Supplemental Table 1. Summary of primary Sjögren's syndrome (pSS) and Sicca patient samples utilized in analysis of viral profiles present in Sjögren's syndrome patient cohorts at NIH and in UK.

NIH Patient ID	Sex	Schirmer's Test	Unstimulated Saliva Flow	Focus Score (≥1)	Autoantibody	Diagnosis
pSS-1	Male	Negative	Low Flow	Negative	Positive	pSS
pSS-2	Female	Positive	Low Flow	Positive	Positive	pSS
pSS-3	Male	Positive	Low Flow	Positive	Positive	pSS
pSS-4	Female	Negative	Low Flow	Positive	Positive	pSS
pSS-6	Female	Positive	Low Flow	Positive	Positive	pSS
pSS-7	Male	Negative	Low Flow	Positive	Positive	pSS
pSS-9	Female	Positive	Low Flow	Negative	Positive	pSS
pSS-10	Female	Positive	Low Flow	Positive	Positive	pSS
pSS-11	Male	Positive	Normal Flow	Positive	Positive	pSS
pSS-12	Female	Positive	Low Flow	Positive	Negative	pSS
pSS-13	Female	Positive	Low Flow	Positive	Negative	pSS
pSS-14	Female	Negative	Normal Flow	Positive	Positive	pSS
pSS-15	Male	Negative	Low Flow	Positive	Positive	pSS
pSS-19	Male	Positive	Normal Flow	Positive	Positive	pSS
pSS-20	Male	Positive	Normal Flow	Positive	Positive	pSS
UK Patient ID	Sex	Schirmer's Test	Unstimulated Saliva Flow	Focus Score (≥1)	Autoantibody	Diagnosis
UK-1	Female	Positive	Normal Flow	Positive	Positive	pSS
UK-2	Male	Positive	Normal Flow	Positive	Positive	pSS
UK-3	Female	Positive	Low Flow	Positive	Positive	pSS
UK-4	Female	Positive	Low Flow	Positive	Positive	pSS
UK-5	Female	Positive	Low Flow	Positive	Positive	pSS
UK-6	Female	Negative	Normal Flow	Positive	Positive	pSS
UK-7	Female	Positive	Low Flow	Positive	Positive	pSS
UK-8	Female	Positive	Low Flow	Positive	Positive	pSS
UK-9	Female	Positive	Low Flow	Positive	Positive	pSS
UK-10	Female	Positive	Normal Flow	Positive	Positive	pSS
UK-11	Female	Positive	Normal Flow	Positive	Positive	pSS
UK-12	Male	Positive	Normal Flow	Positive	Positive	pSS
UK-13	Female	Positive	Low Flow	Negative	Negative	Sicca
UK-14	Female	Negative	Normal Flow	Negative	Negative	Sicca
UK-15	Female	Negative	Normal Flow	Negative	Negative	Sicca
UK-16	Female	Negative	Normal Flow	Negative	Negative	Sicca
UK-17	Female	Positive	Low Flow	Negative	Negative	Sicca
UK-18	Male	Positive	Low Flow	Negative	Negative	Sicca
UK-19	Female	Positive	Low Flow	Negative	Negative	Sicca
UK-20	Female	Negative	Normal Flow	Negative	Negative	Sicca
UK-21	Female	Positive	Normal Flow	Negative	Negative	Sicca
UK-22	Female	Positive	Normal Flow	Negative	Negative	Sicca
All pSS patients me	et diagnosis crite	ria based on the Ai	merican European cons	ensus group (AEC	G).	

Supplemental Table 2. Viral microarray analysis identified 9 viral probes with significantly different intensity between the collective pSS patient population compared to healthy controls.

