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Supplementary Information: 

 

Human Interactome 

We only consider direct physical protein-protein interactions with reported experimental evidence. For 

this purpose, we consolidated several data sources including: 

(i) Regulatory interactions: We used the TRANSFAC database that lists experimentally derived 

regulatory interactions. The resulting network, in which nodes represent transcription factors and 

edges (connections) represent physical binding to regulatory elements, consists of 774 

transcription factors and genes connected with 1,335 interactions.  

(ii) Binary interactions: We combined several yeast-two-hybrid (Y2H) high-throughput datasets 

with binary interactions from IntAct and MINT databases. Together these data sources yield 

28,653 interactions between 8,120 proteins.  

(iii) Literature-curated interactions: These interactions, typically obtained by low throughput 

experiments, are manually curated from the literature. We used IntAct, MINT, BioGRID, and 

HPRD resulting in 88,349 interactions between 11,798 proteins.   

(iv) Metabolic enzyme-coupled interactions: Two enzymes are assumed to be coupled if they 
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share adjacent reactions in the KEGG and BIGG databases. In total, we used 5,325 such 

metabolic links between 921 enzymes. 

(v) Protein complexes: Protein complexes are single molecular units that integrate multiple gene 

products. The CORUM database is a collection of mammalian complexes derived from a variety 

of experimental tools, from co-immunoprecipitation to co-sedimentation and ion exchange 

chromatography. In total, CORUM yields 2,837 complexes with 2,069 proteins connected by 

31,276 links.  

(vi) Kinase network (kinase-substrate pairs): Protein kinases are important regulators in different 

biological processes, such as signal transduction. PhosphositePlus provides a network of 1,843 

kinases and substrates connected through 6,066 interactions.  

(vii) Signaling interactions: The dataset from provides 32,706 interactions between 6,339 proteins 

that integrates several sources, derived from both high-throughput screens and literature curation, 

into a directed network in which cellular signals are transmitted by protein-protein interactions. 

Note that in our analysis, we do not take into account the direction of these interactions.  

(viii) Liver-specific interactions: We also include liver-specific protein-protein interaction data as 

many of the mediator proteins in inflammation, thrombosis, and fibrosis are synthesized in the 

liver.  

The union of all interactions obtained from (i)-(vii) yields a network of 13,681 proteins that are 

interconnected by 144,414 physical interactions. The network has a power-law degree distribution with a 

few hubs and a substantial number of low-degree nodes, and shows other typical characteristics observed 

previously in biological networks, such as high clustering and short path lengths. 

The effect of biased studies of human interactome on topological properties of disease genes 

Current maps of the human interactome are prone to investigative biases (43, 44).  Since disease genes are 
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typically the particular focus of experimental research, it is often observed that they have more 

established interaction partners and, therefore, higher degree in the network.  

Here, we aim to explore how biased studies of the human interactome may affect observing significant 

clustering of seed genes in the network. To quantify the extent to which the observed topological 

properties of disease proteins is due to these biased studies, we repeated our analysis on an unbiased, Y2H 

high-throughput subset of the human interactome.  

 

The raw observation suggests that proteins show much smaller clustering effect on unbiased protein-

protein interaction network. However, note that the interaction among substantial number of seed genes 

has not yet been examined in current high-throughput maps (Y2H network), and, therefore, the 

conclusion of such observation requires more attention.  

 

As mentioned above, due to limited search space (number of proteins examined) and an interaction 

detection sensitivity of ~10%, the unbiased maps are much sparser than current LCI maps. Thus, 

observing a smaller clustering effect is, indeed, expected and can be explained by the incompleteness of 

the current maps of unbiased interactome. Moreover, LCI is not limited to protein-protein interactions and 

includes interactions from several sources such as metabolic, regulatory, etc. 

