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1 METHOD

1.1 Greedy Resilencing in the Adaptation of Metabolism

Notations. Within the FBA framework, a metabolic network is represented by an m × r stoichio-
metric matrix S (m and r being the number of metabolites and of reactions, respectively) and by a
vector v ∈ R

r of reaction fluxes. For each flux, a lower and an upper bound is given, denoted by
the vectors L and U respectively; L and U are related not only to the maximal concentration of the
enzymes (expression of the coding genes and alterations due to knockouts or mutations) and to their
activation (biochemical or allosteric), but also to the medium in which the microorganism is growing
(nutrient inflows are among the fluxes of the metabolic network). Together with the steady state
assumption (Sv = 0), these constraints define the polytope

W (L,U) = {v : Sv = 0, L ≤ v ≤ U},

here denoted as W (L,U) because it is viewed as a function of the lower and upper bounds which
may change over time. Indeed, some components of L and/or of U can be set to zero following the
silencing of the corresponding enzymes/genes or following the removal of some nutrients (whereas the
stoichiometric matrix S does not change when a perturbation occurs). Therefore, in order to describe
the long-term adjustment of the metabolism, we use a time-discrete dynamics represented by the
sequence

{[v(s),L(s),U(s)]}s=0,1,2,...,

where v(s), L(s) andU(s) denote the reaction fluxes, the lower and upper bounds at step s, respectively.

Each element of the sequence is characterized by the growth rate g(s) = v
(s)
biomass.

The starting point [v(0),L(0),U(0)]. The experiments we consider in this paper are performed
following a common laboratory protocol for adaptation assays in microorganisms [6, 4, 7, 8]. These
experiments start with overnight growth in Luria-Bertani rich medium; at the beginning of the second
day, the rich medium is substituted with a single carbon source minimal medium. To describe these
experiments in our model, we first calculate the unperturbed fluxes (wild-type strain in rich medium)
by a variant of the so called parsimonious FBA (pFBA) [14]. The maximization of the biomass
component of the fluxes on the initial polytope W (L,U), i.e.

vwt = arg max
v∈W (L,U)

vbiomass, (S1)
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provides the value of the maximal growth rate (gmax = vwt
biomass). Because of the non-uniqueness of the

solution of this optimization problem, pFBA selects the reactions fluxes that have the least enzymatic
cost (i.e. the minimal sum of the fluxes) while guaranteeing the maximal biomass. This is achieved
through a second optimization:

vpFBA = arg min
v ∈ W (L,U)

vbiomass = gmax

r
∑

i=1

|vi|. (S2)

The knockout of reaction k in a mutant is introduced by setting Lk = Uk = 0. Similarly, the switch
to the minimal medium is described by setting to zero the upper-bounds of all the nutrient uptakes,
except for the carbon source used in the minimal medium and the other essential chemicals (oxygen,
phosphate, ammonia, water, etc.). The negative lower bounds are not changed since the secretion
of substances (for instance ethanol, acetate) is still possible in the minimal medium. At s = 0, the
modified lower and upper bounds are denoted L(0) and U(0). The initial effect of the perturbation
is modelled by MOMA, which has been proven to provide a reliable description of the short-term
metabolic adjustment [15, 16]. The vector of fluxes after these perturbations is then:

v(0) = arg min
v∈W (L(0),U(0))

‖v− vpFBA‖2, (S3)

where ‖ · ‖2 denotes the L2-norm. In Fig. S3A, this step is described by the projection of the unper-
turbed point vpFBA (blue) to the point v(0) (red): the corresponding flux distribution, characterized

by the growth rate g(0) = v
(0)
biomass, is the starting point of our dynamics. Clearly, depending on the

specific experiments one aims to reproduce, other possible definitions of the starting point can be
adopted.

Given the polytope W (L(0),U(0)), using Eq. (S1) and (S2) it is also possible to recalculate the
optimal solution given by pFBA, and denote it vopt, with the corresponding growth rate gopt (≤ gmax

by construction, see Fig. S3A).

Resilencing probabilities at each step. As described in the main text, it is known that the
recovery of the growth rate is accompanied by the resilencing of the activated non-essential reactions
[13, 10, 11]. Of course, processes like the diffusion of a metabolite across the membrane cannot be
regulated: such fluxes are then excluded from the set of possible resilencings. The first key point of
GRAM is then the iterative resilencing : one by one, the active reactions are progressively silenced and
the corresponding short-term effect is calculated through MOMA. For simplicity, we consider these
resilencings as irreversible. The second key point is the greedy heuristic in the choice of the reactions
to be silenced: the higher the induced recovery of the growth rate, the higher the probability for the cell

to adopt that resilencing. We calculate these probabilities with the following equations.
For simplicity let us consider the case in which, while performing step 1 (from s = 0 to s = 1) of