Family Name	Probe Name	Sequence	p-value	p (Corr)	FC		
Deltavirus	Deltavirus_13277517_18	GGTCAACCTCCTAAGTTCCTCTTCCTCCTCCTTGCTGAGGTTCTTTCCCCCCGCCGATAG	0.004	0.022	3.25		
Herpesviridae	Herpesviridae_9629267_432	GCCCTGGGCCCCGAGGCCATCCAGGCGCGGCTGGAGGACGTGCGGATCCAGGCCCGCCGG	0.012	0.033	3.47		
Astroviridae	Astroviridae_20514394_47	CAACCTCAACCTCAACCTCCTGCTCCTATTGAAGAAATACTTCTGCCTTTAGCAGAACTG	0.014	0.033	2.60		
Adenoviridae	Adenoviridae_34303903_34	TTCACTAAGTTTGCCTCCAGCTCTACAAAAAATTTTAATTGAAATTTTTATTGGAAAATC	0.014	0.033	2.48		
Retroviridae	Retroviridae_9629902_75	CATTGCAAGTTATTGCGATCATCTCTCCTCCTCGTTGGGGGGGG	0.009	0.033	2.05		
Circoviridae	Circoviridae_12280941_24	TGCCAACTTTGTAACCCCCTCCACCAACTTGGCCTATGACCCCCTATATTAACTACTCCTC	0.023	0.044	2.86		
Flaviviridae	Flaviviridae_157781216_244	TATACCAATGCTGTAACCTTGAACCGGAGGCCAGGAAAGTGATCTCCTCCCTC	0.003	0.022	-2.10		
Poxviridae	Poxviridae_96980809_55	GCTTCCGCAAGGCGGTCGAGCGGCAGCTGGAGGAGGAGCAGGAGGTGAAGCTGAAGAGCC	0.003	0.022	-4.00		
Poxviridae	Poxviridae_96980809_110	TCGAGCGGCAGCTGGAGGAGGAGCAGGAGGTGAAGCTGAAGAGCCTCGCGCGCG	0.016	0.033	-2.93		
Six probes were increased in pSS compared to healthy controls and 3 probes were significantly decreased in pSS compared to healthy							
controls. (FC = Fold Change, p-value denotes t-test, $p(Corr)$ denotes $p<0.05$, t-test, Benjamini-Hochberg correction n=14-15)							

Supplemental Table 3. Analysis of viral microarray data for subgroups within the Sjögren's syndrome patient population identified 12 viral probes significantly increased in at least 25% of the patient co-hort.

Viral Family Name	Probe Name	Sequence
Astroviridae	Astroviridae_20514394_18	CCAACGACAGGAGCTCAACCTCAACCTCCTGCTCCTATTGAAGAAATACTTCTG
Astroviridae	Astroviridae_20514394_47	CAACCTCAACCTCAACCTCCTGCTCCTATTGAAGAAATACTTCTGCCTTTAGCAGAACTG
Parvoviridae	Parvoviridae_51949963_15	ACACCATCTGGCTGTTTGGACCCGCCACCACCGGCAAGACCAACATTGCGGAAGCCATCG
Adenoviridae	Adenoviridae_46852402_27	ACCGCCTCCACCCTGGAGGCCATGCTGCGCAACGACACCAACAACCAAACCTTTATTGAC
Circoviridae	Circoviridae_12280941_24	TGCCAACTTTGTAACCCCCTCCACCAACTTGGCCTATGACCCCTATATTAACTACTCCTC
Herpesviridae	Herpesviridae_126882977_334	CAGCCCTCTCAGCCCAAAGCCATTACTAAAGTCCCGTTGTATGTA
Picornaviridae	Picornaviridae_9626123_24	ATAGCCTACACCCCGCCTGGTGCGGGAAAGCCCACCACCCGGGACCAAGCTATGCAGGCT
Picornaviridae	Picornaviridae_157939778_31	TCGAGAGCAACCCTGGCCCTCTGTATGTTTGTTCCCAACCAGGTAAGTGCGATCCATTTC
Herpesviridae	Herpesviridae_9629267_432	GCCCTGGGCCCCGAGGCCATCCAGGCGCGGCTGGAGGACGTGCGGATCCAGGCCCGCCGG
Deltavirus	Deltavirus_13277517_18	GGTCAACCTCCTAAGTTCCTCCTCCTCCTTGCTGAGGTTCTTTCCCCCCGCCGATAG
Flaviviridae	Flaviviridae_157781208_384	TTTATCACAGCATGTCTCATGCCCGACCCCGCTATTTACTCCTGTGCCTACTCATACTTA
Parvoviridae	Parvoviridae_51593836_90	TCAACAAGAGGAACACCGTCTGGCTCTACGGACCCGCCACGACCGGCAAGACCAACATCG

Subgroup analysis was performed through identifying normalized probe intensity of each individual patient that was greater than the average +2 standard deviations. Probes selected for further analysis were found in >25% of the pSS samples tested.

