
Supplemental Table S1. Functionally confirmed TFBSs in AP1  and CAL  regulatory regions.

No. Name Position Sequence Putative cis -
element Binding TF Gene family Gene expression pattern Gene function

1 LFY'' -255 — -250 CCACTG LFY binding site LEAFY

LFY  is weakly expressed in young leaves during 
the vegetative phase, and strongly expressed in 
young primordia surrounding the inflorescence 
apex.

LFY  controls the production of the flowers, 
and activates the floral homeotic genes that 
specify the identity of organs in the flower.

2 LFY -289 — -284 CCAATG LFY binding site LEAFY 

LFY  is weakly expressed in young leaves during 
the vegetative phase, and strongly expressed in 
young primordia surrounding the inflorescence 
apex.

LFY  controls the production of the flowers, 
and activates the floral homeotic genes that 
specify the identity of organs in the flower.

3 SPL9 -301 — -298 GTAC GTAC box
SQUAMOSA 

PROMOTER-BINDING 
PROTEIN-LIKE 9 

SPL

SPL9  is strongly expressed in leaf primordia and 
provascular strands of young leaves. Its expression 
is transiently upregulated in floral anlagen and 
very early floral primordia, but declined again by 
stage 2 of flower development.

SPL9   promotes flowering in an FT/FD-
independent manner.

— —

4 TCP4 -316 — -309 ATGGACCC TCP4 binding site
TCP FAMILY 

TRANSCRIPTION 
FACTOR 4  

TCP TCP4  is broadly expressed in stems, leaves and 
flowers.

Nag et al., (2009) found that miR319a 
targeting of TCP4 is critical for petal 
growth and development.

— —

5 PAN -376 — -373 ACGT TGA binding site PERIANTHIA bZIP

PAN  RNA is present in the inflorescence 
meristem, the floral
meristem, and in developing petals, stamens, and 
carpels.

PAN  plays roles in the control of perianth 
organ number specification, and the 
regulation of floral determinacy. It 
mediates  BOP1 and 2 to the promoter of 
AP1 , which activates expression of AP1  to 
control floral trasition and patterning.

5 FD -377 — -372 GACGTC C-box FLOWERING LOCUS D bZIP

FD  is highly expressed at the shoot apex. 
Specifically, FD  is expressed in leaf and floral 
anlagen. Its levels decrease soon after floral 
primordia start to express AP1 .

FD  could integrate temporal and spatial 
information that is already expressed at the 
shoot apex before floral induction, and 
promote flowering. A complex of FT and 
FD proteins can activate AP1 .

6 LMI2 -399 — -393 ACTTACC R2R3 MYB 
binding site 

LATE MERISTEM 
IDENTITY 2 R2R3 MYB

LMI2 is expressed throughout the shoot apical 
meristem of primary inflorescences, with the 
highest expression observed in the young flower 
primordia.

LMI2  plays a role in the meristem identiry 
transition .

7 SPL3/9 -411 — -404 CCGTACAA GTAC box
TCP FAMILY 

TRANSCRIPTION 
FACTOR 3/9 

SPL

SPL3 is experssed in vegetative and inflorescence 
apical meristems, floral meristems, leaf and flower 
organ primordia, and inflorescence stem tissue. 
SPL9  is strongly expressed in leaf primordia and 
provascular strands of young leaves. The 
expression of SPL9  is transiently upregulated in 
floral anlagen and very early floral primordia, but 
declined again by stage 2 of flower development.

SPL3  controls the timing of flower 
formation. SPL9  promotes flowering in an 
FT/FD-independent manner.

8 LFY'' -419 — -414 CCAGTG LFY binding site LEAFY

LFY  is weakly expressed in young leaves during 
the vegetative phase, and strongly expressed in 
young primordia surrounding the inflorescence 
apex.

LFY  controls the production of the flowers, 
and activates the floral homeotic genes that 
specify the identity of organs in the flower. 

9 bHLH -433 — -428 CACTTG E-box bHLH genes bHLH 

10 AP2/SMZ' -487— -482 TTTGTT APETALA 
2/SCHLAFMUTZE AP2

AP2  is expressed in the inflorescence meristem 
and in all four types of floral organs. SMZ  is 
expressed in hypocotyl, cotyledons, merstematic 
region of 7-d-old seedlings, and seeds.

