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1 Sources of prior knowledge

The approaches presented here primary consider the following sources of biological
knowledge.

Protein-Protein Interactions database

Protein-protein interaction (PPI) data present the current knowledge about
pairs of proteins that interact in living system and hence can be an important
source of information as a network prior. Such knowledge resides in various
databases, like IntAct, HPRD etc. Here we use interaction data from the Path-
waysCommons database; a collection of publicly available pathway information [1].
To compute a confidence value for each interaction between a pair of genes/proteins
we look at the shortest path distance between the two entities. To calculate the
shortest path distance between two nodes the function sp.between function based
on Dijkstra’s algorithm is used from R-package RBGL. The edge confidence is then
computed as the inverse shortest path distance.

KEGG pathway

KEGG pathways [5] is a knowledge base representing our knowledge on the
molecular interaction and reaction networks. It includes various kinds of pathways
e.g. metabolic pathways, disease related pathways etc. We compiled a comprehen-
sive network from KEGG with ~3776 nodes and ~29878 edges by merging ~80
KEGG graphs. The Dijkastra algorithm was executed on this graph to compute
scores similar to those obtained for PPI databases.



Gene Ontology

The Gene Ontology (GO) offers controlled vocabularies for aiding the annotation
of biomolecules. Interacting proteins often function in the same biological process.
This implies that two proteins acting in the same biological process are more
likely to interact than two proteins involved in different processes. Here we use this
information based on GO Biological Process (BP) annotations. Therefore, exploring
the knowledge buried in GO annotations seems a promising approach to map
relations among genes. To do this mapping of relations comparison of individual
GO terms was performed via Lin’s similarity measure [6] via the default method
in GOSim [3, 10].

Protein Domain Annotation

It has been found that found that proteins in distinct KEGG pathways are
enriched for certain protein domains, i.e. proteins with similar domains are more
likely to act in similar biological pathways [4, 2]. Therefore, the confidence for
interaction between two proteins can thus be seen as a function of the similarity of
the inter-pro domain annotations [7] of proteins. For each protein we constructed
a binary vector, where each component represents one Inter-Pro domain. A “1” in
a component thus indicates that the protein is annotated with the corresponding
domain. Otherwise a “0” is filled in. The similarity between two binary vectors u,
v (domain signatures) is presented in terms of the cosine similarity
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Domain-Domain Interactions

Two proteins are more likely to interact if they contain domains, which can
potentially interact. The DOMINE database collates known and predicted do-
main—domain interactions [9]. Calculation for edge confidence (I45) based on the
DOMINE database is done as
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where H is the number of hit pairs found in the DOMINE database and D, and
Dpg are the the number of domains in proteins A and B, respectively.
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2 Methods to compute priors

The Noisy-OR model (NOM) [8] to compute consensus probabilistic prior from
the sources described above. Here we describe the NOM approach: The Noisy-
OR represents a non-deterministic disjunctive relation between an effect and its



possible causes and has been extensively used in artificial intelligence. The Noisy-
OR model assumes that the relation among the causes and the effect is non-
deterministic, allowing the presence of the effect in absence of any of the modeled
causes. The Noisy-OR principle is governed by two hallmarks: First, each cause
has a probability to produce the effect and second, the probability of each cause
being sufficient to produce the effect is independent of the presence of other causes

In our case Xi(jl), XZ-(]-Q), NN Xi(]n) are interpreted as causes and (i)ij as effect.
The link between both is given by
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In consequence <:Pij becomes close to 1, if the edge i — j has a high confidence in
at least one knowledge source, because then the product gets close to 0. Hence, in
the Noisy-OR model high edge confidences in one information source can overrule
low confidences in other information sources. For a detailed description please see
Praveen et al. 2013 [§]

This prior was percieved as the S-gene prior for the NEM algorithm together with
the data.
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siRNA-based target knockdown
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SF1: Target gene expression upon siRNA-based knockdown experiment in H1650
cells. Gene expression was measured by qPCR. Relative expression decrease upon
knockdown was calculated in comparison to non-template controls (100%).