Variable	by Variable	Correlation	Count	Lower 95%	Upper 95%	Signif Prob
Deltavirus_13277517_18	Astroviridae_20514394_47	0.9268	15	0.7892	0.9758	<.0001
Flaviviridae_157781208_384	Parvoviridae_51949963_15	0.9121	15	0.7506	0.9708	<.0001
Parvoviridae_51593836_90	Picornaviridae_9626123_24	0.9097	15	0.7443	0.97	<.0001
Parvoviridae_51593836_90	Flaviviridae_157781208_384	0.9056	15	0.7336	0.9685	<.0001
Flaviviridae_157781208_384	Picornaviridae_9626123_24	0.8666	15	0.6373	0.9549	<.0001
Circoviridae_12280941_24	Astroviridae_20514394_18	0.8614	15	0.6248	0.9531	<.0001
Parvoviridae_51593836_90	Parvoviridae_51949963_15	0.8607	15	0.6231	0.9528	<.0001
Circoviridae_12280941_24	Astroviridae_20514394_47	0.8038	15	0.4956	0.9322	0.0003
Deltavirus_13277517_18	Circoviridae_12280941_24	0.8094	15	0.5076	0.9343	0.0003
Astroviridae_20514394_47	Astroviridae_20514394_18	0.7947	15	0.4764	0.9288	0.0004
Parvoviridae_51593836_90	Herpesviridae_9629267_432	0.7615	15	0.4087	0.9163	0.001
Herpesviridae_9629267_432	Parvoviridae_51949963_15	0.7122	15	0.3148	0.8972	0.0029
Herpesviridae_9629267_432	Picornaviridae_157939778_31	-0.7074	15	-0.8952	-0.306	0.0032
Picornaviridae_9626123_24	Parvoviridae_51949963_15	0.7059	15	0.3034	0.8947	0.0033
Deltavirus_13277517_18	Parvoviridae_51949963_15	-0.6949	15	-0.8903	-0.2837	0.004
Deltavirus_13277517_18	Astroviridae_20514394_18	0.6884	15	0.2721	0.8877	0.0045
Flaviviridae_157781208_384	Deltavirus_13277517_18	-0.6727	15	-0.8813	-0.2447	0.006
Flaviviridae_157781208_384	Herpesviridae_9629267_432	0.6656	15	0.2326	0.8784	0.0068
Parvoviridae_51949963_15	Astroviridae_20514394_47	-0.6512	15	-0.8724	-0.2084	0.0086
Parvoviridae_51593836_90	Deltavirus_13277517_18	-0.6162	15	-0.8577	-0.1519	0.0144
Herpesviridae_9629267_432	Picornaviridae_9626123_24	0.5904	15	0.112	0.8466	0.0205
Flaviviridae_157781208_384	Astroviridae_20514394_47	-0.5871	15	-0.8452	-0.107	0.0214
Herpesviridae_9629267_432	Herpesviridae_126882977_334	0.5414	15	0.0403	0.8249	0.0371
Picornaviridae_157939778_31	Parvoviridae_51949963_15	-0.5293	15	-0.8194	-0.0233	0.0425
Flaviviridae_157781208_384	Picornaviridae_157939778_31	-0.5287	15	-0.8191	-0.0225	0.0428
Deltavirus_13277517_18	Picornaviridae_9626123_24	-0.5253	15	-0.8176	-0.0179	0.0443

Supplemental Table 4. Significant pairwise correlations identified between probes significantly increased in >25% of the pSS patient population compared to healthy controls.

Significant pairwise correlations between viral probes revealed two distinct viral profiles present within the pSS patient population. (PCC, n=15, p<0.05. Table is ranked on statistical significance of correlation.

