Supporting information

Efficient Biosynthesis of Fungal Polyketides Containing the

Dioxabicyclo-octane Ring System

Xu-Ming Mao^{1,2‡}, Zha-Jun Zhan^{2,4‡}, Matthew N. Grayson³, Man-Cheng Tang², Wei Xu², Yong-Quan Li¹, Wen-Bing Yin², Hsiao-Ching Lin², Yit-Heng Chooi², K. N. Houk³, Yi Tang^{2,3*}

¹Zhejiang University, College of Life Sciences, Hangzhou 310058, China, ²Department of Chemical and Biomolecular Engineering, ³Department of Chemistry and Biochemistry, University of California, Los Angeles CA90095, USA, ⁴Zhejiang University of Technology, College of Pharmaceutical Science, Hangzhou 310014, China

Table of contents

Experimental Procedures

Strains and culture media	S4
Plasmid construction	S4
Construction of C. arbuscula mutants	S5
C. arbuscula genomic DNA preparation	S5
C. arbuscula RNA preparation and reverse transcription-PCR (RT-PCR)	S5
Yeast reconstitution of aurovertin biosynthesis pathway	S6
Intermediate feeding assays	S6
LC/MS analysis of metabolites	S6
Compounds purification	S6
Computational details	S8

Supplementary Tables

Table S1. Deduced gene functions within the aurovertin gene cluster.	S9
Table S2. Accession numbers of homologs	S10
Table S3. Calcarisporium arbuscula strains used in this study.	S11
Table S4. Primers used in this study.	S12
Table S5. Plasmids used in this study.	S13
Table S6. S. cerevisiae strains for aurovertin biosynthetic enzyme expression	S14
Table S7. NMR spectroscopic data of compounds $2-3$ in CDCl ₃	S15
Table S8. NMR spectroscopic data of compounds 4 and 1 in $CDCl_3$	S16
Table S9. NMR spectroscopic data of compounds 5, 6 in CDCl3	S17
Table S10. NMR spectroscopic data of compounds 7 and 8	S18
Table S11.NMR spectroscopic data of compounds 9, 10 in CDCl ₃	S19

Supplementary Figures

Figure S1. The homologous gene clusters producing aurovertins and citreoviridin.	S20
Figure S2. Deletion of aurA gene in C. arbuscula	S21
Figure S3. Heterologous expression of AurA in S. cerevisiae	S22
Figure S4. Deletion of <i>aurB</i> in <i>C. arbuscula</i> .	S23
Figure S5. Deletion of <i>aurC</i> in <i>C. arbuscula</i> .	S24
Figure S6. Lowest energy conformations of 7 and 8.	S25
Figure S7. Isolation chromatography of compound 9 from C. arbuscula	S26
Figure S8. Deletion of aurD in C. arbuscula.	S27
Figure S9. HPLC profile of <i>daurD C. arbuscula</i> strain.	S28
Figure S10. Possible epoxide-opening cyclization reactions with a model substrate.	S29
Figure S11. Base-catalyzed epoxide-opening cyclization reactions.	S30
Figure S12. Acid-catalyzed epoxide-opening reactions.	S31
Figure S13. Simultaneous general acid/base catalysis in epoxide-opening cyclization reaction	s S32
Figure S14. Deletion of aurG in C. arbuscula.	S33
Figure S15 Functional verifications of AurG and AurF.	S34

Figure S16. ¹ H NMR of aurovertin A (1) in CDCl ₃ (500 MHz)	S35
Figure S17. ¹³ C NMR of aurovertin A (1) in CDCl ₃ (125 MHz)	S36
Figure S18 . ¹ H NMR of aurovertin B (2) in CDCl ₃ (500 MHz)	S37
Figure S19. ¹³ C NMR of aurovertin B (2) in CDCl ₃ (125 MHz)	S38
Figure S20. ¹ H NMR of aurovertin D (3) in CDCl ₃ (500 MHz)	S39
Figure S21. ¹³ C NMR of aurovertin D (3) in CDCl ₃ (125 MHz)	S40
Figure S22. ¹ H NMR of aurovertin E (4) in CDCl ₃ (500 MHz)	S41
Figure S23 . ¹ H NMR of aurovertin E (4) in CDCl ₃ (125 MHz)	S42
Figure S24. ¹ H NMR of aurovertin J (5) in CDCl ₃ (500 MHz)	S43
Figure S25. ¹³ C NMR of aurovertin J (5) in CDCl ₃ (125 MHz)	S44
Figure S26. ¹ H NMR of aurovertin M (6) in CDCl ₃ (500 MHz)	S45
Figure S27. ¹³ C NMR of aurovertin M(6) in CDCl ₃ (125 MHz)	S46
Figure S28. ¹ H NMR of compound 7 in DMSO-d6 (500 MHz)	S47
Figure S29. ¹³ C NMR of compound 7 in DMSO-d6 (125 MHz)	S48
Figure S30. ¹ H NMR of compound 8 in CDCl ₃ (500 MHz)	S49
Figure S31. ¹³ C NMR of compound 8 in CDCl ₃ (125 MHz)	S50
Figure S32. ¹ H ¹ H-COSY of compound 8 in CDCl ₃ (500 MHz)	S51
Figure S33. HSQC of compound 8 in CDCl ₃ (500 MHz)	S52
Figure S34. HMBC of compound 8 in CDCl ₃ (500 MHz)	S53
Figure S35. NOESY of compound 8 in CDCl ₃ (500 MHz)	S54
Figure S36. ¹ H NMR of compound 9 in CDCl ₃ (500 MHz)	S55
Figure S37. ¹³ C NMR of compound 9 in CDCl ₃ (125 MHz)	S56
Figure S38. ¹ H ¹ H-COSY of compound 9 in CDCl ₃ (500 MHz)	S57
Figure S39. HSQC of compound 9 in CDCl ₃ (500 MHz)	S58
Figure S40. HMBC of compound 9 in CDCl ₃ (500 MHz)	S59
Figure S41. NOESY of compound 9 in CDCl ₃ (500 MHz)	S60
Figure S42. ¹ H NMR of compound 10 in CDCl ₃ (500 MHz)	S61
Figure S43. ¹³ C NMR of compound 10 in CDCl ₃ (125 MHz)	S62
Figure S44. ¹ H ¹ H-COSY of compound 10 in CDCl ₃ (500 MHz)	S63
Figure S45. HSQC of compound 10 in CDCl ₃ (500 MHz)	S64
Figure S46. HMBC of compound 10 in CDCl ₃ (500 MHz)	S65
Figure S47. NOESY of compound 10 in CDCl₃ (500 MHz)	S66

Supplementary Schemes

Scheme S1. Structures of decurrenside A, sorangicin A and palytoxin.	S67
Scheme S2. Structures of citreoviridin, asteltoxin and asteltoxin B.	S68
Supplementary References	S69
Full list of authors in the Gaussian09 reference	\$70
Supplementary Nucleotide and Protein Sequence Data	S71
Supplementary Computational Data (Cartesian Coordinates, etc)	S81

Experimental Procedures

Strains and culture media

Calcarisporium arbuscula strains in this study were listed in Table S3. C. arbuscula was grown in the potato dextrose broth (PDB, Fluka) at 25°C for aurovertin production. Spores were collected from the potato dextrose agar (PDA, PDB + 1.5% agar) medium at 25°C for 6 days. For gene knock-out in C. arbuscula, PDA plus 1.2 M sorbitol and 250 µg/ml hygromycin was used for protoplast regeneration and antibiotic resistance selection. Saccharomyces cerevisiae strain BJ5464-NpgA (MATa ura3-52 his3- Δ 200 leu2- Δ 1 trp1 pep4::HIS3 prb1 Δ 1.6R can1 GAL) was used for aurovertin biosynthesis pathway reconstitution or yeast expression plasmid construction by in vivo homologous recombination.¹ For yeast culture, the rich medium YPD was used for the routine growth of yeast strain BJ5464-NpgA and its derivatives at 30°C. SD-drop out media were used for selection of plasmids transformed into S. cerevisiae. For protein expression under ADH2 promoter (ADH2p) and aurovertin biosynthetic pathway reconstitution in S. cerevisiae, the appropriate plasmids were introduced into yeast cells as described in Table S4. The yeast transformants were initially grown in the appropriate SD-drop out liquid media and then transferred to the liquid YPD media for further culture for 4 days. LB media were used for Escherichia coli culture. E.coli strain Topo10 was the host for routine plasmid sub-cloning according to the protocols described.²