 

To show that the observed topological properties of disease proteins on unbiased maps is, indeed, due to 

the incompleteness of the network (and not solely due to the biased nature of studies), we proceed as 

follow (Fig. S7a for the flowchart): 

1. For a fair comparison, we first limit the nodes of our HI to those existing in Y2H.  Therefore, 

we characterized the subnetwork of the full network that contains Y2H network nodes. This 

subnetwork contains a substantially larger number of edges than the Y2H network. The latter 

can be viewed as an incomplete but unbiased subset of this subnetwork. 

2. Next, we check whether the differences are significant or expected by chance. We randomly 
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remove (“prune”) links from this subnetwork until we reach the same number of links as in 

the Y2H network. In parallel, we try to keep the degree of the nodes preserved as in the Y2H 

network. 

 

Our analysis shows that the observed low clustering of seed genes in unbiased maps lies within the 

expected range drawn by randomly pruned events (Fig, S7b). Therefore, low clustering of disease 

proteins can, to a great extent, be explained by the incompleteness of the network. 

 

DIAMOnD Robustness and topological validation of module size 

To check the robustness of the module-finding methodology towards false positives and genes mis-

annotations we performed the so-called N-1 analysis where N is the original number of seed genes. In this 

analysis, we remove one seed each time and expand the neighborhood of N-1 seeds iteratively. At each 

iteration, we measure the overlap of the detected genes between the original (N seeds) and the trial (N-1 

seeds) sets. This procedure allows us to define an upper threshold and limit for the size of the final 

module above which the outcome of the methodology is sensitive to false positive annotations of seeds. 

 

Figure S2 shows the average overlap of the detected DIAMOnD genes as opposed to the DIAMOnD 

iteration step. The overlap has been measured between the genes resulting from two different seed sets: 

the original seeds and N different configurations of trial seeds (each containing N-1 seeds).  As shown in 

the figure the methodology is robust towards small variation of seed genes. 

 

Fully embedded pathways 

For pathway analysis, we used version 3.1 of Molecular Signature Database (MSigDB) developed by the 

Broad Institute, which is an integration of several different databases. Here we use pathways from KEGG, 

Reactome, and Biocarta. Each pathway is associated with a list of genes for which we calculate their 

enrichment using Fisher’s exact test. However, there are a few pathways, in which their associated genes 
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are fully (%100) embedded within our detected modules and are suspected to have a direct role in 

inflammatory processes (Table S1 and Fig. 2d); note that, given the current coverage of the map of human 

Interactome, proteins belonging to the pathway 

“Reactome_activation_of_AP1_family_of_transcription_factor” do not directly interact with each other.  
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Supplementary Figures: 

 

Fig. S1. Genetic association of seed genes as compared to other genes  with respect to three 

cardiovascular biomarkers, CRP, fibrinogen, and sICAM, as well as the specific vascular disease 

phenotype, VTE, in the inflammatory (pink background, first column), thrombotic (light blue 

background, second column), and fibrotic (light orange, third column) subnetworks. Seed genes contain 

more low p-value GWAS genes than other genes in the network [red circles, seed genes; green circles, 

endophenotype module (subnetwork); black circles, rest of network]. 

 

   

Fig. S2.  N-1 analysis. All modules are robust towards removing one node from the initial set of seed 

genes. The largest deviation appears as a consequence of removing the gene A2M from the fibrosis seed 

genes.  

 

 

Fig. S3. Venn diagram of differentially expressed genes associated with cardiovascular risk factors CRP, 

fibrinogen, HDL, triglycerides, and APO-A. 

 

Fig. S4. Tree analysis. (A) Given a set of nodes, we start by removing them from the HI and recording the 

number of remaining connected components and their LCC size. Next, we compare this analysis to that of 

random expectations where same number of nodes is randomly removed from the network. Blue arrows 

show the observed LCC size and number of connected components of the remaining nodes where (B) and 

(C) show a trunk-like and leaf-like behavior of a given set of nodes, respectively.  