Α.	HDV_M21012_nt883-nt1287	GAGATGCCATGCCGACCCGAAGAGGAAAGAAGGACGCGAGACGCAAACCT	50
	pSS-20	GAGATGCCATGCCGACCCGAAGAGGAAAGAAGGACGCGAGACGCAAACCT	50
	pSS-3	GAGATGCCATGCCGACCCGAAGAGGAAAGAAGGACGCGAGACGCAAACCT	50
	pSS-9	GAGATGCCACGCCGACCCGAAGAGGAAAGAAGGACGCGAGACGCAAACCT	50
	pSS-7	TAGATGCCATGCCGACCCGAAGAGGAAAGAAGGACGCGAGACGCAAACCT	50
		****** ********************************	
	HDV_M21012_nt883-nt1287	GTGAGTGGAAACCCGCTTTATTCACTGGGGTCGACAACTCTGGGGAGAAA	100
	pss=20	GTGAGTGGAA=CCCGCTTTATTCACTGGGGTCGACAACTCTGGGGAGAAA	99
	pss-3	GTGAGTGGNAACCCGCTTTATTCACTGGGGTCGACAATTCTGGGGAGAAA	100
	pss-9		100
	p35=7	******* * *****************************	100
	HDV_M21012_nt883-nt1287	AGGGCGGATCGGCTGGGAAGAGTATATCCTATGGAAATCCCTGGTTTCCC	150
	pSS-20	AGGGCGGATCGGCTGGGAAGAGTATATCCCATGGAAATCCCTGGTTTCCC	149
	pSS-3	AGGGCGGATCGGCTGGGAAGAGTATATCCTATGGAAATCCCTGGTTTCCC	150
	pSS-9	AGGGCGGATCGGCTGGGAAGAGTATATCCTATGGAAATCCCTGGTTTCCC	150
	pSS-7	AGGGCGGATYGGCTGGGAAGAGTATATCCTATGGAAATCCCTGGTTTCCC	150
		******** ******************************	
	HDV_M21012_nt883-nt1287	CTGATGTCCAGCCCCTCCCCGGTCCGAGAGAGGGGGGGCTCCCGGGACTCC	200
	pss-20	CTGATGTCCAGCCCCTCCCCGGTCCGAGAGAGGGGGGCCTCCGGGACTCC	199
	pss-3	CTGATGTCCAGCCCCTCCCCGGKCCGAGAGAGGGGGGCTCCGGGACTCC	200
	pss-9	CTGATGTCCAGCCCCTCCCCGGTCCGAGAGAGGGGGGCTCCGGGGCTCC	200
	poo- /	***************************************	200
	HDV_M21012_nt883-nt1287	CTGCAGATTGGGGACGAAGCCGCCCCGGGCGCTCCCCTCGATCCACCTT	250
	pSS-20	CTGCAGATTGGGGACGAAGCCGCCCCGGGCGCTCCCCTCGATCCACCTT	249
	pSS-3	CTGSAGATTGGGGACGAAGCCGCCCCGGGCGCTCCCCTCGATCCACCTT	250
	pSS-9	CTGCAGATTGGGGACGAAGCCGCCCCGGGCGCTCCCCTCGATCCACCTT	250
	pSS-7	CTGCMGATTGGGGACGAARCCSCCCCCGGGCGCTCCCCTCGATCCACCTT *** **************************	250
	HDV M21012 nt883-nt1287	CGAGGGGGTTCACACCCCCAACCGGCGGGCCGGCTACTCTTCTTCCCTT	300
	pSS-20	CGAGGGGGTTCACACCCCCAACCGGCGGGCCGGCTACTCTTCTTTCCCTT	299
	pSS-3	CGAGGGGGTTCACACCCCCMACCGGCGGGCCGGCTACTCTTCYTTCCCTT	300
	pSS-9	CGAGGGGGTTCACACCCCCAACCGGCGGGCCGGCTACTCTTTCCCTT	300
	pSS-7	CGAGGGGGTTCACACCCCCAACCGGCGGGCCGGCTACTCTTTCCCCTT ************************	300
	HDV_M21012_nt883-nt1287	CTCTCGTCTTCCTCGGTCAACCTCCTGAGTTCCTCTTCTTCCTCCTTGCT	350
	pSS-20	CTCTCGTCTTCCTCGGTCAACCTCCTGAGTTCCTCTTCTTCCTCCTGCT	349
	pSS-3	CTCTCGTCTTCCTCGGTCAACCTCCTGARTTCCTCTTCTTCCTCCTTGCT	350
	pSS-9	CTCTCGTCTTCCTCGGTCAACCTCCTGAGTTCCTCTTCTTCCTCCTTGCT	350
	pSS-7	CTCTCGTCTTCCTCGGTCAACCTCCTGAGTTCCTCTTCTTCCTCCTTGCT ******	350
	HDV M21012 nt883-nt1287	GAGGTTCTTGCCTCCCGCCGATAGCTGCTTCTTCTTGTTCTCGAGGGCCT	400
	pSS-20	GAGG-TCTTGCCTCCCGCCGATAGCTGCTTCTTCTTGTTCTCGAGGGCCT	398
	pSS-3	GNAGTTCTTGCCTCCCGCCGATAGCTGCTTCTTCTTGTTCTCGAGGGCCT	400
	pSS-9	GTGKTTCTTGCCTCCCGCCGATAGCTGCTTCTTCTTGTTCTCGAGGGCCT	400
	pSS-7	GAGGTTCTTGCCTCCCGCCAATAGCTGCTTCTTCTTGTTCTCAAGGGCCT	400
	-	* *********** ********************	
	HDV_M21012_nt883-nt1287	TCCTT 405	
	pSS-20	TCCTT 403	
	pSS-3	TCCTT 405	
	pSS-9	TCCTT 405	
	pSS=/	TCCTT 405	