Plasmid construction

Primers and plasmids were listed in Table S5 and S6, respectively. Yeast expression plasmids pXW02 (LEU2 marker), pXW06 (TRP1 marker) and pXW55 (URA3 marker)³ were used for construction of the heterologous expression plasmids for aurovertin biosynthetic enzymes by in vivo homologous recombination in yeast. All the enzymes were expressed under a strong promoter ADH2p. For polyketide synthase AurA expression, primers aurA F1 + aurA R1, aurA F2 + aurA R2, aurA F3 + aurA R3 were used to amplify three DNA fragments of aurA cDNA, and transformed into BJ5464-NpgA with Ndel/Pmll-digested pXW55 to create the plasmid pXM01 to express aurA. Primers aurB F + aurB R, aurC F + aurC R were used to amplify aurB and aurC, and co-transformed with Ndel/Pmel-digested pXW02, pXW06 backbones to give rise to plasmids pXM02 and pXM03, respectively. Primer aurD F + aurD R, aurG F + aurG R were used to amplify aurD, aurG cDNA and also co-transformed with Ndel/PmlI-digested pXW55 backbone to create plasmids pXM04 and pXM05, respectively. aurD expression cassette including ADH2p and ADH2t was amplified with primers 55 F + 55 R from the plasmid pXM04 and ligated to EcoRI-digested pXM03 to create the plasmid pXM06. All the cDNA was amplified from the wild type reverse transcript prepared as described below. Yeast competent cell preparation and transformation were demonstrated with S.c. EasyComp Transformation kit (Invitrogen) according to the manufacture's protocols. Yeast plasmids were prepared by Zymoprep[™] Yeast Plasmid Miniprep kit (Zymo Research) and transformed into E. coli strain Topo10 for propagation.

To construct the plasmids for gene knock-out in *C. arbuscula* based on the split-marker strategy, the plasmid pAN7-1⁴ was used as the template to amplify *hph* upstream fragment with primers hph-up F and hph-up R, and *hph* downstream fragment with primers hph-dn F and hph-dn R. Both fragments were digested with *Notl/SacII* and *SacI/NotI*, respectively, and ligated to T-vector pTA2 to generate plasmids pXM11 and pXM12. The upstream DNA fragments of *aurB*,

aurC, *aurD* and *aurG* genes were amplified with primer pairs aurB-up F + aurB-up R, aurC-up F + aurC-up R, aurD-up F + aurD-up R and aurG-up F + aurG-up R. All the above PCR products were digested with *Bam*HI/*Not*I and ligated to the *Bam*HI/*Not*I site of pXM11 for plasmids pXM15, pXM17, pXM19 and pXM21, respectively. Meanwhile, the downstream DNA fragments of *aurB*, *aurC*, *aurD* and *aurG* genes were amplified with primer pairs aurB-dn F + aurB-dn R, aurC-dn F + aurC-dn R, aurD-dn F + aurD-dn R, and aurG-dn F + aurG-dn R, digested with *Not*I/*Hind*III and ligated to pXM12 to create plasmids pXM16, pXM18, pXM20 and pXM22, respectively.

Construction of C. arbuscula mutants

The entire aurA gene was deleted via homologous recombination based on the deletion cassette from the overlap PCR.⁵ Primers aurA-up F1, aurA-up R1 and aurA-dn F1, aurA-dn R1 and hph F, hph R were used to amplify aurA upstream, downstream homologous regions from fungal genomic DNA and hygromycin resistance gene from plasmid pUCH2-8.⁶ After purification of DNA fragments from agarose gel, primers aurA-up F1 and aurA-dn R1 were used to amplify the whole deletion cassette. The PCR product was gel purified and solubilized in STC buffer (1.2 M sorbitol, 10 mM CaC1₂, 10 mM Tris-HCI, pH 7.5). All other mutants were constructed in *C. arbuscula* based on the hygromycin split-marker strategy.⁷ The upstream and downstream split-marker DNA for each gene were amplified with universal primer pair T7p + T3p with the high fidelity DNA polymerase. The PCR products were precipitated with ethanol and dissolved in STC buffer. Split-marker DNA was introduced into C. arbuscula by protoplast transformation. C. arbuscula spores were collected on PDA (Fluka) for 6 days at 25°C, and induced to young germ tubes in PDB (Fluka) at 25°C for 7 hours with 180 rpm agitation. Mycelia were collected, washed twice with the osmotic medium (1.2 M MgCl₂, 10 mM sodium phosphate, pH 5.8) and resuspended in the enzyme cocktail solution (3 mg/ml Lysing Enzymes, 3 mg/ml Yatalase in osmotic medium) at 30°C for 4 hours. After twice wash with STC buffer, protoplasts were gently mixed with DNA and incubated for 1 hour on ice. 300 µl of PEG 4000 solution (60% PEG 4000, 50 mM CaC12, 50 mM Tris-HCI, pH 7.5) was added to 100 μ l of protoplast mixture, incubated at room temperature for 30 min and plated on the regeneration selection medium (PDA, 1.2 M sorbitol, 250 µg/ml hygromycin B). After incubation at room temperature for about 2 weeks, the transformants were inoculated on PDB medium with stationary incubation for about 1 week to confirm the genotype by PCR after preparation of the genomic DNA.

C. arbuscula genomic DNA preparation

Mycelia collected from PDB medium were lyophilized on FreeZone Freeze Dry Systems (Labconco) over night and broken up with 1.5 ml microcentrifuge pestles. 700 μ l of LETS buffer (10 mM Tris-HCl, pH 8.0, 20 mM EDTA, pH8.0, 0.5% SDS, 0.1 M LiCl) was added to solubilize the lysate, followed by two rounds of extraction with phenol : chloroform : isoamyl alcohol (25 : 24 : 1). Genomic DNA was precipitated from the supernatant with 2 volumes of ethanol. After wash with 70% ethanol and air dry, genomic DNA was solubilized in sterile water.

C. arbuscula RNA preparation and reverse transcription-PCR (RT-PCR)

Mycelia of *C. arbuscula* were inoculated in PDB medium for stationary culture at 25°C for 7 days, and collected for lyophilization. The mycelia was grounded after freezing with liquid nitrogen, and solubilized in Trizol (Invitrogen). 1/5 volume of chloroform was added, vortex and

centrifuged at 15000 rpm for 15 min. The supernatant was extracted once again with chloroform. RNA was precipitated from the supernatant with ethanol and resuspended in RNase-free water. Genomic DNA was further removed by digestion with RNase-free DNase I (Ambion). RNA was purified by acid phenol (Ambion) extraction and ethanol precipitation. RNA integrity was confirmed by electrophoresis on the TBE (Tris-boric acid-EDTA) agarose gel, and the concentration was determined by Nanodrop (Thermo Scientific). Reverse transcript was prepared from 500 ng of total RNA by SuperScript[®] II Reverse Transcriptase (Invitrogen) with random primers as described by the manufacture. PCR was performed with Phusion[®] High-Fidelity DNA Polymerase (New England Biolabs) in the presence of 25 ng of reverse transcribed RNA. Primers were listed in Table S5.

Yeast reconstitution of aurovertin biosynthesis pathway

Saccharomyces cerevisiae strain BJ5464-NpgA was transformed or co-transformed with appropriate plasmids as described in Table S4. For polyketide synthase product, yeast cells containing plasmid pXM01 were initially cultured in the SD uracil-drop out medium overnight and transferred to 50 ml of liquid YPD medium, with/without 20 mM sodium acetate or 20 mM sodium propionate, for additional 4-day culture. For other yeast strains with co-expression of various enzymes, yeast cells were also initially cultured in the appropriate SD-drop out medium overnight and transferred to 50 ml of liquid YPD medium with 20 mM sodium propionate for further 4 days. Samples about equal to 0.5 ml of culture were loaded for LC/MS analysis.

Intermediate feeding assays

For feeding of *C. arbuscula* strains with compounds (solubilized in DMSO), spores of $\Delta aurA$ or $\Delta aurC$ were inoculated in 10 ml of PDB together with 10 µg/ml compound **2**, **9** or **10** and further cultured for 7 days at 25 °C. The mycelia and medium were extracted for LC/MS analysis. For feeding assays of yeast, BJ5464-NpgA with/without plasmid pXM05 (expressing *aurG*) were inoculated in the appropriate SD-drop out medium overnight, and further cultured in 50 ml of YPD for 3 days. Then the cultures were concentrated to 3 ml and 10 µg/ml compound **4** (final concentration) was added for further culture for 2 days, followed by organic extraction and LC/MS analysis.