 

Fig. S5. Functional similarities of ome-M proteins. The flowchart shows the steps towards calculating 

functional cohesiveness among ome-M proteins inside and outside detected modules. Detected proteins 

inside modules are functionally and significantly different from the ome-M proteins. 
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Fig S6. Confirming the M1-polarization of Thp1 cells using IFNγ. IFNγ treatment in THP-1 cells 

induced the potent pro-inflammatory molecules, including TNFα and IL-1β, the two commonly used 

markers of M1 macrophages. Each bar represents four independent experiments, where each 

replicates has three technical repeats. We can see that the expression levels of these molecule 

typically increase during M1 polarization. 

 

Fig. S7. Studying biased studies of networks in seeds clustering effects. (A) The flowchart of fairly 

comparing seeds clustering effects within curated networks and unbiased networks. (B) The observed 

clustering of seeds within unbiased maps lies within the expected range drawn by randomization.  
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Supplementary Tables: 

 

Table S1. Fully embedded pathways in different regions of endo-phenotype modules and their associated 

genes 

 

 

Fully embedded pathways Network 

neighborhood 

Genes 

 

BIOCARTA_IL6_PATHWAY 

 

Inflammasome- 

Thrombosome 

crosstalk 

CSNK2A1, JUN, SRF, HRAS, IL6R, 

STAT3, PTPN11, IL6ST, RAF1, SHC1, 

ELK1, MAP2K1, TYK2, JAK1, JAK3, 

JAK2, CEBPB, GRB2, MAPK3, FOS, 

IL6, SOS1 

BIOCARTA_EXTRINSIC_PATH

WAY 

Thrombosome 

specific 

F10, TFPI, F2, F2R, FGG, PROS1, 

PROC, FGA, SERPINC1, FGB, F3, F5, 

F7 

REACTOME_PECAM1_INTERA

CTIONS 

Modules crosstalk ITGAV, SRC, PTPN11, PLCG1, 

PECAM1, YES1, FYN, ITGB3, PTPN6, 

LYN, LCK, INPP5D 

REACTOME_ACTIVATION_OF

_THE_AP1_FAMILY_OF_TRAN

SCRIPTION_FACTOR 

Modules crosstalk MAPK9, JUN, MAPK10, MAPK11, 

MAPK8, MAPK14, ATF2, MAPK3, 

FOS, MAPK1 

 

BIOCARTA_IGF1_PATHWAY 

 

Inflammasome 

specific 

CSNK2A1, JUN, SRF, HRAS, MAPK8, 

PTPN11, RAF1, SHC1, ELK1, 

MAP2K1,I GF1, RASA1, PIK3CA, 

IGF1R, GRB2, IRS1, MAPK3, FOS, 

PIK3CG, PIK3R1, SOS1 
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Table S2. Differentially expressed genes associated with cardiovascular risks and their overlap with 

endo-phenotype modules 

 

 

 

 

Molecule 

 

#dE genes 

Overlap with 

inflammation 

module (seeds) 

Overlap with 

thrombosis 

module (seeds) 

Overlap with 

fibrosis 

module (seeds) 

CRP 479 55 (28) 52 (11) 35 (6) 

Fibrinogen 255 20 (8) 19 (3) 15 (2) 

APO-A 136 19 (11) 17 (3) 15 (2) 

APO-B 9 1 (0) 0 (0) 1 (0) 

HDL 216 34 (17) 30 (7) 24 (4) 

LDL 3 1 (1) 1 (0) 0 (0) 

Triglyceride 57 8 (4) 8 (2) 4 (1) 

 

 

 

 



 10 

Table S3. Number of diseases significantly enriched with endo-phenotype modules. 