Supplemental Figure 1. HDV sequence was detected in salivary glands obtained from pSS and sicca patients. A) Nested PCR was used to detect HDV genomic sequence in minor salivary gland tissue. Sequence homology (98.5% (97.3%-99.3%)) was observed within nested PCR. B) Nested qPCR retargeted to the region encompassing HDAg transcript and genome was used to confirm the viral sequence present in a second pSS cohort and in a selection of patients experiencing sicca symptoms but did not meet full criteria for diagnosis. Two samples identified as positive and two samples identified as negative by qPCR performed on UK co-hort were independently processed and utilized as positive and negative controls in independent confirmation of HDV by nested qPCR in additional UK co-hort.

Supplemental Table 5.	Evidence of past or current hepatitis B virus (HBV) infection
or antibodies to HDV n	ot detected in HDV positive pSS patients.

Г

Detection by Elisa	Healthy Controls (%)	primary Sjögren's syndrome (%)			
HBsAg	0/11 (0%)	0/13 (0%)			
Anti-HBc Elisa	1/8(12.5%)	1/13 (7.7%)#			
Anti-HBc LIPS	2/7(28.6%)	1/12(8.3%)#			
Anti-HDAg Elisa	0/8 (0%)	0/21(0%)			
Anti-HDAg LIPS	0/7(0%)	0/10(0%)			
Antibodies to HDAg and Hepatitis B virus core (HBc) and HBV surface antigen (HBsAg) were quantified in serum by ELISA and the LIPS assay. [#] The pSS patient positive for anti-HBc was negative for HDV within the salivary gland.					

Supplemental Table 6. Analysis of Hepadnaviridae probes on viral microarray did not find evidence of HBV differentially expressed in pSS or in pSS that possessed HDV in salivary gland tissue relative to healthy controls.

		pSS versus Hea	Ithy Controls	HDV+pSS versus	Healthy Controls	HDV- pSS versus	Healthy Controls
Family Name	Probe Name	p (Corr)	FC	p (Corr)	FC	p (Corr)	FC
Hepadnaviridae	Hepadnaviridae_9626719_104	0.92	1.05	0.80	1.33	0.84	-1.34
Hepadnaviridae	Hepadnaviridae_48696569_109	0.88	-1.25	0.80	-1.69	0.85	1.26
Hepadnaviridae	Hepadnaviridae_48696604_116	0.84	-1.44	0.80	-1.52	0.85	-1.34
Hepadnaviridae	Hepadnaviridae_22256030_12	0.72	-1.23	0.80	-1.21	0.84	-1.26
Hepadnaviridae	Hepadnaviridae_9630370_13	0.51	-1.91	0.62	-2.02	0.84	-1.75
Hepadnaviridae	Hepadnaviridae_21326584_14	0.88	-1.15	0.91	1.08	0.84	-1.59
Hepadnaviridae	Hepadnaviridae_9630370_14	0.77	1.59	0.88	1.27	0.78	2.21
Hepadnaviridae	Hepadnaviridae_9630370_15	0.88	1.20	0.80	1.42	0.91	-1.08
Hepadnaviridae	Hepadnaviridae_21326584_16	0.72	-2.05	0.80	-2.60	0.85	-1.43
Hepadnaviridae	Hepadnaviridae_21326584_16	0.72	1.38	0.80	1.37	0.84	1.38
Hepadnaviridae	Hepadnaviridae_9628827_17	0.77	1.13	0.92	-1.02	0.54	1.38
Hepadnaviridae	Hepadnaviridae_48696604_18	0.91	-1.23	0.80	-1.53	0.91	1.13
Hepadnaviridae	Hepadnaviridae_9626719_20	0.72	1.50	0.80	1.63	0.85	1.31
Hepadnaviridae	Hepadnaviridae_9630370_20	0.72	-1.15	0.88	-1.06	0.78	-1.31
Hepadnaviridae	Hepadnaviridae_21326584_21	0.77	-1.77	0.80	-2.07	0.85	-1.39
Hepadnaviridae	Hepadnaviridae_22256030_22	0.76	1.29	0.80	1.45	0.86	1.08
Hepadnaviridae	Hepadnaviridae_9628827_22	0.45	1.52	0.27	1.74	0.78	1.24
Hepadnaviridae	Hepadnaviridae_9630370_23	0.91	-1.16	0.92	1.06	0.85	-1.60
Hepadnaviridae	Hepadnaviridae_22256030_29	0.51	1.36	0.55	1.51	0.84	1.15
Hepadnaviridae	Hepadnaviridae_9628827_29	0.45	1.52	0.27	1.79	0.84	1.18
Hepadnaviridae	Hepadnaviridae_9628827_3	0.72	1.34	0.80	1.23	0.53	1.53
Hepadnaviridae	Hepadnaviridae_9630370_3	0.98	1.01	0.91	1.11	0.85	-1.15
Hepadnaviridae	Hepadnaviridae_9628827_8	0.91	1.07	0.80	-1.36	0.54	1.87
Hepadnaviridae	Hepadnaviridae_9630370_8	0.92	1.06	0.91	1.11	0.99	-1.01
Hepadnaviridae	Hepadnaviridae_21326584_9	0.72	1.51	0.80	1.84	0.85	1.12
Hepadnaviridae	Hepadnaviridae_22256030_9	0.77	1.25	0.88	-1.12	0.48	2.06
Hepadnaviridae	Hepadnaviridae_9630370_9	0.88	1.22	0.80	1.54	0.85	-1.17
1							

