATAATAATAATAATAATAATAATAA$
${\tt TGACTTAAATGTAAGTAAATTATTAAAAAGGTTATTTTGATTTATATTTTGATCGTGAAAATATAAAATTGAATTATAAAATCTTATGAAAAAAAGATTTTACGGCGCAAGCTCTAAAAAAAA$
${\tt TAAGTAAACCTGAAATAAAACATACTAATTCTAAAGCCATAATAACTATTTATGTTTATAATAGAGAAAGAGTTATTTTGTTAAAATAAAATAAAATATAAAATATAGGAATTTTAGGACTAAATAAA$
${\tt TTTTTTTATTTATGTAAAAAAAATCTCTGGGGATTTATATAGTAAATATATAT$
A GATAAATTCTTATTTAAAATTAAAGTAAATTAATAAGTAAATTTTTATAAAAAA
AATTTATGAATAGAAATGCATCTATTATGCAAAATAATGAAATTTATCTTAGATAAAAGTATTATTTTAAATGAGGATGGCGGCATAGTTTCACTAGCCTCATCCGGTGTAACCTCCCCCGGATCAGGA
${\tt TTAGAAAAAAGTAGAAAAATTAAAAATGTAAAATTTAAAATTTAAATAGAAAATAAAAATATAAAAATCTGAATATTAACTCTAATAGTTACTGATGGAGATATAAAAATGTAAAAAGAATTTAAAAAGAATTTAACTAA$
${\tt AAATAGTGAAGATACTATTTTGATTCTATTAAAATATAAAAATTTAGGAGGTATAAGATTAGAAGCTAAAGGAAGATTGACTAGACGTATAAGAGCGGATAGAGCAGTATCTAAAAGTTAAAAAGTTAAAAAGTTAAAAAGATTAGAAGAA$
${\tt GAGGATTGAAAAAATATAGGATTCATCTTCAAAAGGTTTATCTTCATTAAATTAATT$
GGTTGAATAAGCGGAAAATAATTTTTTTTAGGTTTTAATTACAATAAATA

Use Clustal Omega to align this new hit (with no meganuclease) to the original sequence with the GpeMI:

Gpe hit	АТСТАААGTTAATATAAAAGGAGGATTGAAAAATATAGATTCATCTTACAAAGGTTTATC АТСТАААGTTAATATAAAAGGAGGATTGAAAAATATAGATTCATCTTACAAAGGTTTATC *********************************
Gpe hit	TTCTATTAATTATATAGGAAAAATTAATTCAAGTATGGAATATTCAATGGATATATCAAA TTCTATTAATTATATAGGAAAAATTAATTCAAGTATGGAATATTCAATGGATATATCAAA

Gpe	ACGTCGTGTAGGTGCATT <mark>TGCTATAAAGGGTTGAAT</mark> TTCAGGTAGATCTTACAGTACAAC
hit	ACGTCGTGTAGGTGCATT <mark>TGCTATAAAGGGTTGAATAAGCGGAAAATAATTTTT</mark> TTTAGG
	******* *******************************
Gpe	TGCCAAT <mark>CCTACAAGAAATGAAAGTATAAATCCTTGAGTTCTTACTGGGTTTGCAGATGC</mark>
hit	TTTTAATTACAATAAATAAAAAAAAGTGAAGAAATAGTCTGAACCATTTTGTGAAAAA
	* *** * * * *** * * * * * *** *
Gpe	TGAAGGTAGTTTTATACTAAGAATAAGAAATAATAATAAAAGTTCTGCAGGTTATTCTAC
hit	Т
	*
Gpe	AGAATTAGGATTTCAAATTACTTTGCATAAAAAAGACATATCTATC

The two sequences match perfectly up to a very distinct drop-off point. This may indicate where the inserted meganuclease gene begins.

Find the drop-off point in the original GpeMI fusion sequence (green highlight).

Then find the second half of the host gene sequence in the match with no homing endonuclease present (red highlight).