 

 Seeds Module 

Inflammation 95 117 

Thrombosis 83 116 

Fibrosis 77 99 
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Table S4. Significantly enriched diseases in module-specific regions 

 

Cross-talk Inflammasome-

specific 

Thrombosome-

specific 

arthritis 

autoimmune-diseases 

autoimmune-diseases-

of-the-nervous-system 

bile-duct-diseases 

bone-diseases 

bone-marrow-diseases 

cardiovascular-

abnormalities 

cardiovascular-

diseases 

cerebrovascular-

disorders 

colitis 

colonic-diseases 

colorectal-neoplasms 

congenital-

abnormalities 

connective-tissue-

diseases 

crohn-disease 

demyelinating-

intestinal-neoplasms 

joint-diseases 

kidney-diseases 

kidney-neoplasms 

leukemia 

liver-diseases 

lung-diseases 

lymphatic-diseases 

lymphoproliferative-

disorders 

male-urogenital-

diseases 

metabolic-diseases 

multiple-sclerosis 

musculoskeletal-

abnormalities 

musculoskeletal-

diseases 

myeloproliferative-

disorders 

neoplasms 

neoplasms-by-

arteriosclerosis 

central-nervous-

system-diseases 

death-sudden 

death-sudden-cardiac 

heart-arrest 

heart-defects-

congenital 

muscular-disorders-

atrophic 

neuroectodermal-

tumors 

neuroendocrine-

tumors 

skin-diseases-genetic 

stomatognathic-

diseases 

 

abnormalities,-

multiple 

anemia,-aplastic 

bone-diseases,-

developmental 

breast-neoplasms 

carcinoma,-renal-cell 

charcot-marie-tooth-

disease 

colitis,-ulcerative 

collagen-diseases 

congenital,-

hereditary,-and-

neonatal- 

diseases-and-

abnormalities 

death,-sudden 

demyelinating-

autoimmune-diseases, 

-cns 

diabetes-mellitus,-

type-1 

Fibrosome-specific 

adenocarcinoma 

arrhythmias-cardiac 

genital-diseases-male 
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diseases 

diabetes-mellitus 

digestive-system-

diseases 

digestive-system-

neoplasms 

endocrine-system-

diseases 

female-urogenital-

diseases 

female-urogenital-

diseases-and- 

pregnancy-

complications 

gastroenteritis 

gastrointestinal-

diseases 

glucose-metabolism-

disorders 

gonadal-disorders 

heart-diseases 

hematologic-diseases 

hemic-and-lymphatic-

diseases 

hemorrhagic-disorders 

histologic-type 

neoplasms-by-site 

nephritis 

nervous-system-

diseases 

nervous-system-

malformations 

neurodegenerative-

diseases 

nutritional-and-

metabolic-diseases 

peripheral-nervous-

system-diseases 

pigmentation-

disorders 

psoriasis 

respiratory-tract-

diseases 

rheumatic-diseases 

skin-and-connective-

tissue-diseases 

skin-diseases 

urogenital-neoplasms 

urologic-diseases 

vascular-diseases 

genital-neoplasms-

male 

glioma 

lymphoma-non-

hodgkin 

macular-degeneration 

otorhinolaryngologic-

diseases 

prostatic-diseases 

prostatic-neoplasms 

 

genetic-diseases,-

inborn 

genetic-diseases,-x-

linked 

genital-diseases,-

female 

heart-defects,-

congenital 

infant,-newborn,-

diseases 

leukemia,-lymphoid 

leukemia,-myeloid 

lung-diseases,-

obstructive 

lupus-erythematosus,-

systemic 

lymphoma,-non-

hodgkin 

neoplasms,-glandular-

and-epithelial 

neoplastic-

syndromes,-hereditary 

skin-diseases,-

papulosquamous 

urologic-neoplasms 
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immune-system-

diseases 

immunoproliferative-

disorders 

inflammatory-bowel-

diseases 

intestinal-diseases 

 

 

 

 

 

Table S5. Topological network properties of endo-phenotype modules 

 

 