AP2  plays a central role in the 
establishment of the floral meristem, the 
specification of floral organ identity and the 
regulation of floral homeotic gene 
expression. SMZ  is a repressor of 
flowering.

AP1



11 PI -603 — -594 GCAAATTTGA CArG-box PISTILLATA MADS-box

PI  is expressed at inner three whorls of floral 
organs at stage 3, its expression in the whorl 4 
region dissappeared by stage 5. It remains present 
at high levels in the developing second and third 
whorls till stages 10 and 11. 

PI determines the identity of petals and 
stamens, by interacting with AP3.

12 Dof -658 — -651 AAAGAAAG AAAG motif Dof genes Dof domain 
proteins

13 SPL3 -733 — -727 CGTACAA GTAC box
SQUAMOSA 

PROMOTER-BINDING 
PROTEIN-LIKE 3

SPL
SPL3  is experssed in vegetative and inflorescence 
apical meristems, floral meristems, leaf and flower 
organ primordia, and inflorescence stem tissues.

SPL3  controls the timing of flower 
formation. 

14 AP1 -805 — -796 CTATTTTTGG CArG-box APETALA1 MADS-box AP1 is expressed in young floral primordia, sepals 
and petals.

AP1  plays roles in the formation of floral 
meristems, and specification of sepals and 
petals.

15 SPL3 -948 — -942 CGTACAA GTAC box
SQUAMOSA 

PROMOTER-BINDING 
PROTEIN-LIKE 3

SPL
SPL3  is experssed in vegetative and inflorescence 
apical meristems, floral meristems, leaf and flower 
organ primordia, and inflorescence stem tissues.

SPL3  controls the timing of flower 
formation. 

15 PAN -949 — -946 ACGT TGA binding site PERIANTHIA bZIP

PAN  RNA is present in the inflorescence 
meristem, the floral
meristem, and in developing petals, stamens, and 
carpels.

PAN  plays roles in the control of perianth 
organ number specification, and the 
regulation of floral determinacy. It 
mediates  BOP1 and 2 to the promoter of 
AP1 , which activates expression of AP1  to 
control floral trasition and patterning.

16 AP2/SMZ -1858— -1853 TTTGTT APETALA 
2/SCHLAFMUTZE AP2

AP2  is expressed in the inflorescence meristem 
and in all four types of floral organs. SMZ  is 
expressed in hypocotyl, cotyledons, merstematic 
region of 7-d-old seedlings, and seeds.

AP2  plays a central role in the 
establishment of the floral meristem, the 
specification of floral organ identity and the 
regulation of floral homeotic gene 
expression.SMZ  is a repressor of 
flowering.

— —

17 WRKY 1044 — 1049 TTGACC W-box WRKY genes WRKY

— —

18 SPL8 1253 — 1268 TTTTCTGTACC
TAATT GTAC box

SQUAMOSA 
PROMOTER-BINDING 

PROTEIN-LIKE 8
SPL

SPL8  is lowly expressed in vegetative growth and 
highly expressed in inflorescences formed after 
the floral transition. It is also expressed in the 
developing pollen sacs of the anthers, the 
placental tissue of the developing gynoecium, and 
the margins of the petals.

SPL8  is required for proper development 
of sporogenic tissues.

— —

— —

19 SPL4/7 3358 — 3364 TTGTACG GTAC box
SQUAMOSA 

PROMOTER-BINDING 
PROTEIN-LIKE 4/7

SPL
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Evidence References No. Name Position Sequence Putative cis -
element Binding TF Gene family Gene expression pattern

LFY directely induces expression of AP1 , 
as evidenced by EMSA, LFY-GR system, 
and ChIP-qPCR.

(Weigel et al., 1992; Parcy et al., 1998; 
Wagner et al., 1999; William et al., 2004; 
Benlloch et al., 2011; Winter et al., 2011)

— —

LFY directely induces expression of AP1 , 
as evidenced by EMSA, LFY-GR system, 
and ChIP-qPCR.