LC/MS analysis

C. arbuscula and *S. cerevisiae* cells were extracted with methanol : acetate ethyl (10 : 90). After brief centrifugation, the supernatant organic phase was dried by speed vacuum and solubilized in methanol for LC/MS loading. All LC-MS analyses were performed on a Shimadzu 2020 EVLC-MS (Phenomenex[®] Luna, 5 μ , 2.0 × 100 mm, C18 column) using positive and negative mode electrospray ionization with a linear gradient of 5–95% MeCN-H₂O in 15 minutes followed by 95% MeCN for 5 minutes with a flow rate of 0.3 mL/min.

Compounds purification

Chemicals and chemical analysis

All solvents and other chemicals used were of analytical grade. All LC-MS analyses were performed on a Shimadzu 2020 EVLC-MS (Phenomenex[®] Luna, 5 μ , 2.0 × 100 mm, C18 column) using positive and negative mode electrospray ionization with a linear gradient of 5–95%

MeCN-H₂O in 15 minutes followed by 95% MeCN for 5 minutes with a flow rate of 0.3 mL/min. ¹H, ¹³C and 2D NMR spectra were obtained on Bruker AV500 spectrometer with a 5 mm dual cryoprobe or a Bruker DRX500 spectrometer with a 5 mm broadband probe at the UCLA Molecular Instrumentation Center.

Purification of aurovertin E (4) from *C. arbuscula ∆aurG* mutant.

The $\Delta aurG$ mutant was cultivated on PDB (2 L) at 25°C for 10 d. The culture was filtered through cheesecloth. The mycelium was extracted with acetone for three times. The acetone extract was concentrated *in vacuo* and the resultant aqueous mixture (500 mL) was extracted with CHCl₃ (3 × 400 mL) and concentrated *in vacuo*. The crude products were purified by a Silica gel column (RediSep®, 40 g Flash Column, 8:2→6:4 hexane/acetone gradient) to afford aurovertin E (4) (33 mg). All spectral data for 4 (Table S8, Figure S22-S23) was consistent with that in the literature.⁸

Purification of aurovertins 1-6 and 9 from *C. arbuscula*.

C. arbuscula wild type strain was cultivated on PDB (6 L) at 25 °C for 10 d. The culture was filtered through cheesecloth. The mycelium was extracted with acetone for three times. The combined extracts were evaporated to dryness under reduced pressure to afford the residue (15.6 g). The residue was dissolved in $H_2O(1 L)$ to form a suspension, which was then extracted with $CHCl_3$ (4 × 500 mL). The combined organics were dried over MgSO4 and concentrated in vacuo. The crude products (6.0 g) were separated by a RP-18 column (RediSep Rf Gold C18 Column, $20-40\mu$, 86 g, MeCN-H₂O 2:8 \rightarrow 5:5) to afford four fractions (Fr.1-4). Fr.1 was purified by flash chromatography (MeCN-H₂O 1:9 \rightarrow 3:7) to provide aurovertins D (3) (33 mg) and E (4) (13 mg). Fr.2 was further purified on a semi-preparative RP-18 HPLC column (Luna[®], ODS-3, 5 μ , 250 \times 10 mm) eluted by MeCN-H₂O (45:55 \rightarrow 55:45) with flowrate of 3.5 mL/min to give aurovertin J (5) (1.1 mg, tR:15.9 min) and a subfraction (tR: 15.6–16.2 min) containing two compounds with the molecular weight 402. The two compounds can be separated by semi-preparative HPLC column (Luna[®], silica gel, 5 μ m, 250 × 10 mm) eluted by hexane-acetone (75:25 \rightarrow 65:35) with flow rate of 5.0 mL/min (peak1:tR:17.6 min; peak2:tR:22.1 min, Figure S10a). After separation, normal phase HPLC and LC-MS analysis all showed each peaks contained two same compounds with MW 402 (Figure S10). These showed that the two compounds with MW 402 from wild type can be interchanged quickly. Finally, the two compounds (total 1.3 mg) were checked by mixture NMR, and one of dominant compounds was determined as 9. Aurovertin B (2) (110 mg) was obtained from Fr. 3 by recrystallization with MeCN-H₂₀ (9:1). Fr.4 was applied to flash chromatography (MeCN-H₂₀ 3:7 \rightarrow 5:5) to give aurovertins A (1) (5.0 mg) and M (6) (11.0 mg). All spectral data (Table S7-S9, Figure S16-S27) for 1-6 were consistent with those in the literatures.⁸⁻¹² The structure of **9** was determined by 1D and 2D NMR (Table S10, Figure S36-S41). Purification of compound 10 from yeast cells.

The yeast strain BJ5464-NpgA + AurABC were cultured in YPD (20 L) supplemented with 20 mM sodium propionate at 30°C for 5 d. The culture was filtered through cheesecloth. The yeast cells were extracted with acetone for three times. The acetone extract was concentrated *in vacuo* and the resultant aqueous mixture (1200 mL) was extracted with CHCl₃ (3 × 600 mL) and concentrated *in vacuo*. The crude products were purified by a RP-18 column (Redi*Sep* Rf Gold C18 Column, 20–40 μ , 86 g, MeCN-H₂O 2:8 \rightarrow 5:5) to afford four fractions (Fr.1–5).The Fr.3 was separated by a Sephadex LH-20 column (35 × 1.2 cm, MeOH) followed by purification on a semi-preparative RP-18 HPLC column (Luna[®], ODS-3, 5 μ m, 250 × 10 mm) eluted by MeCN-H₂O

(15:85 \rightarrow 40:60) with flow rate of 3.5 mL/min to yield **10** (1.3 mg, *t*R:15.9 min). The structure of **10** was determined by 1D and 2D NMR (Table S10, Figure S42-S47).

Purification of compound 7 from yeast

The yeast cells expressing AurA were cultured in YPD (10 L) with 20 mM sodium propionate at 30°C for 5 d. The culture was filtered through cheesecloth. The yeast cells were extracted with acetone for three times. The acetone extract was concentrated *in vacuo* and the resultant aqueous mixture (500 mL) was extracted with $CHCl_3$ (3 × 400 mL) and concentrated *in vacuo*. The crude products were purified by a Silica gel column (RediSep[®], 40 g Flash Column, 9:1 \rightarrow 7:3 hexane:acetone gradient) to afford compound **7** (31 mg). The structure of **7** was determined by NMR (Table S11, Figure S28-S29).

Purification of compound 8 from yeast.

The yeast cells expressing AurA and AurB were cultured in YPD (10 L) with 20 mM sodium propionate at 30°C for 5 d. The culture was filtered through cheesecloth. The yeast cells were extracted with acetone for three times. The acetone extract was concentrated *in vacuo* and the resultant aqueous mixture (500 mL) was extracted with $CHCl_3$ (3 × 400 mL) and concentrated *in vacuo*. The crude products were purified by a Silica gel column (RediSep[®], 40 g Flash Column, 9:1 \rightarrow 8:2 hexane:acetone gradient) to afford compound **8** (28 mg). The structure of **8** was determined by 1D and 2D NMR (Table S11, Figure S30-S35).

Computational details

Quantum mechanical calculations were performed using Gaussian 09 (Revision D.01).¹³ All geometries were optimized using M06-2X,¹⁴ within the IEFPCM model (water),¹⁵ and the 6-31G(d) basis set. Single point energies were calculated using M06-2X,¹⁴ within the IEFPCM model (water),¹⁵ and the 6-311++G(d,p) basis set. The resulting energies were used to correct the gas phase energies obtained from the M06-2X optimizations.¹⁶⁻¹⁸ Previous computational work on epoxide-opening cyclization reactions with similar methods provided results in accord with experiment.¹⁹ Computed structures are illustrated with CYLView.²⁰

Supplementary Tables

Gene name	Deduced protein function		Identity to <i>M. anisopliae</i> homolog
aurA	Polyketide synthase	with	75%
	KS-AT-DH-MT-KR-ACP modules		
aurB	SAM-dependent methyl-transferase		76%
aurC	flavin-dependent monooxygenase		77%
aurD	α/β hydrolase		72%
aurE	SnoaL-like protein		45%
aurF	Putative DNA-binding protein		45%
aurG	O-acyl-transferase		No homolog

Table S1. Deduced gene functions within the *aur* gene cluster.