the adaptation dynamics, the cell has only two possible strategies (i.e. two possible resilencings) here
called A and B (see Fig. S3A and B). For each of them, MOMA is applied with respect to v(0) leading
to v(A) and v(B) with the corresponding growth rates gA and gB. Without loss of generality we can
assume gA > gB. According to our description of a greedy regulation machinery, strategy A is adopted
by the cell with a higher probability than that of strategy B. We denote rA and rB = 1− rA the two
corresponding probabilities. This means that rA > rB and that from an initial population of Q(0)
cells we have rAQ(0) cells with growth rate gA and rBQ(0) cells with growth rate gB. Considering
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the elementary Population Dynamics equation dQ(t)/dt = gQ(t), after a time ∆t (the time interval
between two consecutive steps) the two populations are:

QA(∆t) = rAQ(0)egA∆t (S4)

QB(∆t) = rBQ(0)egB∆t.

i.e. also the proliferation difference introduces a higher probability of finding cells that have adopted
resilencing A (Fig. S3B). This is due to the exponential expression that, by the factor ∆t > 0,
converts the difference in terms of growth rates into a difference in terms of population of cells (i.e.
gA > gB ⇒ Q(0)egA∆t > Q(0)egB∆t). For simplicity we decided to model the greedy heuristic of the
regulatory machine (i.e. gA > gB ⇒ rA > rB) through the same exponential expression. Clearly, ∆t
is here replaced by an arbitrary parameter, denoted by βreg. The resulting expressions for rA and rB
are then:

rA =
egAβreg

egAβreg + egBβreg
; (S5)

rB =
egBβreg

egAβreg + egBβreg
.

Combining (S4) and (S5), the probabilities of finding a cell with strategy A or strategy B are given
by

P[A] =
QA(∆t)

QA(∆t) +QB(∆t)
=

egA(βreg+∆t)

egA(βreg+∆t) + egB(βreg+∆t)
; (S6)

P[B] =
QB(∆t)

QA(∆t) +QB(∆t)
=

egB(βreg+∆t)

egA(βreg+∆t) + egB(βreg+∆t)
.

The two parameters are then combined by a simple summation that leads to a single parameter β for
the entire model, namely

β = βreg +∆t. (S7)

We would like to notice that, as long as the equation reproduces the greedy criterion gA > gB ⇒
rA > rB , other mathematical expressions can be used. We verified this by comparing the results from
the exponential equation with the β parameter and the results from a probability calculated with the
m-th order moment. Fig. 2a shows indeed a good similarity between the two results.

Parallelism with Statistical Physics. Derived Eq. (S6) has the same form as the Boltzmann distribution
used in Statistical Physics. Indeed, defining the Hamiltonian as H = −g and the β factor as β =
βreg + ∆t, the probability of being in state ω becomes P[ω] = e−βH(ω)/Z, where Z is the partition
function of the canonical ensemble defined as Z =

∑

ω∈Ω e−βH(ω) and Ω is the ensemble of all possible
states of the systems [9]. Therefore, like in a typical minimization energy problem in Statistical
Physics, we can think to the microorganism as an algorithm that is trying to minimize (maximize) the
Hamiltonian H (the growth rate g); see also Fig. S12H-J. From this analogy we can also derive the
information about the meaning of β: its value is related to the “temperature”, i.e. the randomness of
the dynamics. We refer to this interpretation for the choice of the value of β (see below).
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The end-point [v(end),L(end),U(end)]. Equation (S6) can be applied to any number of possible
strategies and to any step s of the trajectory. Thus, through an iterative use of resilencing, the growth
is gradually recovered. Please note that, since there exist resilencings which cause negative effect on
cell proliferation, a non-monotonic increasing trajectory of the growth rate is always possible.

We define then the end-point of the adaptation trajectory the state for which none of the possible
resilencings can provide any further increase of the growth rate, i.e. there is no advantage for the cell
in resilencing other reactions.

Markov chain. The adaptation dynamics we have described form a Markov Chain (see Fig. S3C)
for which the probabilities at all possible steps are well defined and computable, and whose states are
represented by the triplet

[v(s),L(s),U(s)] ∈ R
3r.

It is worth noting that the sequence of vectors {v(s)}s=0,1,2... without L(s) and U(s) is not sufficient
to describe the dynamics. Indeed, similarly to other dynamical approaches [12, 1], by expanding the
space from R

r to R
3r we make the process Markovian ({v(s)}s=0,1,2... alone is not Markovian).

