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Supplementary Figure 1 

 
Supplementary Figure 1 Experimental design in MEG and fMRI. Participants viewed the same 
set of 118 images (4° visual angle, 500ms presentation time) overlaid with a light gray fixation 
cross. We adapted presentation parameters to MEG and fMRI constraints. (a) For MEG, images 
were presented with an inter-trial-interval (ITI) of 0.9-1.1s. Every 3-5 trials (average 4), a paper 
clip image was presented prompting participants to press a button, and blink or swallow if 
necessary. (b) For fMRI, the ITI was 3s. The design included null trials (25% of trials) 
characterized by a change of fixation cross hue to a darker gray and no image presentation. 
Participants reported null trials with a button press. Object images shown as exemplars are not 
examples of the original stimulus set due to copyright; the complete stimulus set is visualized at 
http://brainmodels.csail.mit.edu/images/stimulus_set.png. 
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Supplementary Figure 2 

 
Supplementary Figure 2 Representational similarities between layers of the object DNN and the 
human brain. Low DNN layers were mapped largely to the occipital lobe of the brain, i.e. low- 
and mid-level visual regions, whereas high DNN layers to more anterior regions in the temporal 
and parietal lobe. In particular, representations in DNN layer 8 were found to be similar to brain 
representations reaching into inferior parietal cortex (P < 0.05 by sign-permutation test, n = 15, 
FDR-correction). Each row shows axial cuts positioned in standard MNI space. Overlays were 
created with MRIcron. 
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Supplementary Figure 3 

 

Supplementary Figure 3 Unique contributions of layer-specific DNN RDMs to the 
fMRI-DNN similarity maps. (a) Correlations (Spearman’s R) between layer-specific 
DNN RDMs. Significance was assessed using label-permutation tests (10,000 
permutations). All pair-wise correlations were P = 0.0001, and thus significant at the P = 
0.05 level, Bonferroni-corrected for pairwise tests ((8*8)-8)/2=28). (b) We used partial 
correlation to furnish spatial maps of visual representations common to brain and object 
DNN considering variance unique to each layer only, i.e. partialling out the effect of all 
other DNN layers. We found significant clusters for layers 2, 6 and 8 (n = 15, cluster 
definition threshold P < 0.05, cluster-threshold P < 0.05 Bonferroni-corrected for 
multiple comparisons by 16 (8 DNN layers * 2 hemispheres). Corroborating the analysis 
in Figure 4 at the main article, there was a correspondence between object DNN 
hierarchy and the hierarchical topography of visual representations in the human brain.
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Supplementary Figure 4 
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Supplementary Figure 4 Architecture, task constraints, and training procedure influence the 
DNN’s predictability of temporally emerging brain representations – layer specific analysis. 
Representational similarities between layer-specific DNN RDMs and MEG RDMs over time (left 
panel) as well as the relationship between DNN hierarchy and peak-latency of time course foe 
ach layer (right panel) for untrained DNN (a,b), scene DNN (c,d), unecological DNN (e,f) and 
noise DNN (g,h). All DNNs had time points with significant common brain-DNN representations 
for some layers. A significant positive hierarchical relationship between layer number and brain-
DNN representational similarities was present in the scene DNN (d, R = 0.44, P = 0.001), and a 
negative relationship for the untrained DNN (b, R = –0.60, P = 0.001). Insets in the right panels 
show the correlation values between layer number and brain-DNN representational similarities as 
well as significance (sign-permutation text, 10,000 permutations). In the left panel, lines above 
data curves indicate significant time points (n = 15, sign-permutation tests, cluster definition 
threshold P = 0.05, cluster threshold P = 0.05 Bonferroni-corrected by 8, i.e. for number of DNN 
layers for each panel). 
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Supplementary Table 1 
 Database 
 SUN-397 Caltech-101 
 Accuracy (% classification) 
Object DNN 43.45 86.22 
Scene DNN 53.10 62.23 
Untrained DNN 0.25 0.99 
Unecological DNN 0.25 0.99 
Noise DNN 0.25 0.99 
 