Gene from <i>C. arbuscula</i>	C. arbuscula	Homologs in <i>M. anisopliae</i>	Homologs in <i>A. terreus</i> NIH2624
aurA	KT581574	EFY96172	XP_001218239
aurB	KT581575	EFY96171	XP_001218240
aurC	KT581576	EFY96168	XP_001218242
aurD	KT581577	EFY96169	XP_001218241
aurE	KT581578	No accession number ^a	XP_001218243
aurF	KT581579	EFY96170	No homolog nearby
aurG	KT581580	No homolog nearby	No homolog nearby

Table S2. Accession numbers of all *aur* homologs from *C. arbuscula*, *M. anisopliae* and *A. terreus*.

^aNo *C. arbuscula* AurE homolog in *M. anisopliae* was predicted near the gene cluster in the database. But the homolog was identified after BLAST was run against *Aspergillus nidulans* in Softberry (linux1.softberry.com/) with the query of *M. anisopliae* strain E6 contig00020 (accession number JNNZ01000020) containing the putative *aur* gene cluster.

Table S3. Calcarisporium arbuscula strains used in this study.

Strain	Genotype	Reference
Wild type	Calcarisporium arbuscula wild type, NRRL 3705,	ATCC
	ATCC [®] 46034 [™]	
∆aurA	<i>∆aurA::hph</i> , the entire <i>aurA</i> was replaced with <i>hph</i>	This study
∆aurB	<i>∆aurB::hph</i> , the entire <i>aurB</i> was replaced with <i>hph</i>	This study
∆aurC	<i>∆aurC::hph,</i> the entire <i>aurC</i> was replaced with <i>hph</i>	This study
∆aurD	<i>∆aurD::hph</i> , the entire <i>aurD</i> was replaced with <i>hph</i>	This study
∆aurG	<i>∆aurG::hph</i> , the entire <i>aurG</i> was replaced with <i>hph</i>	This study
∆aurF	<i>∆aurF::hph</i> , the entire <i>aurF</i> was replaced with <i>hph</i>	This study

	, , , ,
Genotype	Description
Yeast + <i>aurA</i>	S. cerevisiae BJ5464-NpgA + pXM01
Yeast + aurA + aurB	S. cerevisiae BJ5464-NpgA + pXM01 + pXM02
Yeast + aurA + aurC	S. cerevisiae BJ5464-NpgA + pXM01 + pXM03
Yeast + aurA + aurB + aurC	S. cerevisiae BJ5464-NpgA + pXM01 + pXM02 + pXM03
Yeast + aurA + aurB + aurC + aurD	S. cerevisiae BJ5464-NpgA + pXM01 + pXM02 + pXM06
Yeast + <i>aurG</i>	S. cerevisiae BJ5464-NpgA + pXM05

Table S4. S. cerevisiae strains for aurovertin biosynthetic enzyme expression

Table S5. Primers used in this study.

Name	Sequence
aurA-up F1	GGGGAGATTAAAGGTGAGGC
aurA-up R1	GATGAGCGCATTGTTAGATTTCATACACGGTGCCTGGAGAGAAATGTCGATGAGAAC
aurA-dn F1	CATGATGTCAGGCCATTTTCATATGGCAATGCGCAGGTTGTTAGGTGGTCGGTC
aurA-dn R1	GAAGGAGTGGGTTGATGAAG
hph F	GCACCGTGTATGAAATCTAAC
hph R	ACCTGCGCATTGCCATATG
hph-up F	ACCTGGCGGCCGCTACAACGACCATCAAAGTC
hph-up R	ACTGACCGCGGTACCGTCTGCTGCTCCATACAA
hph-dn F	CAGGGAGCTCGGTACCTCGGAGGGCGAAGAATC
hph-dn R	GAATGCGGCCGCAGGATTACCTCTAAACAAGTG
aurB-up F	CGGTACGACCTTGTCTAATC
aurB-up R	GAATAGCGGCCGCTTGAGAGTGAGGTTGTTG
aurB-dn F	GAATAGCGGCCGCTGGACAAAGACATCATAAC
aurB-dn R	TATTGAAGCTTGAATGAACTACAGTAAGAG
aurC-up R	GAATAGCGGCCGCTCCAGTTGGTCCTTCTGAG
aurC-dn F	GATGTGCGGCCGCAGCCTTGCCTATCAACTATG
aurD-up F	TATTAGGATCCACAGATTACGAGAATGAAG
aurD-up R	GAATAGCGGCCGCTTTGGGAGAGGGAAGAAA
aurD-dn F	TATTGAAGCTTAGTGGTGAGGAGATGAGG
aurD-dn R	GAATAGCGGCCGCTCTTCCAAGACGATGTTG
aurG-up F	TATTAGGATCCGTGCCATCAGACATTAC
aurG-up R	GAATAGCGGCCGCAAACGACGAGGACCAGC
aurG-dn F	CTCTAGCGGCCGCTGTGGTTTCTCTGGACATC
aurG-dn R	TATCTAAGCTTTGGTTCACGCACTCATTC
aurA F1	ATGGCTAGCGATTATAAGGATGATGATGATAAGACTAGTCCACCTAACAACATGACACC
aurA R1	TCGGAATAGCGTTTCAATACC
aurA F2	GGAAAATACCGAAGGAGAGTG
aurA R2	CCATGTCTGCTAAACACAATG
aurA F3	TAACAGACAAGACCTCGTATC
aurA R3	ATTTAAATTAGTGATGGTGATGGTGATGCACGTGCCTCTTCACGTTTGGAATGAG
aurB F	ATCAACTATCAACTATTAACTATATCGTAATACCATATGATCATGACCAAAGAATC
aurB R	GATAATGAAAACTATAAATCGTGAAGGCATGTTTAAACCTCACCTATCAATGTCTGG
aurC F	ATCAACTATCAACTATTAACTATATCGTAATACCATATGGGAGCGTATTCATTC
aurC R	TTGATAATGGAAACTATAAATCGTGAAGGCATGTTTAAACTCAGAAGGACCAACTG
aurD F	ATGGCTAGCGATTATAAGGATGATGATGATAAGACTAGTATGGCCTGGTACGACGAG
aurD R	ATTTAAATTAGTGATGGTGATGGTGATGCACGTGTTTTGTCTTTTAGCAC
aurG F	ATGGCTAGCGATTATAAGGATGATGATGATAAGACTAGTCTCTGGCTGG
aurG R	ATTTAAATTAGTGATGGTGATGGTGATGCACGTGTTGGACATGGCGACTCTG
55 F	TATTAGAATTCGTAGGGGCAAACAAACGG
55 R	CGAAAGGGGGATGTGCTG
Т7р	ATACGACTCACTATAGGGC

Т3р

TAACCCTCACTAAAGG

Table S6. Plasmids used in this study.

Plasmid name	Description	Reference
pXW02	<i>E. coli</i> -yeast shuttle expression vector, <i>ADH2p</i> , 2µ, <i>LEU2</i> marker	3
pXW06	<i>E. coli</i> -yeast shuttle expression vector, <i>ADH2p</i> , 2µ, <i>TRP1</i> marker	3
pXW55	<i>E. coli</i> -yeast shuttle expression vector, <i>ADH2p</i> , 2µ, <i>URA3</i> marker	3
pXM01	aurA cDNA cloned in NdeI/PmlI-digested pXW55	This study
pXM02	aurB cDNA cloned in NdeI/PmeI-digested pXW02	This study
рХМ03	aurC cDNA cloned in NdeI/PmeI-digested pXW06	This study
pXM04	aurD cDNA cloned in NdeI/PmlI-digested pXW55	This study
pXM05	aurG cDNA cloned in NdeI/PmlI-digested pXW55	This study
pXM06	aurD expression cassette ligated to pXM03 at EcoRI site	This study
pTA2	<i>E. coli</i> T-vector	Toyobo
pAN7-1	E. coli plasmid vector with hygromycin resistance gene hph	4
pXM11	hph upstream 1.9 kb fragment cloned in Notl/SacII site of pTA2	This study
pXM12	<i>hph</i> downstream 1.8 kb fragment cloned in <i>Sacl/Not</i> l site of pTA2	This study
pXM15	aurB upstream 1.8 kb cloned in BamHI/NotI site of pXM11	This study
pXM16	aurB downstream 4.2 kb cloned in Notl/HindIII site of pXM12	This study
pXM17	aurC upstream 3.6 kb cloned in BamHI/NotI site of pXM11	This study
pXM18	aurC downstream 1.5 kb cloned in Notl/HindIII site of pXM12	This study
pXM19	aurD upstream cloned in BamHI/NotI site of pXM11	This study
pXM20	aurD upstream cloned in BamHI/NotI site of pXM12	This study
pXM21	aurG upstream 1.2 kb cloned in BamHI/NotI site of pXM11	This study
pXM22	aurG downstream 2.5 kb cloned in Notl/HindIII site of pXM12	This study