At each step, the transition probabilities must be calculated as the system evolves. Because of
the high number of possible trajectories (for the cases analysed in this work we estimate that more
than 1030 trajectories are possible) an exhaustive sampling is not practically feasible. Therefore the
space is sampled using a kinetic MonteCarlo method [3]. At a generic step s a random number is
extracted according to the distribution of the transition probabilities, and the corresponding resilencing
is introduced. The system passes then from state [v(s),L(s),U(s)] to state [v(s+1),L(s+1),U(s+1)]
and the procedure is iterated until an end-point is reached (see Fig. S3C). The resulting trajectory
consists of a sequence of accepted enzyme resilencings (L(s) and U(s)) together with the corresponding
metabolic fluxes (v(s)). The time-scale of the dynamics in Fig. 1 of the main text is obtained by
t [days] = 1.2s [step number of the recursive procedure] (i.e. ∆t ≈ 30 h).

Many random realizations of the dynamics can be generated. All the calculations in the paper are
performed computing N =500 trajectories for each condition. Averaging over these N trajectories we
obtain the mean dynamics of the growth rate g(s) and the corresponding standard deviations.

Normalization of the reaction fluxes. For a comparison with the 13C-based measurements, we
normalize the fluxes in a way to preserve also the important ratio between the values in the wild-type
and the values in the mutant. In the following, vexp and vcomp denote the experimental and the
computed (not normalized) vectors of fluxes for the mutant strain, whereas wexp and wcomp denote
the same for the wild-type (see Fig. S6 for the results on the wild-type strain). The corresponding
normalized fluxes vnorm and wnorm are calculated as follows:

vnorm = vcomp

(

vexp +wexp

v comp +wcomp

)

;

wnorm = wcomp

(

vexp +wexp

v comp +wcomp

)

.

The formulas have been applied to the results obtained by GRAM, MOMA, ROOM and pFBA.
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1.2 Choice of the parameter β

As mentioned earlier, from Statistical Physics we know that the value of β is related to the “tempera-
ture” of the system, i.e. to the randomness of the dynamics. In particular, low values of β imply high
randomness, and high values of β tend to give deterministic dynamics. Since we would like to include
alternative trajectories without generating results with too high variability, we looked for a reasonable
compromise for the value of this parameter. For this purpose we have explored how the variance of the
growth rate at the end-point of the trajectories is affected by β. For a fixed value of β, we simulated
the set C of all (independent) experimental conditions considered in this work (knockouts plus carbon
sources) and then we computed the averaged relative variance, σ̄2

rel as the sum of the relative variance
of each of these (independent) conditions:

σ̄2
rel(β) =

∑

i∈C

σ2
i (β)

[ḡ
(end)
i (β)]2

(S8)

where for the i-th experiment we used the common variance estimator

σ2
i (β) =

1

N − 1

N
∑

j=1

[

g
(end)
i [j, β] − ḡ

(end)
i (β)

]2

(S9)

and ḡ
(end)
i (β) is the mean value over the N = 500 simulated trajectories of experiment i with that β.

Figure S4 reports the results of this analysis: as expected, increasing the randomness (i.e. reducing β)
increases the variance monotonically. However, two different regimes are present: a “flat-low regime”
showing only small changes to the already low values of variance, and a “steep-high regime” with
significant changes and high values of variance. In order to have a reasonably limited variability of
the outcomes while still being far from deterministic trajectories, we decided to choose β = 200 h, i.e.
a value in the flat-low regime but close to the transition between the two regimes. As an example, an
evaluation of the effect of β on the non-trivial GLU-tpi condition is reported in Fig. 2a in the main
text.

We would like to stress the fact that, as clearly indicated by Eqs. (S8)-(S9), the choice of the value
of β has not been dictated by an optimal fit of the results with respect to experimental data but by a
simple consideration on the amount of randomness. Therefore, all the results of our simulations should
be viewed as real model predictions and the comparison with the experimental data as a stringent
test for our principle.
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2 SUPPORTING RESULTS

2.1 Tests about the importance of greediness.

We verified the role of greediness with the following tests.

• Alternative expression for the probability. In order to verify that the results are not an
artefact due to the usage of the Boltzmann equation (S6), we tested whether the quality of the
outcomes is preserved by the use of other equations. As example of alternative estimation of the
probability, we considered the use of the m-th moment:

P[ω] =
(gω)

m

∑

ω∈Ω(gω)
m
. (S10)

We would like to note that both expressions reproduce the greedy heuristic gA > gB ⇒ P[A] >
P[B]. Clearly, this is the only requirement the equation must fulfil. We choose GLU-tpi as
testing case because of its non-trivial adjustment (i.e. a sub-optimal recovery of the growth
rate). The comparison of the results is reported in Fig. 2a in the maintext. The overlap between
the two sets of results supports the absence of artefact in the use of the Boltzmann equation and
the generality of the greedy criterion.