(Weigel et al., 1992; Parcy et al., 1998; 
Wagner et al., 1999; William et al., 2004; 
Benlloch et al., 2011; Winter et al., 2011)

1 LFY -231 — -226 CCAATG LFY binding site LEAFY

LFY  is weakly expressed in young leaves 
during the vegetative phase, and strongly 
expressed in young primordia surrounding 
the inflorescence apex.

SPL9 directly activates AP1 , as 
evidenced by sequence prediction and 
ChIP-qPCR.

(Wang et al., 2009) — —

2 MYB -252 — -247 GGCAAT MYB binding 
site MYB genes MYB

TCP4 could bind to the DNA sequence 
TGGTCCC, as revealed by EMSA. The 
putative TCP4 binding site is predicted 
based on the sequence similarity.

(Yao et al., 2007; Nag et al., 2009; 
Aggarwal et al., 2010) — —

3 LMI1 -326 — -318 CAATTATTG HD-Zip binding 
site

LATE 
MERISTEM 
IDENTITY 1

HD-Zip1

LMI1  is expressed in leaves of young 
seedlings during the vegetative stage, 
strongly expressed in the incipient flower 
primordia, and developing flowers.

PAN mediates BOP1 and 2 to the 
promoter of AP1 , as evidenced by 
sequence prediction and ChIP-qPCR.

(Foster et al., 1994; Chuang et al., 1999; 
Hepworth et al., 2005; Maier et al., 2009; 

Xu et al., 2010) 
4 PAN -337 — -334 ACGT TGA binding 

site PERIANTHIA bZIP

Wigg et al., (2005) proposed this site as 
potential FD-binding site based on the 
evidence of sequence prediction and ChIP-
qPCR, but Benlloch et al., (2011) 
indicated that this C-box is not needed for 
AP1  activation based on the EMSA 
analysis.

(Wigge et al., 2005; Benlloch et al., 
2011) 4 FD -338 — -333 GACGTC C-box FLOWERING 

LOCUS D bZIP

LMI2 directely activates expression of 
AP1, as evidenced by sequence 
predication and ChIP-qPCR.

(Pastore et al., 2011; Prouse and 
Campbell, 2012) — —

SP3 directly promotes expression of AP1 , 
as evidenced by EMSA and ChIP-qPCR. 
SPL9 directly activates expression of 
AP1 , as evidenced by sequence 
prediction and ChIP-qPCR. 

(Cardon et al., 1997; Yanagisawa, 2004; 
Wang et al., 2009) — —

LFY directely induces expression of AP1 , 
as evidenced by EMSA, LFY-GR system, 
and CHIP-qPCR, and this site has been 
demonstrated to be the most functionally 
important LFY binding site in the AP1 
promoter.

(Weigel et al., 1992; Parcy et al., 1998; 
Wagner et al., 1999; William et al., 2004; 

Benlloch et al., 2011) 
— —

This site is predicted based on the 
sequence similarity. (Toledo-Ortiz et al., 2003) 5 bHLH -411 — -406 CACTTG E-box bHLH genes bHLH 

AP2 and SMZ directly bind to the 
promoter region of AP1  and repress its 
expression, as evidenced by sequence 
prediction and ChIP-qPCR.

(Jofuku et al., 1994; Fujimoto et al., 
2000; Mathieu et al., 2009; Yant et al., 

2010; Dinh et al., 2012) 
— —

CAL



PI could bind to this site, and restrict the 
expression of AP1 during early stages of 
floral development by interacting with 
AP3 and other factors, as evidenced by 
sequence prediction and ChIP-qPCR.

(Goto and Meyerowitz, 1994; Sundstrom 
et al., 2006; Wuest et al., 2012) — —

This site is predicted based on the 
sequence similarity. (Yamaguchi et al., 2009) — —

SP3 directly promotes expression of AP1 , 
as evidenced by EMSA and ChIP-qPCR. 

(Cardon et al., 1997; Yamaguchi et al., 
2009) — —

AP1 controls the onset of flowering by 
activating itself, as evidenced by sequence 
prediction and ChIP-qPCR.

(Mandel et al., 1992; Kaufmann et al., 
2010; Benlloch et al., 2011) — —

SPL3 directly promotes expression of 
AP1 , as evidenced by EMSA and ChIP-
qPCR. 