2			3	
Position	δ_{H} (mult, J in Hz)	$\delta_{ m C}$	$\delta_{\rm H}$ (mult, J in Hz)	$\delta_{ m C}$
1	1.07 (3H, t, 7.5)	11.8	1.37 (3H, t, 6.5)	22.9
2	1.67 (2H, m)	20.1	4.23 (1H, m)	65.3
3	3.90 (1H, dd, 8.5, 4.0)	85.5	3.76 (1H, d, 7.5)	86.8
4	-	82.7	-	83.1
5	4.79 (1H, s)	80.5	4.78 (1H, s)	81.1
6	-	83.4	-	83.5
7	3.28 (1H, t, 7.5)	76.4	3.31 (1H, t, 8.5)	76.3
8	4.13 (1H, t, 7.5)	78.0	4.14 (1H, t, 8.0)	78.0
9	5.91 (1H, dd, 15.0, 6.5)	134.1	5.90 (1H, dd, 15.0, 7.5)	133.9
10	6.43 (1H, m)	131.7	6.44 (1H, m)	131.7
11	6.48 (1H, m)	137.0	6.47 (1H, m)	136.9
12	6.38 (1H, m)	132.1	6.38 (1H, m)	132.2
13	7.15 (1H, dd, 15.0, 11.5)	135.7	7.16 (1H, dd, 16.0, 11.0)	135.6
14	6.34 (1H, d, 15.0)	119.6	6.33 (1H, d, 15.0)	119.7
15	-	154.3	-	154.3
16	-	108.1	-	108.2
17	-	169.9	-	169.9
18	5.48 (1H, s)	88.8	5.48 (1H, s)	88.8
19	-	163.7	-	163.8
20	1.18 (3H, s)	16.4	1.37 (3H, s)	17.7
21	1.25 (3H, s)	15.1	1.24 (3H, s)	15.0
22	1.96 (3H, s)	8.9	1.95 (3H, s)	8.9
OMe	3.80 (3H, s)	56.4	3.82 (3H, s)	56.2
Ac	2.15 (3H, s)	20.8	2.15 (3H, s)	20.8
Ac	-	170.6	-	170.6

Table S7. NMR spectroscopic data of compounds 2-3 in CDCl₃

	4		1		
Position	$\delta_{ m H}$ (mult, J in Hz)	$\delta_{ m C}$	$\delta_{ m H}$ (mult, J in Hz)	$\delta_{ m C}$	
1	1.06 (3H, t, 7.5)	11.9	1.08 (3H, t, 6.5)	11.8	
2	1.65 (2H, m)	20.3	1.67 (1H, m)	20.0	
3	3.96 (1H, dd, 8.5, 4.5)	84.8	3.92 (1H, dd, 8.5, 4.5)	85.5	
4	-	83.7	-	82.6	
5	3.45 (1H, s)	80.4	4.89 (1H, s)	80.6	
6	-	84.1	-	83.0	
7	3.15 (1H,brs)	76.4	4.79 (1H, d, 8.5)	76.3	
8	4.12 (1H, t, 7.5)	77.9	4.32 (1H, t, 7.5)	78.0	
9	5.90 (1H, dd, 14.0, 6.0)	135.0	5.73 (1H, dd, 15.0, 7.0)	132.9	
10	6.39 (1H, m)	131.5	6.41 (1H, m)	132.4	
11	6.45 (1H, m)	137.4	6.45 (1H, m)	136.6	
12	6.35 (1H, m)	131.9	6.33 (1H, m)	132.5	
13	7.14 (1H, dd, 15.0, 10.5)	135.8	7.15 (1H, dd, 15.0, 11.0)	135.4	
14	6.32 (1H, d, 15.0)	119.4	6.31 (1H, d, 15.0)	119.9	
15	-	154.4	-	154.2	
16	-	108.2	-	108.2	
17	-	170.8	-	169.6	
18	5.50 (1H, s)	88.7	5.48 (1H, s)	89.0	
19	-	164.0	-	163.6	
20	1.27 (3H, s)	16.5	1.12 (3H, s)	16.3	
21	1.36 (3H, s)	14.6	1.18 (3H, s)	15.1	
22	1.96 (3H, s)	8.9	1.95 (3H, s)	8.9	
OMe	3.82 (3H, s)	56.3	3.82 (3H, s)	56.2	
5-Ac			2.12 (3H, s)	20.8	
5-Ac			-	170.5	
7-Ac			2.04 (3H, s)	20.8	
7-Ac			-	169.8	

Table S8. NMR spectroscopic data of compounds 4 and 1 in CDCl_3

	5		6		
Position	δ_{H} (mult, J in Hz)	$\delta_{ m C}$	$\delta_{ m H}$ (mult, J in Hz)	$\delta_{ m C}$	
1	1.06 (3H, t, 7.5)	11.8	1.08 (3H, t, 7.5)	11.8	
2	1.70 (2H, m)	20.2	1.66 (2H, m)	20.2	
3	3.90 (1H, dd, 8.5, 4.5)	85.5	3.90 (1H, dd, 8.0, 5.0)	85.6	
4	-	82.7	-	82.8	
5	4.79 (1H, s)	80.5	4.81 (1H, s)	80.3	
6	-	83.4	-	83.4	
7	3.24 (1H, t, 7.5)	76.4	3.29 (1H, t, 8.0)	76.4	
8	4.11 (1H, t, 7.5)	77.9	4.12 (1H, t, 8.0)	78.0	
9	5.92 (1H, dd, 15.0, 6.5)	134.5	5.92 (1H, dd, 15.0, 8.0)	134.1	
10	6.43 (1H, m)	131.5	6.44 (1H, m)	131.7	
11	6.48 (1H, m)	137.7	6.49 (1H, m)	137.0	
12	6.38 (1H, m)	131.5	6.39 (1H, m)	132.1	
13	7.13 (1H, dd, 15.0, 11.5)	136.0	7.16 (1H, dd, 16.0, 10.0)	135.7	
14	6.02 (1H, d, 15.0)	122.0	6.33 (1H, d, 15.0)	119.6	
15	-	158.6	-	154.3	
16	-	101.0	-	108.1	
17	-	169.8	-	170.6	
18	5.48 (1H, s)	88.7	5.50 (1H, s)	88.9	
19	-	164.0	-	163.6	
20	1.16 (3H, s)	16.5	1.18 (3H, s)	16.4	
21	1.23 (3H, s)	15.1	1.27 (3H, s)	15.0	
22	-	-	1.97 (3H, s)	8.9	
OMe	3.79 (3H, s)	55.9	3.82 (3H, s)	56.2	
Ac	2.13 (3H, s)	20.8			
Ac	-	171.0			
Pr			1.19 (3H, t, 7.5)	9.3	
Pr			2.44 (2H, q, 7.5)	27.6	
Pr			-	173.3	

Table S9. NMR spectroscopic data of compounds 5, 6 in $CDCl_3$

	8"		7°	
Position	$\delta_{ m H}$ (mult, J in Hz)	$\delta_{ m C}$	$\delta_{ m H}$ (mult, J in Hz)	$\delta_{ m C}$
1	1.00 (3H, t, 8.0)	14.0	0.97 (3H, t, 7.5)	13.9
2	2.13 (2H, m)	21.7	2.10 (2H, m)	21.2
3	5.44 (1H, t, 7.5)	135.1	5.45 (1H, t, 7.5)	134.7
4	-	132.3	-	132.2
5	6.00 (1H, s)	138.0	6.03 (1H, s)	138.1
6	-	132.9	-	132.7
7	6.38 (1H, d, 15.5)	141.2	6.41 (1H, d, 15.0)	140.5
8	6.28 (1H, m)	127.2	6.48 (1H, m)	127.7
9	6.45 (1H, dd, 14.5, 10.5)	137.0	6.62 (1H, dd, 15.5, 11.5)	137.4
10	6.34 (1H, m)	130.8	6.50 (1H, m)	132.0
11	6.54 (1H, dd, 14.5, 12.0)	138.6	6.67 (1H, dd, 15.5, 12.0)	134.9
12	6.31 (1H, m)	131.3	6.44 (1H, m)	131.4
13	7.21 (1H, dd, 15.0, 11.5)	136.1	6.98 (1H, dd, 15.5, 10.5)	136.4
14	6.32 (1H, d, 15.0)	118.5	6.38 (1H, d, 15.0)	119.8
15	-	154.7	-	154.7
16	-	107.6	-	108.2
17	-	170.6	-	169.8
18	5.48 (1H, s)	88.6	5.36 (1H, s)	89.8
19	-	163.8	-	162.1
20	1.80 (3H, s)	16.8	1.78 (3H, s)	16.6
21	1.94 (3H, s)	13.9	1.89 (3H, s)	13.7
22	1.95 (3H, s)	8.9	1.90 (3H, s)	
OMe	3.82 (3H, s)	56.1		8.7