Network Region  Betweenness centrality Network degree 

Inflammation seeds 0.00059 36.92 

Inflammation DIAMOnD nodes 0.0015 87.16 

Inflammation module 0.0011 62.26 

Thrombosis seeds 0.000037 28.28 

Thrombosis DIAMOnD nodes 0.0013 80.11 

Thrombosis module 0.0012 70.69 

Fibrosis seeds 0.00059 38.34 

Fibrosis DIAMOnD nodes 0.0015 85.40 

Fibrosis module 0.0014 78.62 

Network 0.00019 21.11 
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Table S6. Topological and biological properties of early and late proteins characterized by confidence 

level criterion (b): p-value<0.05 

 

p<0.05 

Statistics 

 

Proteins 

 

Top 20 enriched pathways 

 

Early 

proteins 

#proteins = 

47 

M = 36 

LCC size = 

23 

<k> = 

64.57 

<kin> = 

1.53 

<kout> = 

2.76 

P-value = 

0.04 

STMN1, VAV3, 

ITGA3, CARD9, 

GNA12, 

IFNGR1, VCL, 

RASA1, PARP1, 

CD36, SCARB1, 

CSNK2A1, 

PRKDC, CD9, 

LRPPRC, 

HSPB1, PTPN2, 

TOP2A, CLTC, 

CABIN1, CD58, 

MTHFD1, 

PIK3CG, CBS, 

PTGS1, CD22, 

TNPO1, CAD, 

DHFR, PEBP1, 

GPX1, AKT2, 

PON2, ROCK2, 

CD2AP, CCNB1, 

REACTOME_HEMOSTASIS 

REACTOME_FORMATION_OF_PLATELET_PLUG 

KEGG_REGULATION_OF_ACTIN_CYTOSKELETO

N 

REACTOME_PLATELET_ACTIVATION 

KEGG_FOCAL_ADHESION 

REACTOME_GAP_JUNCTION_DEGRADATION 

BIOCARTA_PTC1_PATHWAY 

BIOCARTA_SRCRPTP_PATHWAY 

KEGG_PROGESTERONE_MEDIATED_OOCYTE_M

ATURATION 

REACTOME_CYCLIN_A1_ASSOCIATED_EVENTS_

DURING_G2_M_TRANSITION 

KEGG_CHEMOKINE_SIGNALING_PATHWAY 

REACTOME_PLATELET_ACTIVATION_TRIGGERS 

BIOCARTA_HIVNEF_PATHWAY 

BIOCARTA_IGF1_PATHWAY 

REACTOME_GAP_JUNCTION_TRAFFICKING 

REACTOME_COLLAGEN_MEDIATED_ACTIVATIO

N_CASCADE 
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DAB2, CALM1, 

BRAF, MYO6, 

CASP8, 

IQGAP1, CDK1, 

CDK9, CDK7, 

CSK, RPS27A 

BIOCARTA_INSULIN_PATHWAY 

KEGG_GLIOMA 

KEGG_NEUROTROPHIN_SIGNALING_PATHWAY 

BIOCARTA_CELLCYCLE_PATHWAY 

Late 

proteins 

#proteins = 

55 

M = 159 

LCC size = 

47 

<k> = 

107.6 

<kin> = 

5.78 

<kout> = 

2.36 

P-value = 

1.7e-4 

TAB1, IL1RN, 

IL1B, NAMPT, 