Supplementary Table 1 DNN performance on scene and object classification. We assessed the 
performance of the DNNs on object and scene categorization by testing the prediction 
performance of support vector machines (SVMs) based on DNN layer 7 activations for the scene 
image dataset SUN-397 16 and the object-image dataset Caltech-101 separately. In detail, we used 
liblinear to train one-versus-all SVMs with a linear kernel (L2-regularized L2-loss) for all image 
classes of each of the image set data sets. We determined the hyper parameter C (range 10-6 to 
102) by 5-fold cross validation. Results of the per-class SVMs were averaged, resulting in one 
average decoding accuracy per DNN and image dataset. As expected, the untrained, noise and 
unecological DNNs performed at chance, whereas the object and scene DNNs had high 
performance similar to benchmark performance reported previously on object and scene 
categorization16 (DNN for object (‘ImageNet-CNN’) classification on SUN-397 = 42.61 and 
Caltech-101 = 87.22; DNN for scene classification (‘places-CNN’) on SUN 397 = 54.42 and 
Caltech-101 = 65.18; chance level is 1/397=0.25% for SUN-397 and 1/101=0.99% for Caltech-
101). Note that DNN performance depended on classified image material: on the scene image 
dataset (SUN-397) the scene DNN performed better than the deep object network, and vice versa 
for the object image dataset (Caltech-101). 
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Supplementary Table 2 
 
 Onset latency (ms) Peak latency (ms) 
Layer 1 74(63-79) 130 (108-134) 
Layer 2 74 (60-78) 120 (104-128) 
Layer 3 69 (54-81) 110 (106-221) 
Layer 4 66 (54-83) 109 (105-194) 
Layer 5 63 (50-80) 108 (105-240) 
Layer 6 63 (50-83) 134 (115-246) 
Layer 7 76 (61-83) 172(152-216) 
Layer 8 145 (129-164) 172 (169-304) 
 
Supplementary Table 2 Onset and peak latencies for layer-wise MEG-DNN correlations for the 
object DNN (n = 15, 95% confidence intervals were determined by 1,000 bootstrap samples from 
the participant pool). 
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Supplementary Table 3 
 
 Onset latency (ms) Peak latency (ms) 
a) 
Object DNN 74 (63-81) 118 (107-203) 
Scene DNN 78 (62-85) 187 (98-223) 
Untrained DNN 63 (57-64) 107 (102-134) 
Unecological DNN 583 (147-604) 600 (76-709) 
Noise DNN 74 (60-338) 109 (80-590) 
b) Object DNN minus 
Scene DNN 130 (72-939)* 147 (36-632)* 
Untrained DNN 166 (128-198) 203 (-74-231) 
Unecological DNN 82 (78-85) 145 (108-224) 
Noise DNN 88 (85-303) 226 (29-242) 
 
Supplementary Table 3 Onset and peak latencies for time courses with which representations 
common between brain and DNNs emerged. (a) Onset and peak latencies in time courses of 
representational similarities between brain MEG signals and DNN layers. (b) Onset and peak 
latencies in the time course for the object DNN minus the time course of all other models for each 
model (n = 15, 95% confidence intervals were determined by 1,000 bootstrap samples from the 
participant pool). The scene DDN showed a significant difference only at a cluster threshold P-
value of 0.05, and not when Bonferroni corrected by 4 for the number of comparisons (indicated 
by asterisk). 
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Supplementary Table 4 
 
 V1 IT IPS1&2 
 Spearman’s 

R 
Significance 

(P-value) 
Spearman’s 

R 
Significance 

(P-value) 
Spearman’s 

R 
Significance 

(P-value) 
a)  