It is also interesting to notice that the value of β = 200 h corresponds approximately to m = 2
(see Fig. 2a in the maintext). Therefore, Eq. (S10) has the same expression as a Hill equation
with cooperative index equal to 2 (a value widely used in the literature). The equivalence
between the two expressions has been derived with more details in the maintext in “An example
of a greedy regulatory motif” at the end of the Results section.

• Comparison with deterministic and random models. Since our trajectories are about
18-24 steps long, the temporal scale of 40-50 days of adaptation indicates that each iterative
step corresponds to a ∆t of about 30 hours and then, from Eq. (S7), βreg = β −∆t = 170 h−1.
This already suggests that the role of greediness in the dynamics is more important that the
effect of a better “fitness” (the induced proliferation advantage over the time).
Moreover, by the analogy between our probability estimation and the Boltzmann distribution,
the factor βreg can be related to the amount of randomness in our Markov Chain. We then tested
the case when βreg → ∞ (a deterministic greedy choice of the resilencing, i.e. the resilencing
which gives the highest growth rate is always adopted) and when βreg = 0 h−1(a completely ran-
dom choice in which all resilencings become equiprobable, i.e. the greedy criterion is removed).
A comparison of the two cases with respect to the standard method (βreg = 170 h−1) is reported
in Fig. 2b-d in the main text and show that the deterministic model is still able to provide good
results (though naturally, it does not reproduce the appearance of two phenotypes in GLU-pgi)
whereas the removal of the greediness causes a complete loss of the prediction power.

• Comparison with shuffled and merged sequence of resilencings. To prove the im-
portance of greediness in choosing the temporal order, we recomputed the end-point of the
trajectories obtained with the standard method assuming that the sequences of resilencing are
randomly shuffled or merged in a single step. In both cases the new results are no longer in
agreement with the experimental data (see Fig. 2e-f in the main text).
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• Comparison with available methods. We compared also our end-points (final growth rate)
with the results derived from MOMA, ROOM and pFBA. Plots in Fig. S5 clearly indicate the
better performance of our method. An additional confirmation is obtained also on the basis
of the 13C-based reaction fluxes as reported in Table S2. Although promising, we have not
considered the Pareto optimality proposed in [14] since it provides a range of values for the
fluxes and not a specific point in the FBA polytope.

2.2 Mutations

The use of rA = rB (βreg = 0, i.e. no greediness) would be ideal to describe the appearance of (random)
mutations that stop a reaction. However, mutations are rare in the considered time scale, especially
those which cause a stop of a reaction: most of the resilencings are indeed induced by the regulatory
machine of the cell [5, 2]. Similar consideration applies to mutations that trigger an increase of the
enzymatic activity. Nevertheless, this type of mutation can still be described by GRAM. Indeed, since
the only limiting factor in the network is the carbon source uptake, reaction fluxes are never limited
by the lower/upper bounds and their absolute value can always increase during MOMA projection.
We report here two examples.

The ≈2.5-fold higher enzymatic efficiency [5] measured in the in vivo activity assay on the enzymes
in the methylglyoxal pathway in the case of ∆tpi is indeed reproduced in our simulations by fluxes
3.6 times higher in the mutant than in the wild-type.

Experimental evidence on ∆pgi shows that the activation of the pentose phosphate pathway and
of isocitrate dehydrogenase causes an overproduction of NADPH. This is compensated by a muta-
tion that stops membrane-bound transhydrogenase and activates soluble NADPH transhydrogenase
[5, 7, 2]. In our trajectories for the wild-type, the production and consumption of NADPH by the dif-
ferent metabolic pathways is almost balanced: the consumption exceeds the production by less than 1
mmol/gh. This small difference is compensated by the synthesis of NADPH by the membrane-bound
transhydrogenase (NADH → NADPH). In the case of the pgi knockout, instead, both phenotypes
show an excess in the production of NADPH due to the pentose phosphate pathway and isocitrate
dehydrogenase activation. To recover a correct balance of NADPH, the membrane-bound transhydro-
genase is silenced and the soluble NADPH transhydrogenase activated (NADPH → NADH), especially
for the low growth phenotype. The ratio of the predicted flux between the two phenotypes is 2.5 and
the experimental ratio is 2.7. As described in the main text, an additional confirmation is provided
by the effect of the timing of this resilencing (see Fig. 4d).
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2.3 An example of network with suboptimal end-point

As mentioned in the main text, because of its simplicity, in the minimal model of Fig. 5 local infor-
mation is equal to global information, i.e. the system never shows a suboptimal end-point. However,
the simple equations where useful to identify the constraint on the Hill constants that is necessary for
a greedy regulation, in particular if νA > νB then HA > HB should hold. In order to have a general
confirmation of this finding and to support the idea of the implementation of greediness by negative
feedbacks, we built a more complex network where local and global information are different. The
construction of the network has been inspired by the bifurcation study in the GLU-tpi dynamics. A
sketch of this network is reported in Fig. S10A.