A B
SF2: Batch effect removal from data (A) Heat for the mRNA data before removing
the batch effect (B) After removing the batch effect
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SF3: Heatmap for the log p-value density in mRNA perturbation data

Hierarchical Clustering : ward pearson



Histogram of bootstrap probabilities
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SF4: Histogram for the bootstrap confidence in the inferred bootstrapped network



——> Pathway in HIPPIE (p > 0.05)
——> Pathway in HIPPIE (p < 0.05)
----» Edges found only in literature

RPS6KB1

SF5: Comparison of inferred network with HIPPIE
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SF6: Heatmap of attachment probabilities of reporter genes
10



PRKAB1:RPS6KAB1

RPS6KA1
GSK3A:GSK3B:LEPR Tsci

BCL10:EGFR:PIK3C3

ITGB4

EsPL1 =—————
STK11

MTOR

RAF1:SRC

WDR3

PRKAA1

NULL

SEF7: Heatmap of perturbation effects grouped by mostlikely S-gene attachments.
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SF8: Heatmap showing effect on proteins for knocking down 5 genes
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log fold change: somatic mutations
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SF9: Heatmap of log fold changes for genes showing differential expression between

patients with and without the somatic mutation shown in columns.
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Table 1: Inferred network edges explained by STRING paths

Network Path Explained by (String)
PRKAA1— PRKABI1 PRKAA1—-PRKABI1
PRKAA1—-MTOR PRKAA1—-MTOR
PRKAA1—RPS6KA1 PRKAA1—RPS6KA1
PRKAB1—-WDRS3 PRKAB1—-RPS6—WDRS3
PRKAB1—RPS6KB1 PRKAB1—RPS6KB1
ESPL1—ITGB4 ESPL1—-CDKN2A—ITGB4
WDR3—RAF1 WDR3—GNB2L1—RAF1
RAF1—SRC RAF1—-SRC
RAF1—-MTOR RAF1—-MTOR
ITGB4—PIK3C3 ITGB4—CDKN2A—PIK3C3
SRC—RAF1 SRC—RAF1
MTOR—PIK3C3 MTOR—PIK3C3
MTOR—RPS6KA1 MTOR—RPS6KA1
PIK3C3—TSC1 PIK3C3—TSC1
TSC1—-GSK3A TSC1—-GSK3A
TSC2—GSK3A TSC2—GSK3A
BCL10—EGFR BCL10—-CDKN2A—EGFR
BCL10—RPS6KA1 BCL10—RPS6KA1
EGFR—PIK3C3 EGFR—PIK3C3
EGFR—GSK3A EGFR—GSK3A
STK11—-GSK3A STK11—GSK3A
GSK3A—TRUB2 GSK3A—PRKAG2—TRUB2
TRUB2—TSC2 TRUB2—PRKAG2—TSC2
TRUB2—GSK3B TRUB2—PRKAG2—GSK3B
TRUB2—LEPR TRUB2—PRKAG2—LEPR
TRUB2—RPS6KA1 TRUB2—UBC—RPS6KA1
LEPR—GSK3A LEPR—STAT1—-GSK3A

RPS6KA1—-+RPS6KB1 RPS6KA1—-+CREB1—-RPS6KB1
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Table 2: Inferred network edges explained by HIPPIE paths

Network Path Explained by (Hippie)
PRKAA1— PRKABI NA
PRKAA1—-MTOR NA
PRKAA1—-RPS6KA1 NA
PRKAB1—-WDR3 NA
PRKAB1—RPS6KB1 NA
ESPL1—ITGB4 NA
WDR3—RAF1 NA
RAF1—SRC RAF1—-ARRB2—SRC
RAF1—-MTOR RAF1—-HSP74—MTOR
ITGB4—PIK3C3 NA
SRC—RAF1 SRC—RAF1
MTOR—PIK3C3 NA
MTOR—RPS6KA1 NA
PIK3C3—TSC1 NA
TSC1—GSK3A TSC1—-AKT1—-GSK3A
TSC2—GSK3A TSC2—RRAGB—A4—GSK3A
BCL10—EGFR BCL10—UB2V2—EGFR
BCL10—RPS6KA1 NA
EGFR—PIK3C3 NA
EGFR—GSK3A EGFR—AKT1—-GSK3A
STK11—-+GSK3A STK11—-A4—GSK3A
GSK3A—TRUB2 GSK3A—EBP2—H11—-TRUB2
TRUB2—TSC2 TRUB2—FYCO1—KINH—1433G—TSC2
TRUB2—GSK3B TRUB2—FYCO1—-LMNA—TOP2A—GSK3B
TRUB2—LEPR TRUB2—FYCO1—-RFA1—-XRN1— LEPR
TRUB2—RPS6KA1 NA
LEPR—GSK3A LEPR—GRB2—FCG2B—GSK3A

RPS6KA1—-RPS6KB1 NA
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