AHCY, HMGB1, 

VDAC1, 

VDAC2, NCF1, 

LIMA1, CTTN, 

RPS24, KRAS, 

TRAF3, IRAK1, 

TRADD, 

CSNK2B, PAK2, 

CASP4, VLDLR, 

VIM, HSPA9, 

HSPA8, TLR2, 

ABI1, 

HSP90AA1, 

HSPD1, PPM1B, 

ACTN4, RDX, 

REACTOME_HEMOSTASIS 

REACTOME_FORMATION_OF_PLATELET_PLUG 

KEGG_REGULATION_OF_ACTIN_CYTOSKELETO

N 

REACTOME_PLATELET_ACTIVATION 

KEGG_FOCAL_ADHESION 

REACTOME_GAP_JUNCTION_DEGRADATION 

BIOCARTA_PTC1_PATHWAY 

BIOCARTA_SRCRPTP_PATHWAY 

KEGG_PROGESTERONE_MEDIATED_OOCYTE_M

ATURATION 

REACTOME_CYCLIN_A1_ASSOCIATED_EVENTS_

DURING_G2_M_TRANSITION 

KEGG_CHEMOKINE_SIGNALING_PATHWAY 

REACTOME_PLATELET_ACTIVATION_TRIGGERS 

BIOCARTA_HIVNEF_PATHWAY 

BIOCARTA_IGF1_PATHWAY 
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REL, ALOX5, 

EDF1, CD74, 

GRB2, NFKB2, 

GNB2L1, 

TANK, ENO1, 

BIRC2, HCLS1, 

RAN, EIF3E, 

RANBP9, 

MAPK13, CRK, 

ASAP1, 

LGALS3, 

CASP7, NCF2, 

PTPN12, 

HNRNPA1, 

RPL22, HSPA5, 

PAFAH1B1 

 

REACTOME_GAP_JUNCTION_TRAFFICKING 

REACTOME_COLLAGEN_MEDIATED_ACTIVATIO

N_CASCADE 

BIOCARTA_INSULIN_PATHWAY 

KEGG_GLIOMA 

KEGG_NEUROTROPHIN_SIGNALING_PATHWAY 

BIOCARTA_CELLCYCLE_PATHWAY 
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Table S7. Topological and biological properties of early and late proteins characterized by confidence 

level criterion (c): FC>1.5 

 

FC < 

1.5 
Statistics 

 

Proteins 

 

Top 20 enriched pathways 

 

Early 

proteins 

#proteins = 

67 

M = 85 

LCC size = 

36 

<k> = 72.81 

<kin> = 

2.54 

<kout> = 

1.37 

P-value = 

4.47e-3 

STMN1, VAV3, 

CALU, DNAJB1, 

ITGAL, ITGA4, 

ITGA3, RPS6KA3, 

CARD9, GNA12, 

CAV1, IFNGR1, 

GSTM1, PTGES3, 

RASA1, PARP1, 

CD36, SCARB1, 

CSNK2A1, PTGS1, 

CD22, EIF3M, 

TNPO1, TFRC, 

DHFR, PPP1CA, 

GAPDH, PEBP1, 

EPHX1, AGT, ETS1, 

AHSG, GPX1, 

AKT2, RPS27A, 

CD63, CSNK2A2, 

GC, PIK3CB, 

CCNB1, EIF4A2, 

CALM1, ALB, 

GNAI2, PGRMC2, 

GGT1, CDK1, 

CDK9, CDK7, HLA-

B, CSK, HCK, 

TBXAS1, PRKDC, 

CD9, LRPPRC, 

IFI30, CASP3, 

HSPB1, HSPA14, 

PLA2G4A, MYL6, 

TOP2A, CLTC, 

CABIN1, TXN, 

CD58 

 

 