The system contains the same implementation of greediness by negative feedbacks and correspond-
ing Hill equations we used in the toy model of Fig. 5. The two initial alternative resilencings (i.e.
the bifurcation between reaction A or B) have been inherited from that minimal model. They now
synthesize the intermediate compounds I1 and I2 with stoichiometric efficacy νA and νB, respectively,
such that νA > νB. Downstream of each reaction, two new regulated processes have been added to
transform the intermediate compounds into the metabolites M1 and M2 but with an opposite stoi-
chiometry, i.e. the pathway downstream of reaction A is less efficient that the pathway downstream
of reaction B. This is obtained by requiring that νAmax{νC , νD} < νBmax{νE , νF }. Because of the
concatenated processes, the first regulation on A vs B does not know a priori the possible effect of
the downstream regulations thus, for choosing whether to silence reaction A or reaction B, the cell
can use only local information. Because of this myopic choice, local information differs from global
information and the system can evolve to a suboptimal solution. It is interesting to note the similarity
between this dynamics and the bifurcation in GLU-tpi where reaction A = transketolase II, reaction B
= phosphoglucose isomerase, with glycolysis and pentose phosphate pathway as the two downstream
processes, respectively.
The differential equations for this network are the following:
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H2

F

H2
F
+[M2]

2 [I2]− h[M2].

(S11)

We ran numerical simulations using the parameters reported in Fig. S10A and studied the effect of
the two Hill constants HA and HB. The single silencing of reaction A (or B) gives gA = 0.62 (or
gB = 1.12). Therefore, from the results from toy model in the main text, we know that if HA > HB

then the regulation of A vs B is greedy, i.e. B is silenced with higher probability. Results with HA = 9
and HB = 1 are plotted in Fig. S10C and show that, also in the case of a more complex network with a
suboptimal end-point, negative feedbacks represent a possible biological implementation of the greedy
strategy (reaction B is silenced whereas reaction A is kept active). Moreover, because of the myopic
chioce, the system ends at the suboptimal end-point, as expected. We would like also to note that,
as shown in Fig. S10B-C, in order to make the system reach the optimal state, a non-greedy choice
(HA < HB) must be performed (like the silencing of phosphoglucose isomerase in GLU-tpi).
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2.4 Clustering of the dynamics.

The distance d(s): Considering the analogy between our systems and the energy minimization
problem, we interpret the regulatory dynamics as a trajectory of a particle in the polytope. Let v(0)

and vopt be the initial point and the pFBA optimal point for a given experimental condition c. At
any step s of a trajectory j, we calculate the distance between v(s)[j] and the line segment that links
v(0) and vopt, called “shortest path” in the following (see “distance” reported in Fig. S12H). This is
obtained by the following expression

d(s)c [j] = ||v(s)[j]− [(1 − α(s, j))v(0) + α(s, j)vopt]||2, (S12)

where

α(s, j) =
(v(s)[j]− v(0))T (vopt − v(0))

||vopt − v(0)||22
.

An average over j = 1, . . . , N provides the dynamics dc(s).
Plots of d(t) are reported in Fig. S11B. By definition, d(s) indicates how closely the metabolic

adjustment follows the “shortest path”. It follows that d(t) starts from zero and if the systems
arrives to the optimal point (or close to it), d(t) goes back to zero (or close to it). Therefore, unless
the dynamics follow the “shortest path”, d(t) increases during the first part of the trajectory and
decreases in the second part. In case a suboptimal point is reached, d(t) stays high, as for GLU-ppc,
GLU-tpi and GLU-pgi.

Although not fully intuitive, this distance has been used because it provides some additional
information about the regulatory dynamics. For instance, the fact that d(t) deviates significantly
from the shortest path suggests that, instead of moving straight towards the optimal point, cells
need to do some preliminary adjustments to the metabolism. This is the case, for example, of the
resilencing of NADPH transhydrogenase analysed in GLU-pgi. As described in the last paragraph in
“Explanations from the greedy hypothesis” of the main text (and Fig. 4d), this important resilencing
is never done at the beginning of the trajectory, i.e. it must wait for other preliminary regulations to
first be adopted by the cell.

It is worth noting that the increase of d(t) in the first part of the trajectory does not necessarily
imply that the system is moving farther from the optimal point. To show this, the more intuitive
distance f(t) has been calculated: in particular f(t) is the distance between the trajectory point at
time t and the optimal point, so it measures how far the systems is from the optimal point:

f(t) := ||vopt − v(t)||2.

