Supplementary Information

Highly selective and sensitive phosphate anion sensors based

on AlGaN/GaN high electron mobility transistors

functionalized by ion imprinted polymer

Xiuling Jia^{1,2}, Dunjun Chen^{1,*}, Bin Liu¹, Hai Lu¹, Rong Zhang^{1*} & Youdou Zheng¹ ¹Key Laboratory of Advanced Photonic and Electronic Materials, School of electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China. ²Chuzhou Vocational and Technical College, Chuzhou, 239000, P. R. China. * Correspondence to D.J.C. (<u>djchen@nju.edu.cn</u>) or R. Z. (<u>rzhangsdu@nju.edu.cn</u>)

The chemical reaction processes of ion imprinting:

Figure 1. The chemical reaction processes of ion imprinting. (a). The sensor was first surface-modified with coupling agent AMPS. (b). Combination of monomer DMC with template PO_4^{3-} ion via ion exchange action. (c). Production of free radical on surfaces of modified silica gel particles. (d). Simultaneously surface-initiated graf-polymerizing and imprinting. (e). Removing template ion PO_4^{3-} .