Object DNN 
-0.65 0.003 0.50 0.007 0.48 0.005 

Scene DNN 
-0.68 0.002 0.26 0.155 0.30 0.08 

Untrained 
DNN 

-0.20 0.088 -0.47 0.002 -0.26 0.10 

Unecological 
DNN 

-0.26 0.003 -0.29 0.012 -0.08 0.42 

Noise DNN 
-0.40 0.001 -0.38 0.001 -0.03 0.77 

b) Comparison: Effect of object DNN minus effect of: 

Scene DNN 
0.12 0.136 0.39 0.005 0.47 0.002 

Untrained 
DNN 

-0.32 0.019 0.66 0.001 0.46 0.014 

Unecological 
DNN 

-0.48 0.001 0.65 0.001 0.44 0.001 

Noise DNN -0.42 0.001 0.64 0.001 0.40 0.002 
 
Supplementary Table 4 Architecture, task constraints, and training procedure influenced the 
DNN’s predictability of the position of brain regions in the visual hierarchy. (a) Correlations 
between layer number and fMRI-DNN representational similarities for the different models. (b) 
Comparison of object DNN against all other models (correlation computed after subtraction of 
corresponding fMRI-DNN representational similarities) (n = 15, significance determined by sign-
permutation tests). 
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Supplementary Table 5 
 
Layer Conv1 Pool/ 

Norm
1 

Conv
2 

Pool/ 
Norm
2 

Conv
3 

Conv
4 

Conv
5 

Pool 
5 

FC1 FC2 FC3 

Units 96 96 256 256 384 384 256 256 4096 4096 683/ 
216 

Features  55×55 27×27 27×27 13×13 13×13 13×13 13×13 6×6 1 1 1 
 
Supplementary Table 5: Number of units and features for each DNN layer. Units and features of 
the DNN architecture were similar to those proposed in Krizhevsky et al., (2012) 29. All DNNs 
were identical with the exception of the number of nodes in the last layer (output layer) as 
dictated by the number of training categories, i.e. 683 for the object DNN, 216 for the scene 
DNN, and 1000 for the untrained, unecological, and noise DNN. Abbreviations: Conv = 
Convolutional layer, Pool = Pooling layer; Norm = Normalization layer; FC1-3 = fully connected 
layers 1-3 (noted as layers 6-8 in entire architecture). 
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Supplementary Movie 1 
Layer-wise representational similarity between human brains and the object DNN as determined 
by a surface-based searchlight analysis. The movie shows representational similarity (P < 0.05 
cluster definition threshold, P < 0.05 cluster threshold) between fMRI-pattern derived RDMs and 
layer-specific RDMs for the object DNN from different angles. 
  



	
   13	
  

Supplementary Text 1 
We used a volumetric searchlight based analysis to provide an alternate view of data 

combined with a stricter statistical procedure that permits voxel-wise interest. Note that 

although a surface-based analysis provides higher specificity 53, it also uses part of 

available data by choosing only a single layer of voxels for the analysis. In contrast, a 

volumetric analysis may make use of all data present in local populations of voxels, such 

as when two voxels span the cortical sheet. 

 

As for the surface-based analysis, for each subject we constructed an fMRI RDM for 

every voxel in the brain (4-voxel radius) based on the voxel’s local activity patterns. We 

then correlated each voxel’s RDM with the layer-specific DNN RDM (Spearman’s R), 

yielding a 3D map of similarity for each layer. To compare results in a common 

framework, the resulting similarity maps were normalized into MNI space.  

 

In line with the surface based analysis, similarities between the brain and the object DNN 

were largely confined to the dorsal and ventral streams (Suppl. Fig. 2, P < 0.05, FDR 

corrected). Low DNN layers had common representations prevalent in the occipital lobe 

of the brain, whereas higher DNN layers extended far into the temporal and parietal 

cortex. In particular, we found evidence for similar representations between brain 

representations and layer 8 reaching far into inferior parietal cortex bilaterally. 

 

In sum, these results corroborate the surface-based analysis with an independent analysis 

approach and a statistic that allows for voxel-based inference. 