Results show a monotonic decrease of f(t), which means that the system constantly approaches the
optimal point: often it is able to reach it (or to arrive very close to it) but sometimes it is trapped in
a local minimum (see Fig. S11C).

Clustering From the ensemble of all the considered experimental conditions c, we construct a
distance tree. The corresponding matrix M of distances between each pair (ci, cj) of experimental
conditions is calculated as follows:

Mi,j = ||dci − dcj ||2 =

√

∑

s

[

dci(s)− dcj (s)
]2
.

The result reported in Fig. S11A shows that there are three possible classes of trajectories:
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I. d(t) remains low throughout the trajectory: the adjustment of the metabolism moves directly to
the maximal biomass production following closely the shortest trajectory (i.e. the line connecting
v(0) to vopt);

II. d(t) increases and then decreases to a low value: the adjustment initially deviates from the
straight direction but at the end it reaches the pFBA optimum vopt;

III. d(t) increases and never returns near zero: the adjustment deviates and is no longer able to
reach vopt.

Class II is the most populated: among all the conditions we analysed, 3 belong to class I, 12 to class
II and 3 to class III. It is worth noting that for all the cases belonging to class III, the recovery of the
growth rate is only partial. An example of each of the three classes is reported in Fig. S12 (namely,
frd knockout on lactate, pck on glucose and tpi on glucose). The last row of panels of Fig. S12 shows
the analogy with the energy minimization problem (Hamiltonian H = −g). Viewed as trajectories of
a particle in the polytope over a energy landscape, classes I and II might have a single valley (at least
on the part explored from our v(0)) whereas class III might have a second valley with a local minimum
of energy, where most of the trajectories remain trapped.
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Figure S1: Optimal and suboptimal recovery of the growth rate. The analysis of all the
different perturbations (knockout and carbon-source) considered in this work shows that in about
20% of the conditions the recovery of the growth rate is significantly sub-optimal.
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Figure S2: Stoichiometric network. (A): Simplified sketch of the E. coli core metabolic network
with the most important pathways. Red boxes indicate the knockouts considered in this work. DHAP:
dihydroxyacetone phosphate; GAP: glyceraldeide 3-phosphate; PEP: phosphoenolpyruvate. (B): Main
features of the network. (C): Rescaling of the upper-bounds for the exchange processes of carbon
sources with respect to measured Substrates Uptake Rate (SUR, see Supplementary Table 1 of [6]) in
order to reproduce the real growing conditions.
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Figure S3: Description of the method. (A): Sketch of the polytope reduction (from W (L,U) to
W (L(0),U(0))) and of the consequent MOMA L2-projection (from blue vpFBA to red dot v(0)) after
the knockout. Two possible enzyme resilencings, A or B, at step 1 are also represented: green or
magenta dotted lines respectively with the corresponding MOMA projections to v(A) or v(B). (B):
Definition of the probability of the resilencings A and B (same color code as in previous panel) as a
combination of the greedy regulatory effect rA vs rB (gA > gB ⇒ rA > rB) and the basic population
dynamics dQ/dt = gQ over the time interval ∆t. The probability of finding resilencing A at step 1
is equal to P[A] = QA(∆t)/[QA(∆t) +QB(∆t)]. (C): Markov chain scheme obtained from recursive
resilencing (same color code as previous panels): at each step, MOMA is applied. Black arrows indicate
a trajectory; grey arrows indicate alternative choices of the resilencing, i.e. alternative phenotypes.
Thickness of the arrow indicates the probability of the choice.
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Figure S4: Choice of value for the β factor. Dots represent the results variability estimated by
Eq. (S8) at various values of β. The blue dashed line indicates the “steep-high regime” whereas the
red dashed line indicates the “flat-low regime”. The thick arrow points to the value used in all our
simulations, i.e. β=200 h. This value has been chosen in order to have a certain amount of randomness
but still in the flat-low regime. The two small arrows point to the variance obtained by using the
two single components of β alone, i.e. β = ∆treal=30 h (denoted by “time”) and β = βreg=170 h
(“regulation”).
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Figure S5: Comparison with some methods from the literature. Correlation (graphical and
RMSD) between experimental growth rates from [6] and results obtained with various FBA methods
confirms the best performance of GRAM. Color code for knockouts: red=ack, green=frd, violet=zwf,
yellow=ppc, blue=pck, orange=tpi ; legend for carbon sources: α-ketoglutarate (AKG, △), glucose
(GLU, ◦), lactate (LAC, �), malate (MAL, ♦) and succinate (SUC, ▽). Growth rates in h−1.
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Figure S6: Results for wild-type. For comparison purposes, simulations have also been performed
for the wild-type strain of E.coli for which the only perturbation is the switch from the Luria-Bertani
rich medium to the single carbon source medium. Since the results (both theoretical and experimental)
do not show any peculiar dynamics, we report here only the growth rate recovery and the agreement