(Cardon et al., 1997; Yamaguchi et al., 
2009) 6 SPL3 -911 — -905 CGTACTA GTAC box

SQUAMOSA 
PROMOTER-

BINDING 
PROTEIN-LIKE 

3

SPL

PAN mediates BOP1 and 2 to the 
promoter of AP1 , as evidenced by 
sequence prediction and ChIP-qPCR.

(Foster et al., 1994; Chuang et al., 1999; 
Hepworth et al., 2005; Maier et al., 2009; 

Xu et al., 2010) 
6 PAN -912 — -909 ACGT TGA binding 

site PERIANTHIA bZIP

AP2 and SMZ directly bind to the 
promoter region of AP1  and repress its 
expression, as evidenced by sequence 
prediction and ChIP-qPCR.

(Jofuku et al., 1994; Fujimoto et al., 
2000; Mathieu et al., 2009; Yant et al., 

2010; Dinh et al., 2012) 
7 AP2/SMZ -1486 — -1481 TTTGTT AP2/SMZ AP2

AP2  is expressed in the inflorescence 
meristem and in all four types of floral 
organs. SMZ  is expressed in hypocotyl, 
cotyledons, merstematic region of 7-d-old 
seedlings, and seeds.

8 LFY 319 — 324 CCACTG LFY binding site LEAFY LFY

LFY  is weakly expressed in young leaves 
during the vegetative phase, and strongly 
expressed in young primordia surrounding 
the inflorescence apex.

This site is predicted based on the 
sequence similarity. (Rushton et al., 2010) 9 WRKY 795 — 800 TTGACC W-box WRKY genes WRKY

10 SPL3/9 851 — 856 CCGTAC GTAC box

SQUAMOSA 
PROMOTER-

BINDING 
PROTEIN-LIKE 

3/9

SPL

This site is predicted based on the 
sequence similarity.

(Unte et al., 2003; Birkenbihl et al., 
2005) — —

11 MYB98 1375 — 1383 TTTAACATA MYB binding 
site MYB98 R2R3-MYB

12 ARR1/2 3065 — 3073 TATGATTGT
 Arabidopsis 

response 
regulators 1/2

ARR

This site is predicted based on AthaMap. — —
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Gene function Evidence References

LFY controls the production of the flowers, 
and activates the floral homeotic genes that 
specify the identity of organs in the flower.

LFY directly induces expression of CAL , 
as evidenced by LFY-GR system and 
CHIP-qPCR.

(Weigel et al., 1992; 
William et al., 2004)

This site is predicted based on the 
sequence similarity.

(Rosinski and Atchley, 
1998)

LMI1  is a meristem identity regulator and 
acts together with LFY to induce the 
expression of CAL. LMI1  may also play roles 
in bracts and leaves.

LMI1  directly promotes expression of 
CAL, as evidenced by sequence 
prediction and ChIP-PCR.

(Saddic et al., 2006) 

This site is predicted based on the 
sequence similarity.

(Foster et al., 1994; 
Hepworth et al., 2005; 
Maier et al., 2009; Xu 

et al., 2010)

This site is predicted based on the 
sequence similarity to AP1.

This site is predicted based on the 
sequence similarity.

(Toledo-Ortiz et al., 
2003) 



This site is predicted based on the 
sequence similarity to AP1.

This site is predicted based on the 
sequence similarity.

(Foster et al., 1994; Xu 
et al., 2010)

AP2  plays a central role in the establishment 
of the floral meristem, the specification of 
floral organ identity and the regulation of 
floral homeotic gene expression.SMZ  is a 
repressor of flowering.

AP2 directly binds to the promoter region 
of CAL  and represses its expression, as 
evidenced by sequence prediction and 
ChIP-qPCR.

(Jofuku et al., 1994; 
Fujimoto et al., 2000; 
Mathieu et al., 2009; 

Dinh et al., 2012) 

LFY controls the production of the flowers, 
and activates the floral homeotic genes that 
specify the identity of organs in the flower.

This site is predicted based on the 
sequence similarity. (Benlloch et al., 2011) 

This site is predicted based on the 
sequence similarity. (Rushton et al., 2010) 

This site is predicted based on AthaMap.

This site is predicted based on AthaMap.

This site is predicted based on AthaMap.