Evaluation of HBV transcripts as detected by the viral microarray showed no significant difference in HBV transcripts levels between pSS patient samples and healthy controls showed. Evaluation of just the 9 samples that presented with HDV probe intensity above the 99%CI of HDV probe intensity of the healthy controls did not reveal a differential expression in pSS with HDV in salivary gland tissue compared to healthy controls. No significant difference in HBV probe intensity was noted between the HDV-negative pSS patients and healthy controls. (n=14-15, ttest, Benjamini-Hochberg correction (p Corr), was utilized to calculate statistical significance. FC = fold change)

Supplemental Table 7. Correlations between clinical parameters and HDV levels in minor salivary gland biopsy.					
Variable	By Variable	Correlation	Signif Prob		
Anti-ANA Antibody	HDV	0.4475	0.0420*		
Anti-SSA/Ro Antibody	HDV	0.5082	0.0187*		
Anti-SSB/La Antibody	HDV	-0.0398	0.8639		
Albumin	HDV	-0.0624	0.7937		
Aspartate Aminotransferase (AST)	HDV	-0.1075	0.6519		
Alanine Aminotransferase (ALT)	HDV	-0.2411	0.3058		
Alkaline Phosphatase (ALP)	HDV	-0.277	0.2372		

Select autoantibodies in serum significantly correlated with levels of HDV detected in minor salivary glands of healthy volunteers compared to patients diagnosed with primary Sjögren's syndrome. Levels of ANA and Anti-SSA/Ro antibody significantly correlated with levels of HDV as determined by microarray detection. Liver function tests, including measurement of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were all within normal range (data not shown) and did not significantly correlate with levels of HDV detected in salivary gland tissue. (PCC,*p<0.05, n=21-23).

Supplemental Figure 2. Detection of HDAg in mouse salivary gland tissue in mice cannulated with AAV-HDAg. Retrograde cannulation was used to delivery recombinant adeno-associated virus serotype 2 (rAAV-2) containing HDV genes to salivary gland tissue in female C57BL/6 mice. Salivary gland tissue was evaluated 4 months post cannulation for expression of HDAg (green), and dapi (blue) for nuclear localization. Scale bar 20µm

Supplemental Figure 3. Focal size of lymphocytic infiltrates were larger in mice expressing the combined S-HDAg and L-HDAg compared to foci size observed in mice expressing S-HDAg/L-HDAg in salivary gland tissue. A) Area of foci in mice expression a combination of both the small and large HDV antigen revealed an increase in size a subset of the observed foci (n.s., n=7-33). There was a significant increase in variance of size in the treated mice compared to the control mice (F-test, p=0.0008). B) Lymphocytic foci representative of the average size of foci present in control mice that expressed luciferase in salivary gland tissue (2.5E-3 mm²). Average size of foci in the mice expressing S-HDAg/L-HDAg is 13.1E-3mm² in control mice. Images of lymphocytic foci representative of the average size of foci present to the average size of foci present. C) Ectopic lymphoid structures were evident in mice expressing combined S-HDAg/L-HDAg. Distribution of T-cell CD3 (green) and B-cell B220 (red) depict transition to organized lymphoid-like structures (bar 100um).