between predicted and measured reaction fluxes. (A-E): Dynamics in different carbon sources. (F):
Validation by comparison with measurement of reaction fluxes in glucose (experimental data from [5]);
RMSD=0.170.
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Figure S7: Activated and silenced pathways for GLU-pgi . Coloured arrows and names indicate
active processes. Coloured arrows and names indicate active processes. Red crosses indicate key
silencings (A): Low growth rate phenotype which has resilenced glyoxalate shunt (B): High growth
rate phenotype which has resilenced Krebs cycle and acetate secretion.
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Figure S8: Distribution of the standard deviation of the resilencing time for each reaction
in each experimental condition. Results obtained in the simulations from the ensemble of all
the experimental conditions considered in the study. The distribution is bimodal: a first group is
located at low values of variance (less than 2 days, approximately) and represents reactions that have
a restricted and crucial resilencing time (see the example of membrane NADPH transhydrogenase in
Fig. 4 of the maintext). A second broader peak centred at high value represents reactions for which
the resilencing time is not crucial.
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Figure S9: An example of a greedy network motif. Simulations from the model of Eq. (3) in
the maintext. (A): Dynamics in case of resilencing of more efficient reaction A. The corresponding
value of gA = 1.7 is obtained. (B): Dynamics in case of resilencing of less efficient reaction B. The
corresponding value of gB = 5.0 is obtained. (C): final growth rate for different values of HA and HB.
White crosses and numbers indicate the conditions used in panels D-F. (D): Dynamics with HA = 20
and HB = 2. (E): Dynamics with HA = gB/h = 10 and HB = gA/h = 3.3. (F): Dynamics with
HA = HB = 8. (G): Effect of the cooperative index (i.e. moment order) on the final growth rate.
Similar results are obtained with different moment order m in GRAM (see Fig. 2a in the maintext).
This result reinforce the similarity between the two formalisms already suggested by Eq. (4) in the
maintext. (I): Values of the model parameters for Eqs. (3) in the maintext.
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Figure S10: An example of implementation of greediness in a complex network with sub-
optimal end-point. (A): Sketch of the network and table of the parameter values used for the
simulations of Eq. (S11). Since νA > νB, reaction A is more efficient than reaction B. (B): Effect
on the final growth rate of the Hill constants HA and HB (all other parameter values as in panel
A). It is interesting to note the opposite shape of this surface when compared with Fig. 5B from the
main text: here greediness, i.e. HA > HB, does not lead to high final growth rates. (C): Examples
of dynamics at different values of HA and HB . When HA > HB, the systems is adopting a greedy
and myopic strategy (reaction B is silenced) that leads to a suboptimal point (low growth final rate).
When HA < HB the greedy strategy is no longer adopted (reaction A is silenced) and the final point
is closer to the optimum.
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Figure S11: Clustering of dc(t) trajectories. (A): Distance tree and the 3 resulting classes of dc(t),
i.e. the distance of the trajectory to the straight line from v(0) to vopt (see Eq. (S12) in the SI text).
(B): Plots of the averaged trajectories of dc(t) grouped according to the clustering of panel (A). The
grey color for AKG-pck indicates that this condition is borderline between classes I and II. (C): Plots
of f(t): the persistent decrease of f(t) indicates that the system constantly approaches the optimal
point: often it is able to reach it (f(t) ≃ 0), sometimes it is trapped in a local minimum (f(t) ≫ 0).
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Figure S12: Three examples of trajectories: LAC-frd (class I), GLU-pck (class II) and
GLU-tpi (class III). (A-C): The density plots show the time-recovery of the growth rate in our
trajectories (color scale for the density: light color=low density; dark color=high density). The
histogram in the right part of each panel reports the density of the growth rates at the end-point of
the trajectories. In each panel one or two representative trajectories are shown explicitly. In the last
column (tpi knockout on glucose) the brown line denotes a trajectory that reaches a high growth rate
and the orange line one of low growth rate (see Fig. 4a-c in the maintext for more details). (D-F):
Plot of the distance d(t). Same visualization rules as in the first row. (H-J): Sketch of the trajectories
in an hypothetical energy landscape (Hamiltonian H = −g) for the three classes. Black arrow denotes
the shortest trajectory from v(0) to vopt while the “distance” here reported refers to the quantity d(s),
see Eq. (S12). Notice how in the GLU-tpi case the orange trajectory (low final growth rate) is trapped
in a valley of local minimum.
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Table S1: List of experimental conditions (carbon source and gene knockout pairs) con-
sidered in our validation. The entry “g(t)” means that the dynamics of growth rate recovery
have been compared with the experimental data. An entry with “13C” indicates that a validation
by 13C-measured flux comparison has been carried out. With respect to the experiments reported in
[6], ribose and glycerol have not been included as carbon sources because they are not present in the
E.coli core metabolic network.