 Table S10. NMR spectroscopic data of compounds 7 and 8

^{*a*} measured in CDCl₃; ^{*b*} measured in DMSO-d₆;

	9		10		
Position	$\delta_{\rm H}$ (mult, J in Hz)	$\delta_{ m C}$	$\delta_{\rm H}$ (mult, J in Hz)	$\delta_{ m C}$	
1	1.05 (3H, t, 7.5)	11.6	1.10 (3H, t, 7.5)	11.3	
2	1.56 (2H, m)	21.5	1.55 (2H, m)	21.3	
3	3.68 (1H, dd, 8.0, 5.0)	85.0	3.54 (1H, m)	84.8	
4	-	81.8	-	81.1	
5	3.79 (1H, brs)	85.2	3.75 (1H, m)	86.6	
6	-	83.5	-	83.7	
7	5.97 (1H, d, 15.0)	142.0	5.85 (1H, d, 14.0)	135.9	
8	6.46 (1H, m)	127.6	6.44 (1H, m)	129.5	
9	6.32 (1H, m)	135.0	6.40 (1H, m)	134.9	
10	6.31 (1H, m)	132.1	6.32 (1H, m)	131.9	
11	6.48 (1H, m)	138.1	6.52 (1H, dd, 15.5, 11.5)	137.9	
12	6.32 (1H, m)	133.0	6.37 (1H, m)	132.7	
13	7.18 (1H, dd, 16.0, 11.0)	136.0	7.21 (1H, dd, 16.0, 11.0)	135.9	
14	6.34 (1H, d, 15.0)	119.4	6.34 (1H, d, 15.0)	119.2	
15	-	154.6	-	154.4	
16	-	108.2	-	108.0	
17	-	170.8	-	170.6	
18	5.46 (1H, s)	88.8	5.49 (1H, s)	88.8	
19	-	163.9	-	163.7	
20	1.22 (3H, s)	18.4	1.21 (3H, s)	19.2	
21	1.28 (3H, s)	21.5	1.46 (3H, s)	27.7	
22	1.95 (3H, s)	9.1	1.96 (3H, s)	8.9	
OMe	3.80 (3H, s)	56.4	3.82 (3H, s)	56.2	

Table S11. NMR spectroscopic data of compounds 9, 10 in CDCl₃

Supplementary Figures

Figure S1. The homologous gene clusters among fungi producing aurovertins (*C. arbuscula* and *M. anisopliae*) and citreoviridin (*A. terreus*). The identity of each homolog to the *C. arbuscula* counterpart is shown.

Figure S2. Deletion of the entire *aurA* gene in *C. arbuscula*. The genotype was confirmed by PCR and Southern blot.

Figure S3. Heterologous expression of AurA in *S. cerevisiae* confirmed by Western blot.

Figure S4. Deletion of *aurB* in *C. arbuscula*. The genotype was confirmed by PCR with primers as indicated.

Figure S5. Deletion of *aurC* in *C. arbuscula*. The genotype was confirmed by PCR with primers as indicated.

Figure S6. Lowest energy conformations of pyrone-polyene **7** and its alkoxide and β -ketoester forms prior to O-methylation, and that of **8**. M06-2X/6-311++G(d,p)–IEFPCM(water)//M06-2X/6-31G(d)–IEFPCM(water). All energies in kcal mol⁻¹. Mulliken atomic charges (with hydrogens summed into heavy atoms) in parentheses, calculated at the M06-2X/6-31G(d)–IEFPCM(water) level of theory.

Figure S7. Compound **9** exists as an equilibrium of two forms. a: Semi-purified compound **9** from *C. arbuscula*; b: peak 1 checked by normal phase HPLC after purification; c: peak 2 checked by normal phase HPLC after purification; d: LC-MS spectrum m/z [M+H]⁺ =403 ion after purification.

Figure S8. Deletion of *aurD* in *C. arbuscula*. The genotype was confirmed by PCR with primers as indicated.

Figure S9. HPLC profile of *∆aurD C. arbuscula* strain.

Figure S10. Possible epoxide-opening cyclization reactions with a model substrate.

FigureS11.Base-catalyzedepoxide-openingcyclizationreactions.M06-2X/6-311++G(d,p)-IEFPCM(water)//M06-2X/6-31G(d)-IEFPCM(water).Non-criticalhydrogen atoms omitted for clarity. All energies in kcal mol⁻¹.Non-critical

Figure S13. Simultaneous general acid/base catalysis in epoxide-opening cyclization reactions(formic acid and formate ion as acid and base respectively).M06-2X/6-311++G(d,p)-IEFPCM(water)//M06-2X/6-31G(d)-IEFPCM(water).Non-criticalhydrogen atoms omitted for clarity. All energies in kcal mol⁻¹.

Figure S14. Deletion of *aurG* in *C. arbuscula*. The genotype was confirmed by PCR with primers as indicated.

Figure S15. Functional verifications of AurG and AurF. (A) AurG is an *O*-acyltransferase involving in transformation of **4** to **2**. (B) AurF is the likely transcriptional factor that regulates the expression of the entire cluster. Knockout of *aurF* eliminates production of aurovertin production. (C) Transcription analysis of *aur* genes and housekeeping genes in wild type and $\Delta aurF$ mutant.

Figure S16. ¹H NMR of aurovertin A (1) in CDCl₃ (500 MHz)

Figure S17. ¹³C NMR of aurovertin A (1) in CDCl₃ (125 MHz)

Figure S20. ¹H NMR of aurovertin D (**3**) in CDCl₃ (500 MHz)

S41

Figure S23. 1 H NMR of aurovertin E (4) in CDCl₃ (125 MHz)

Figure S24. ¹H NMR of aurovertin J (**5**) in CDCl₃ (500 MHz)

Figure S25. ¹³C NMR of aurovertin J (5) in CDCl₃ (125 MHz)

Figure S27. ¹³C NMR of aurovertin M(6) in CDCl₃ (125 MHz)

Figure S28. ¹H NMR of compound 7 in DMSO-d6 (500 MHz)

Figure S32. ¹H ¹H-COSY of compound 8 in CDCl₃ (500 MHz)

Figure S33. HSQC of compound 8 in CDCl₃ (500 MHz)

Figure S34. HMBC of compound 8 in CDCl₃ (500 MHz)

Figure S39. HSQC of compound 9 in CDCl₃ (500 MHz)

Figure S42. ¹H NMR of compound 10 in CDCl₃ (500 MHz)

Figure S43. ¹³C NMR of compound **10** in CDCl₃ (125 MHz)

Figure S44. ¹H ¹H-COSY of compound **10** in CDCl₃ (500 MHz)

S64

S66

Scheme S1. Structures of decurrenside A, sorangicin A and palytoxin, which all contain a 2,6-dioxabicyclo[3.2.1]-octane (DBO) ring. The DBO moiety is shown in red.

Scheme S2. Structures of citreoviridin, asteltoxin and asteltoxin B.

Supplementary References

(1) Ma, S. M.; Li, J. W.; Choi, J. W.; Zhou, H.; Lee, K. K.; Moorthie, V. A.; Xie, X.; Kealey, J. T.; Da Silva, N. A.; Vederas, J. C.; Tang, Y. *Science* **2009**, *326*, 589.

(2) Sambrook, J.; MacCallum, P.; Russell, D. *Molecular Cloning: A Laboratory Manual (Third Edition)*; Cold Spring Harbor Laboratory Press., 2000.

(3) Xu, W.; Cai, X.; Jung, M. E.; Tang, Y. J. Am. Chem. Soc. 2010, 132, 13604.

(4) Punt, P. J.; Dingemanse, M. A.; Kuyvenhoven, A.; Soede, R. D.; Pouwels, P. H.; van den Hondel, C. A. *Gene* **1990**, *93*, 101.