>qi 257097851 qb FJ607136.1 Grosmannia penicillata strain WIN(M)27 large subunit ribosomal RNA (rnl) gene, partial
sequence; and ribosomal protein 3/homing endonuclease-like fusion protein (rps3/HEG fusion) gene, complete cds;
mitochondrial
${\tt GGGTTAATTTCAAGAATTACTTATAAGTAAAATTTGAAGCGAAGTTTATTTA$
${\tt acccaacacttttttttttttttttttttttttttttt$
${\tt ccattgaatactagaattaatttgttgttggtgaaactagatatttcccttctgattttaagaatgaactaatagtgtttattactttaattattaatatttaataattttcccatttaatagaatgaat$
${\tt TGACTTAAATGTAAGTAAATTATTAAAAAGGTTATTTTGATTTTGATCGTGAAAATATAAAATTGAATTATAAAATCTTATGAAAAAAAA$
AAATCTTTGTAAGTAAACCTGAAATAAAACATACTAATTCTAAAGCCATAATAACTAATTATGTTTATGTTTATGAAGGAAAGGAGTTATTTTGTTAAATAAATTAAAATTAAATTAAATTAAATAAGGAATAACAATTAAATAAA
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
${\tt ACTTAATCTTAATGGATTAAAATTCCCAAGATAAATTCTTATTTAAAATTAAGTAAATTAATAAGTAAATTTTATAAAAAA$
${\tt TGAATCCTAATATATTTACTGAAATAATGGCAAAAAAATTTATGAATAGAAATGCATCTATTATGCAAATAATGAAATTTATCTTAGATAAAAGTATTATTTTAAATGAGGATGGCGGC$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
${\tt ctctatagttactgatggagatataaaatgataataaaaagattttatactaaaaatagtgaagatactatttttgattctaaatataaaaatttaggaggtataagattagaagcta$
${\tt AAGGAAGATTGACCAGACGTTATAGAGCGGATAGAGCAGTATCTAAAGTTAATATAAAAGGAGGATTGAAAAATATAGATTCATCTTACAAAGGTTTATCTTCTATTAATATATAGAGAGCAGTAGAAGATTGAAAAATATAGATTCATCTTACAAAGGTTTATCTTCTATTAATATAGAATAGATTGAAAAATATAGATTCATCTTACAAAGGTTTATCTTCTATTAATATAAAAGGAAGG$
$\textbf{AAAAATTAAATTCAAGTATGGAATATTCAATGGATATATCAAAACGTCGTGTAGGTGGCATT\textbf{rgctataaagggttgaat}\\ tcaagtacaactgccaatgcca$
TGAAAGTATAAATCCTTGAGTTCTTACTGGGTTTGCAGATGCTGAAGGTAGTTTTATACTAAGAATAAGAAATAATAATAAAAGTTCTGCAGGTTATTCTACAGAATTAGGATTTCAAA
TTACTTTGCATAAAAAAGACATATCTATCCTAGAAAATATTCCAATCTACTTGAAAAGTAGGAGTTATAGCTAATAGCGGTGATAACGCCGTAAGTTTAAAAGTAACACGGTTTGAGGAT
TTAAGAGTAGTATTAAATCATTTTGAGAAATATCCTTTGATAACTCAAAAATTAGGTGATTATCTATTATTTAAACAAGCCTTTAGTGTTATGGAAAACAAAGAACATTAAAAATTGA
AGGTATAAAAAGATTAGTTGGAATTAAGGCCAATTTAAATTGAGGTCTTACTGATGAACTAAAGGAGGCTTTTGTCGCCTCCGGCGGTGAAAATATATTTGTCGCCTCCGGCGGTGAAA
GATCTCTAATAAAAAAAATATACCTAATTCTGGATGATTAGCTGGCTTTACTTCTGGTGAGGGTTGTTTTTTGTTAGTTA
ͲͲϹϹͲϪͲͲͲͲϹͲϪͲͳΛϹͲϹϿϪϹϪϹϹϪϾϪϲϪͲϪϲϹϪͲϪϪͲͲͳϪϹͲϪϪͲͲͳϪϹͲϪϪͲϹͲͲϹϹϪͲϹͲϾϲϪͲϪͲϪͲϷϪϪϪϪϪϪϪϪϪϪϪϪϪϪϪϪϪϪϪϪϪϤͲϲϲϲϽͲϤϲϪͲϲϪϤͲϪϲϽϪͲͲ

<mark>TGTTGTTACAAAGTTTTCAGACATTAAGGATAAAATTATTCCAGTTTTTCAAGTAAATAATAATAGTGTGTAAAATTGGAAGACTTTGAAGATTGAAGATGAAGTCGCTAAATTAAATTG AAGAAAAAAAACATTTTAACTGAATCAGGCTTGGAAGAAATACGTAATATAAAATTAAACATGAATAAAGGAAGAGTTCTT TAAGTTAAACTCTAGTATATTTTAATACTACGTTAGCAAGCTCCCATACTTCGTATGAGAAAT<mark>AAGCGGAAAAATAATTTTT</mark>TTTAGGTTTTAATTACAATAAATAAAAAAAAAGTGAAGAAAT AGTCTGAACCATTTTGGGAAAAA</mark>

The gray highlighting is extra sequence carried with the meganuclease when it invades the host gene.

Remove the gray and yellow-highlighted sequences to form the predicted target site of the GpeMI enzyme.

Predicted target sequence for GpeMI **TGCTATAAAGGGTTGAAT</mark>AAGCGGAAAATAATTTT**

The flow-cytometric cleavage assay can then be used to test for cleavage activity against this predicted target sequence.

4. Generation of DNA Substrates for Assays of Binding and Cleavage

Primer #1 with conjugated Biotin:

5'-/5Biosg/TCAGCACAGCACTACG-3'

Primer #2 with conjugated A647 fluorophore:

5'-/5Alex647N/TGGACACGACTTGAGC-3'

Single-stranded template with 22bp target site:

5'-TGGACACGACTTGAGCTTTCCACTTATTCAACCTTTTACGTAGTGCTGTGCTGA-3'

References

Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. Acta Cryst D *66*, 486 - 501.

McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Crystal. 40, 658 - 674.

Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997). Refinement of macromolecular structures by teh maximum-likelihodd method. Acta Cryst D *53*, 240 - 255.

Otwinowski, Z., and Minor, W. (1997). Processing of X-ray Diffraction Data Collected in Oscillation Mode. In Methods in Enzymology, J. C. W. Carter, and R.M. Sweet, eds. (Academic Press), pp. 307 - 326.