Carbon Source

Gene Knockout α-ketoglutarate glucose lactate malate succinate
(AKG, △) (GLU, ◦) (LAC, �) (MAL, ♦) (SUC, ▽)

acetate kinase (ack) g(t) g(t) g(t) g(t) -
fumarate reductase (frd) g(t) g(t) g(t) - -

glucose 6-phosphate dehydrogenase (zwf ) - g(t) and 13C - g(t) -
phophoenolpyruvate carboxylase (ppc) g(t) g(t) - g(t) -

phophoenolpyruvate carboxykinase (pck) g(t) g(t) - g(t) -
triose-phosphate isomerase (tpi) - g(t) and 13C - - g(t)
phosphate transacetilase (pta) - 13C - - -
phosphoglucose isomerase (pgi) - 13C - - -

wild-type (wt) g(t) g(t) and 13C g(t) g(t) g(t)
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Table S2: Comparison with some methods from the literature. The table reports some statis-
tics for describing the agreement between the 13C-based experimental fluxes from [7, 4] and the pre-
dictions obtained by GRAM (reported in Fig. 3 in the main text), MOMA, ROOM, and pFBA. The
comparison is performed using different statistical indexes, namely the Root Mean Square Deviation
(RMSD), the correlation coefficient with the corresponding p-value and the cos-correlation coefficient

defined as: ρcos(x, y) :=
xT y

||x||·||y||, which still indicates a good correlation when close to 1. For GLU-pgi,

values with * refer to the “low growth phenotype” whereas values with ** refer to the “high growth
phenotype”. Bold font denotes the best agreement.

GRAM MOMA ROOM pFBA GRAM MOMA ROOM pFBA

GLU-zwf : intermediate steps

RMSD 0.1572 0.3208 2.3476 0.5579
correlation 0.9792 0.8648 -0.0656 0.7114 n.a.
Log(p-value) -8.2370 -3.8674 -0.0802 -2.1945
cos-correlation 0.9921 0.94991 -0.2932 0.8557

GLU-pta: intermediate steps GLU-pta: final steps

RMSD 0.2014 0.1667 0.5148 0.3042 0.2225 0.3714 0.6016 0.2171

correlation 0.9868 0.9934 0.9281 0.9675 0.9664 0.8857 0.9328 0.9648
Log(p-value) -14.7950 -17.9997 -7.4061 -11.0940 -13.1365 -7.7160 -10.0444 -12.9341
cos-correlation 0.9767 0.9885 0.8772 0.9469 0.9778 0.9333 0.9300 0.9776

GLU-ppc: intermediate steps GLU-ppc: final steps

RMSD 0.2385 0.5438 0.4479 0.5262 0.1469 0.6947 0.6157 0.4090
correlation 0.9576 0.9051 0.9045 0.9041 0.9791 0.6660 0.8557 0.8598
Log(p-value) -9.2536 -6.1483 -6.8536 -6.0024 -15.2829 -3.2823 -6.7102 -6.8352
cos-correlation 0.9196 0.8352 0.8604 0.8294 0.9893 0.8120 0.8923 0.9207

GLU-tpi : intermediate steps GLU-tpi : final steps

RMSD 0.4771 0.6005 0.8334 1.1259 0.3188 0.7565 0.7340 1.0415
correlation 0.7270 0.6663 0.4228 0.2888 0.8852 0.4727 0.7298 0.4431
Log(p-value) -4.0706 -3.2857 -1.3520 -0.7414 -7.6959 -1.6436 -4.1116 -1.4656
cos-correlation 0.9000 0.8582 0.7242 0.5700 0.9505 0.7736 0.8301 0.6449

GLU-pgi : intermediate steps GLU-pgi : final steps

RMSD 0.2062 0.2483 0.8536 0.4897 0.1461 * 0.2482* 0.7596* 0.3969*
0.2359** 0.3682** 0.7254** 0.3244**

correlation 0.9470 0.9400 0.5952 0.7681 0.9776* 0.9507* 0.7276* 0.8595*
0.9429** 0.8856** 0.8197** 0.9148**

Log(p-value) -11.0977 -10.5471 -2.5634 -4.7278 -14.9626* -11.4193* -4.0782* -6.8254*
-10.7682** -7.7094** -5.7693** -8.9967**

cos-correlation 0.9805 0.9744 0.7344 0.8871 0.9909* 0.9778* 0.8009* 0.9244*
0.9726** 0.9456** 0.8491** 0.9488**
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