REACTOME_HEMOSTASIS 

REACTOME_FORMATION_OF_PLATELET_PL

UG 

REACTOME_PLATELET_ACTIVATION 

REACTOME_PLATELET_ACTIVATION_TRIG

GERS 

KEGG_ARACHIDONIC_ACID_METABOLISM 

KEGG_PROGESTERONE_MEDIATED_OOCYT

E_MATURATION 

REACTOME_PLATELET_DEGRANULATION 

KEGG_HEMATOPOIETIC_CELL_LINEAGE 

REACTOME_SIGNALING_IN_IMMUNE_SYST

EM 

REACTOME_CELL_SURFACE_INTERACTION

S_AT_THE_VASCULAR_WALL 

KEGG_REGULATION_OF_ACTIN_CYTOSKEL

ETON 

REACTOME_PROSTANOID_HORMONES 

BIOCARTA_PTC1_PATHWAY 

BIOCARTA_SRCRPTP_PATHWAY 

BIOCARTA_AKAP95_PATHWAY 

KEGG_MAPK_SIGNALING_PATHWAY 

KEGG_NATURAL_KILLER_CELL_MEDIATED

_CYTOTOXICITY 

KEGG_FOCAL_ADHESION 

REACTOME_CYCLIN_A1_ASSOCIATED_EVE

NTS_DURING_G2_M_TRANSITION 

REACTOME_HORMONE_BIOSYNTHESIS 
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Late 

proteins 

#proteins = 

42 

LCC size = 

8 

M = 21 

<k> = 63.88 

<kin> = 1 

<kout> = 

2.19 

P-value = 

6.14e-3 

MYL12A, TANK, 

FSCN1, BIRC2, 

TRAF3, IRAK1, 

TRADD, RHOC, 

RELB, JUN, MX1, 

TGM2, RANBP9, 

MAPK9, CRK, 

HRAS, CASP10, 

CASP7, NCF2, 

IFIH1, SPP1, LPL, 

TAB1, IL1RN, IL1B, 

DOK1, NAMPT, 

RPS6KA5, GAB2, 

MARCKS, 

CAMK2G, RPS13, 

VDAC1, NCF1, 

TIMP3, FYB, 

ARHGAP17, CTTN, 

RPS24, IRF5, CD74, 

ITGB3 

 

REACTOME_HEMOSTASIS 

REACTOME_FORMATION_OF_PLATELET_PL

UG 

REACTOME_PLATELET_ACTIVATION 

REACTOME_PLATELET_ACTIVATION_TRIG

GERS 

KEGG_ARACHIDONIC_ACID_METABOLISM 

KEGG_PROGESTERONE_MEDIATED_OOCYT

E_MATURATION 

REACTOME_PLATELET_DEGRANULATION 

KEGG_HEMATOPOIETIC_CELL_LINEAGE 

REACTOME_SIGNALING_IN_IMMUNE_SYST

EM 

REACTOME_CELL_SURFACE_INTERACTION

S_AT_THE_VASCULAR_WALL 

KEGG_REGULATION_OF_ACTIN_CYTOSKEL

ETON 

REACTOME_PROSTANOID_HORMONES 

BIOCARTA_PTC1_PATHWAY 

BIOCARTA_SRCRPTP_PATHWAY 

BIOCARTA_AKAP95_PATHWAY 

KEGG_MAPK_SIGNALING_PATHWAY 

KEGG_NATURAL_KILLER_CELL_MEDIATED

_CYTOTOXICITY 

KEGG_FOCAL_ADHESION 

REACTOME_CYCLIN_A1_ASSOCIATED_EVE

NTS_DURING_G2_M_TRANSITION 

REACTOME_HORMONE_BIOSYNTHESIS 
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Table S8. Case and control Sample sizes and biomarker level ranges 

 

 

Molecule 

 

Case sample 

size 

High risk range 

 

Control sample 

size 

Low risk range 

CRP 375 (>3 mg/l) 372 (<1 mg/l) 

Fibrinogen 324 (>402 mg/dl) 325 (<302 mg/dl) 

APO-A 329 (<1.46 g/l) 325 (>1.86 g/l) 

APO-B 328 (>1.20 g/l) 330 (<0.85 g/l) 

HDL 328 (<45 mg/dl) 346 (>66 mg/dl) 

LDL 316 (>164 mg/dl) 318 (<115 mg/dl) 

Triglyceride 325 (>153 mg/dl) 327 (<80 mg/dl) 

                                                      

 

Additional files not embedded into this document: 

Data files S1 and S2 

 

 

 

 
