(5) Yu, J. H.; Hamari, Z.; Han, K. H.; Seo, J. A.; Reyes-Dominguez, Y.; Scazzocchio, C. *Fungal Genet*. *Biol.* **2004**, *41*, 973.

(6) Alexander, N. J.; Hohn, T. M.; McCormick, S. P. Appl. Environ. Microbiol. 1998, 64, 221.

(7) Gravelat, F. N.; Askew, D. S.; Sheppard, D. C. Methods Mol. Biol. 2012, 845, 119.

(8) Wang, F.; Luo, D. Q.; Liu, J. K. J. Antibiot. (Tokyo) 2005, 58, 412.

(9) Guo, H.; Feng, T.; Li, Z.-H.; Liu, J.-K. Nat. Prod. Bioprospect. 2013, 3, 8.

(10) Mulheirn, L. J.; Beechey, R. B.; Leworthy, D. P.; Osselton, M. D. J. Chem. Soc. Chem. Commun. 1974, 874.

(11) Steyn, P. S.; Vleggaar, R.; Wessels, P. L. J. Chem. Soc. Perkin Trans. 1 1981, 1298.

(12) Baldwin, C. L.; Weaver, L. C.; Brooker, R. M.; Jacobsen, T. N.; Osborne, C. E. J.; Nash, H. A. Lloydia **1964**, *27*, 88.

(13) Frisch, M. J. et al. Gaussian 09; Gaussian, Inc., Wallingford CT **2013**. See Supporting information for full list of authors.

(14) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.

(15) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.

(16) Simon, L.; Goodman, J. M. Org. Biomol. Chem. 2011, 9, 689.

(17) Grayson, M. N.; Goodman, J. M. J. Org. Chem. 2015, 80, 2056.

(18) Overvoorde, L. M.; Grayson, M. N.; Luo, Y.; Goodman, J. M. J. Org. Chem. 2015, 80, 2634.

(19) Hotta, K.; Chen, X.; Paton, R. S.; Minami, A.; Li, H.; Swaminathan, K.; Mathews, II; Watanabe, K.; Oikawa, H.; Houk, K. N.; Kim, C. Y. *Nature* **2012**, *483*, 355.

(20) Legault, C. Y. CYLView, version 1.0b; Universitéde Sherbrooke: Sherbrooke, QC, Canada, **2009**; http://www.cylview.org.

Full list of authors in the Gaussian09 reference

Gaussian 09, Revision D.01

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani,
V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F.
Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith,
R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M.
Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L.
Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A.
D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc.,
Wallingford CT, 2013.

Supplementary Nucleotide and Protein Sequence Data

gene	18414							
	/gene="aurA"							
SOURCE	Calcarisporium arbuscula							
CDS join (1432,548928,10111143.12341356.146216								
	17332549,26375701,58076609,67437252,73257403,							
	74668414)							
	/dene="aura"							
	/yene- auin							
	/note="polyketide synthase"							
	/codon_start=1							
	/product="AurA"							
	/translation="MTPEPIAIIGSGCKFPGSSTSPSRLWDLISKPKDVASKPPADRF							
	NIDGFYHPNPTNLLTTNAKESYFISENVRAFDNTFFNIAANEATSLDPQQRLLLETVY							
	ESVEAAGLRLEALRGSSTGVFCGVMCADWEAVVGLDKVVPEYAISGLARSNLANRISY							
FFDWNGPSMSIDTACSSSMVALHQGITALQSGECSAVAVIGTNLILTPNLYFAA								
	MLSPESRGRMWDHKANGYVRGEGVASLMLKRLSDAVADGDRIECVIRASGVNQDGRTL							
	GLTMPSGEAOEKLIRSTYALAGLDPSRAEDRPOYFEAHGTGTOAGDYOEASGIYNTFF							
	GANPKASAFEVI, HVGSTKTVIGHSEGCAGLAGI, TKASLCTOHGI, TPPNI, HFERLNPKI,							
	EPYSSHI.KUPTALTKWPELPSCUPBRUSUNSEGEGCTNSHATI.ESYEPNI.HGTTNGHU							
	NPNVEAMDLAWSLIQKRSALMIRVTLIAPTIEGLQSEIQRELALRKANTPSTVISRPD							
	TGKKRILGIFTGQGAQWPQMGLDIISTFPNARVWFEELQASLDSLPTAHKPDFSLLEE							
	LSAPKPSSRVQEAAVAQPICTAVQIVLVKLLSAIGISFDQVVGHSSGEVAAAYAAGVL							
	NAHDAIRIAYLRGRVAHLAGANDKAGGMLAAGLSIEEATAFCELPEFAGRIMIAACNS							
	PSSVTLSGDADAIQEAEKHLKGQDKFARRVLVDTAYHSHHMEPCSDPYLSAMTGCKIQ							
	LGEPTATTWYSTVYEGEKPNSSSHANALVGEYWKDNMRNPVLFYQALMQSITDAPPSL							
	${\tt IVEVGPHPALKGPVLQAISEAVQTNSTIPYISTLSRGATGVKALAVTIGSLWTHLGAE$							
	GVKVEQYVALREPSRKLKFIHDLPSYPFDHSQSYWTETRRSKAYLGRGPRHELLGDLS							
	EENTEGEWRWRNFLFRSNLEYLEGHQIQAQTIFPATGYVAMAFEAAGIMAEGRSMRLV							
	QINDLEIDOAIAFLDDVKGIETLFRVYQIRSDGNVTNAAFSCHADIGGTLKTCASGOL							
	SGFLDNVGSEELLLHPSTMDCGLOCLLAAVGAPGDGELSBLOTPTBTOTTVINPIFCG							
	EGYRVDVVEWFDHVVEQTRLGENPLCMKEWVDEDPTEALIHLAKTAQPIIVEITDVIR							
	KHFLNFLRGETPMIEVYRQDNLLTRFYDQEQELKYMSLRVGDVAGQLAFRYPRMKILE							
	IGAGTGSATRAVLGRIGQYFHSYTFTDISAGFFEDAEATFTEYADRMVYRVLDIEQDP							
	TGQGFDANSYDLVIAANVLHATKYLEPTMNNVRRLLKPGGHLIALEITNEHILQDALL							
	FSAFEGWWLGKHDNRPWGPKISVPKWEELLRKTGFGGVQSILPAPEKTEYSFWGYSTF							
	VTQAINDRLEQLSEPSASDPATSIISTSDSSEKFGTLMIIGGVTDKTSYLVPALKKLI							
	APSFERIIHTLTIDSIEYQDASLAAALCLADMDVPTFQDLTDNKISCLKRLLEVGRRL							
	LWVTAGSESENPYLSMSKGFLSCIGYEYEGSIHOYLNIVDPEAVNAOILSTTLMRMLL							
	SDSTNDYSLSTGVGSIELELRLEDNVMKIPRIMNATPLNHRYAAGORAVYSOADLEKS							
	TVOIRSVOGNLEFFEGPVEGSTETOLDOGOSTIPVHVRYSASLALKVONGGFLNLVLG							
	THENSING A FOUND SEA STRUCTURE TO THE A FOULT PROPERTY AND THE A FOULT AND A FOULT							
	J CTNTCL.UHEANDALEHA IWTCAVAKCUODVECTOTCKKOCNCCTUTUEUETCCTDA							
	LARTIPTCI.SVIANFCKAAPNCVMAKIKPI.LSPDVTOEDTCTI.VRVSPI.LSKCFNI.DE							
	VTQTFKVSRIVATEVMHSLANNFAAVHGETNVISIDKLSGRDAKTGELEILDWTQARE							
	LSVDRTIRRTLPPIGGVVNGAMVLQDRMFADATLDNILGTYRPRVQGSRLLEDIYGDE							
	DLDFFILFGSATAILGNMGQSSYGAATNFMRSLIRGRRERNLVGSIIHPAEVRGVGYI							
SRMGIELSRLMNKLVGSHIVSEKDLHETFAEAILAGKPASGRNPEVISGFNQHDPEEI								
	PDLIWYSNPETWPLVNYRLQSTTSQSTSTLMPIKQQLESATSLAEAAELVLIALNAKI							
	VQKLHLSEDTHMTPDTRLAELGADSLVAVDLRTWFIRELDVEIPILQIQSGASIGDLA							
	NSATSKISDSLIPNVKR"							
BASE COU	NT 2110 a 2167 c 2075 g 2062 t							
ORIGIN								
1	atgacaccag agccaattgc cattattgga tcaggctgca aattccctgg gtcttctaca							
61	tcgccatcgc gtctctggga tctcatcagc aagccaaagg atgtcgcatc caagccccca							
121	gcagacagat tcaatatcga cgggttctac catccaaatc caacaaatct attaacaacc							
181	aatgccaagg aatcatactt catctccgag aacgtaaggg cattcgacaa cactttotto							
2.41	aatattgcgg caaatgaage gactagtttg gateceeage ageggetget getegaaaeg							
301	atttataat contonage tectedetta coattenane ctottonene ctoctocece							
361	antatatttt acagaattat atacacagac tagacagagy electedyyy electedaty							
100	gycycycele ycygayelae ycycycayae cygydayely cyfagyael agdeddygle							
421	ylaccyyaal atgtgagtgc tatccctttg aagatactct gaggcatctt gaagaccgaa							
481	agatgatata catcctccga ctcccagtgg ctcattgagc agtcctgaca ctaacaactc							
541	aaaccaggcc atttctggtc ttgcgcggtc taatctggca aaccgtatct cttacttttt							

