


Supplemental Fig. 1. The ability of OC-PRBS to differentiate high versus low level of individual organochlorine pesticides intake. The general linear models adjusted for age (< 20 years, 20-40 years, 40-60 years and over 60 years), gender (male/female), race (white/non-white), smoking status (never smoker, past smoker, current 1-10 cigarettes/day, current 11-20 cigarettes/day and current 21 more cigarettes/day), body mass index (<25kg/m², 25-29.9kg/m², \geq 30kg/m²), physical activity (vigorous or moderate activity over past 30 days, yes/no) and pest control in past month (yes/no).

Supplemental Fig. 2. The ability of OP-PRBS to differentiate high versus low level of individual organophosphate pesticides intake. The general linear models adjusted for age (< 20 years, 20-40 years, 40-60 years and over 60 years), gender (male/female), race (white/non-white), smoking status (never smoker, past smoker, current 1-10 cigarettes/day, current 11-20 cigarettes/day and current 21 more cigarettes/day), body mass index (<25kg/m², 25-29.9kg/m², \geq 30kg/m²), physical activity (vigorous or moderate activity over past 30 days, yes/no) and pest control in past month (yes/no).

	Commodity	Pesticide Rank Score	
1	onions	3	
2	orange juice	3	
3	sweet corn, frozen	3	
4	bananas	4	
5	grapefruit	4	
6	peaches	4	
7	tomatoes	4	
8	beans	5	
9	cauliflower	5	
10	sweet potatoes	5	
11	watermelon	5	
12	broccoli	6	
13	cantaloupe	6	
14	oranges	6	
15	pears	6	
16	raisins	6	
17	summer squash	6	
18	applesauce	7	
19	apples	7	
20	carrots	7	
21	cucumbers	7	
22	lettuce	7	
23	plums	7	
24	grapes	8	
25	collard	8	
26	kale	8	
27	spinach	8	

Supplemental table 1 Distribution of pesticide rank score among 29 included fruits and vegetables.

28	sweet bell peppers	8
29	strawberries	9

Supplemental table 2 Pesticides included in calculating OC-PRBS and OP-PRBS.^a

Testicides included in calculating OC-11	
Pesticide used in deriving OC-PRBS	Pesticide used in deriving OP-PRBS
Aldrin	Diazinon
Captan	Azinphos methyl
Dieldrin	Malathion
Diuron	Parathion methyl
Anilazine	Parathion methyl
Endrin	Mevinphos Total
Heptachlor	TEPP
Monuron	Ethion
Lindane(BHC gamma)	Disulfoton
Methoxychlor Total	Coumaphos
Neburon	Phorate
Tetradifon	Chlorpyrifos
Folpet	Fonofos
Linuron	Phosmet
DCPA	Phosalone
Heptachlor epoxide	Methamidophos
Dicloran	Dimethoate
Tecnazene	Ethoprop
Trifluralin	Tetrachlorvinphos
Terbacil	Fenthion
Chlorothalonil	Omethoate
Chlordane trans	Phorate sulfone
Chlordane cis	Phorate sulfoxide
Captafol	Methidathion
Benfluralin	Carbophenothion
Dicofol o,p'	Phosphamidon
Dicofol p,p'	Acephate

Fenarimol Methoxychlor p,p' Methoxychlor olefin Metolachlor Pentachlorophenol Hexachlorobenzene (HCB) Propanil Oxychlordane Pentachloroaniline (PCA) Pentachlorobenzene (PCB) Pentachlorophenyl methyl sulfide Vinclozolin Pronamide Procymidone Norflurazon Tetrahydrophthalimide (THPI) Oxadiazon Iprodione Diflubenzuron Propachlor Clofentezine Fluometuron Oxyfluorfen Clomazone Norflurazon desmethyl Ethalfluralin Etridiazole Nitrapyrin Acifluorfen Fluridone

Terbufos Malathion oxygen analog Dicrotophos Disulfoton sulfone **DEF** (Tribufos) Oxydemeton methyl Chlorpyrifos methyl Fenamiphos Oxydemeton methyl sulfone Isofenphos Sulfotep Dichlorvos (DDVP) Monocrotophos Parathion oxygen analog Fenitrothion Diazinon oxygen analog Ethion di oxon Pirimiphos methyl Mevinphos Sulprofos Coumaphos oxygen analog Chlorfenvinphos beta Propetamphos Fenamiphos sulfone Fenamiphos sulfoxide Chlorpyrifos oxygen analog Parathion methyl oxygen analog Phorate oxygen analog Phosalone oxygen analog Cadusafos

Butachlor Terbufos sulfone Acetochlor Phorate oxygen analog sulfone Endosulfan I Chlorethoxyfos Endosulfan II Tebupirimfos Endosulfan sulfate Terbufos-O analog BHC alpha Chlorfenvinphos total BHC beta Ethion mono oxon DDT p,p' Chlorpyrifos methyl O-analog Sulprofos oxygen analog DDT o,p' Tebupirimfos oxygen analog DDD p,p' DDD o,p' DDE p,p' DDE o,p' Triforine Chloramben Imidacloprid Lactofen Fipronil Flumetsulam 3,5-Dichloroaniline Acetochlor ethanesulfonic acid (ESA) Acetochlor oxanilic acid (OA) Alachlor ethanesulfonic acid (ESA) Alachlor oxanilic acid (OA) DCPA monoacid Metolachlor ethanesulfonic acid (ESA) Metolachlor oxanilic acid (OA) Niclosamide Chlorfenapyr

Isoxaflutole
Carfentrazone ethyl
Fludioxonil
Flufenacet
Forchlorfenuron
Thiamethoxam
Zoxamide
Pyridaben
Flutolanil
Tolclofos methyl

^a Not every pesticides included were detected in commodity samples.

Supplemental table 3

Leading author	Types of pesticides evaluated	Features	Limitations
Chiu, et al	Overall pesticide exposures	Fruits and vegetables were categorized into highly- contaminated and less- contaminated classes. The score was associated with low-semen quality for participants consuming highly-contaminated fruits and vegetables, and no association was found for less-contaminated fruits and vegetables	The heterogeneous effects of pesticides residues on fruits and vegetables were not considered and the variations of detectable pesticides residues may be underestimated
Curl, et al	Organophosphate pesticide	Food consumption-chemical residual (FCCR) approach was used to calculating the OP pesticide exposure from diet and the score was associated with urinary DAP concentrations in a dose- response fashion	Lack of assessment of other classes of pesticides exposure
Hu, et al (current study)	Overall pesticide exposure, organochlorine and organophosphate pesticide	Rank-based score method was used to derive PRBS, OC- PRBS and OP-PRBS. All three scores were significantly correlated with serum and urinary pesticide metabolite levels	The scores were rank- based and thus could not reflect absolute exposure levels

Comparison of three studies that aimed to derive pesticide exposure instruments that could predict health outcome.