601	tgattggaac	ggcccatcca	tgtcaattga	tacggcttgt	tcttcgagta	tggtagctct
661	tcatcagggt	atcactgcct	tacaaagtgg	tgaatgctcg	gctgttgccg	ttattggaac
721	gaacctgatt	ttaaccccca	acttgtactt	cgcggcgtca	aacgttcata	tgctttcgcc
781	ggagagccgt	ggtcggatgt	gggatcacaa	agctaatggc	tatgtacgag	gagaaggagt
841	agcgtctttg	atgctgaagc	gactcagtga	tgctgttgcc	gatggcgatc	ggatagaatg
901	tgtaatcaga	gcctcaggtg	ttaaccaggt	atgcacccac	actctattgc	ttacggctcc
961	tacttgagct	caggctatcg	aactgcatat	tctgactgcg	atctttctag	gatgggcgaa
1021	cactggggtt	gacgatgcct	tcaggtgagg	ctcaggaaaa	gttgatccgc	tctacctatg
1081	ccctcgctgg	acttgatccg	agtcgcgcag	aggatcgacc	acagtatttt	gaagcgcacg
1141	gcagtaagtt	cattttatgt	ctccatctct	caatgtggca	attaccttga	aaaccttcca
1201	cttttgtcca	gtcatactta	ccacggataa	tagctggtac	acaagctgga	gattatcaag
1261	aggcttcagg	tatctacaac	actttctttg	gggcgaatcc	caaagcatcc	gctgaagagg
1321	tgttacatgt	gggatcaatc	aagacggtta	ttggtcgtaa	gttaatctct	actcaccttg
1381	agtctctcgc	atctctgtat	ccctttctcg	cttgcttgac	ttgaaggtat	agatatactg
1441	acctgaactt	cccaattcaa	gacagtgagg	gatgtgctgg	tttagctggc	ctaatcaagg
1501	catccttgtg	tatacagcac	ggtctgattc	ctcctaatct	tcacttcgaa	cgattgaatc
1561	ccaaactgga	accttactcg	tcgcatctca	aggtgcctac	tgcactcacc	aagtggccag
1621	agctaccttc	cggtgttcca	cggcgtgttt	cagtgaactc	tttgtgagtt	gaattctgca
1681	tgaatttcaa	aggccaaagg	aagaaatttt	agctaacctt	cgttactctt	agtggatttg
1/41	gtggcactaa	ttcgcatgct	attcttgaga	gctacgaacc	aaatctgcac	gggactacaa
1801	acgggcacgt	aaatggcacg	agcaaaaaga	caaatggcct	cttgaatggt	gcaagcaacc
1861	tgctagacag	cctcacaaat	ggagaagaga	gtaccaagcc	tgccctgctc	ccatttgtct
1921	tctcggctgc	gtcagaaaag	acccttgggg	ctcttcttga	gaagtacgac	tcgtatctag
1981	gggagaaccc	gaacgttgaa	gccatggatc	ttgcctggtc	cttgattcaa	aaacgttccg
2041	ctctcatgta	ccgcgtgacg	ctttatgctc	ctacgattga	ggggctgcag	agcgagatcc
2101	agagagaact	tgcgcttcgg	aaagccaaca	ccccatctac	agtcatatca	cggcccgaca
2101	ctggaaagaa	aagaalloll	ggcalcilla	ccggtcaagg	cycacagigg	ttagaaaatt
2221	gictigatat	tattcaact	acacacacac	cagagettte	gtttgaagaa	agactatota
2201	ctccaaaacc	atettetera	gegeacaage	cagactettee	geogeocata	tacaccaca
2401	ttcagatogt	cctaataaaa	cttctttctq	ccattogaat	ttcctttcata	caadtootoo
2461	atcattotto	aggggagagg	accactacct	acactactaa	tatactaaat	acacacata
2521	caatcodaat	tacctatcta	geegeegeee	taagtcaata	attocttoto	aaatccattt
2581	ctcaagettt	ataatgeete	tctacttaga	ttcaaqqcac	tractttaca	atataggtee
2641	ctcaccttgc	tagtactaat	gacaaggetg	ataatatatt	adccacaaat	ctatccatta
2701	aggaaggaag	tacattttat	gaactgccgg	agtttgctgg	acatatcata	atagetgeat
2761	gcaact.cgcc	atcgagtgtc	acacteteta	acaatacaaa	tgcgattcaa	aaaacaaaaa
2821	aacatttgaa	aggccaagat	aagtttgccc	atcagatact	ggtggacacg	gcatatcatt
2881	cccatcacat	qqaqccctqc	tccgatcctt	acctcagtgc	catgacgggg	tgcaagattc
2941	aactgggaga	qccaaccqcq	actacatqqt	actcaactqt	ctacgaggga	qaaaaqccca
3001	acaqttcaaq	ccacqctaat	acactcataa	gagagtattg	gaaggacaat	atgcgcaacc
3061	ccqtcctctt	ctaccaggcc	ctcatgcaat	ccattacaga	cgcgccgcct	agtettateg
3121	tcgaagtcgg	accgcatcct	gctctgaaag	gccctgtttt	acaggcgatt	tccgaggccg
3181	ttcaaacaaa	ctccacaatt	ccttatatta	gcactctgag	ccgtggtgcg	actggagtaa
3241	aggcccttgc	agttaccata	ggctctctgt	ggacgcatct	tggagcagag	ggagtaaaag
3301	tggaacagta	tgtggccctc	cgtgagccat	cccggaagct	gaaattcatt	catgatttgc
3361	cttcctatcc	ctttgatcac	agtcagtcct	actggaccga	gacgcgaagg	tccaaggcct
3421	acctcggtcg	gggaccacgg	catgaacttc	tcggggacct	tagtgaggaa	aataccgaag
3481	gagagtggcg	ctggcgcaac	ttcttgtttc	gaagcaatct	tgaatatctt	gaaggacatc
3541	agatccaggc	ccagacgatc	tttcctgcaa	caggctacgt	agccatggca	ttcgaagccg
3601	cgggaatcat	ggcggaggga	agatctatgc	gtctcgtaca	gattaacgac	ctcgagatag
3661	accaagcaat	cgccttcttg	gacgatgtca	aaggtattga	aacgctattc	cgagtgtacc
3721	aaatccgatc	cgatggcaac	gtcacgaacg	cagcattcag	ctgccatgca	gacattggag
3781	gcacgctcaa	gacttgcgca	tctggccagt	tggtcgtgac	ctggggcgag	atggaagcga
3841	atcttctgcc	ttcaaaactt	ccttctccat	ccggaatgtc	ggtcgtagac	acggatgaat
3901	tctatgcttc	cttgggcaag	ttgggctacg	gctatacagg	cctcttccgc	ggcatcacgt
3961	cattgaagcg	taagctgaac	acttccagcg	gcttcctgga	caatgtgggc	agcgaggagc
4021	ttctgcttca	cccctcaaca	atggactgcg	gattgcaatg	tctgcttgcc	gctgttggag
4081	cgcccggtga	cggagagcta	tcacgtctcc	aaataccaac	ccgtatccag	acgaccgtca
4141	tcaatccaat	cttttgtgga	aagaataatg	tgctagtagg	cgattctctc	gaatttgagg
4201	cagctgtcac	aggattgagt	gcagatggag	catccggaga	tgtcagcttg	ttcactcgcg
4261	acgggcccgg	tttgattcaa	tttgaaggcg	tccatgtaac	tcccctgatg	caacctacgg
4321	caagcgacga	tcgaccaatg	ttctcagaaa	ttacatgggg	cggtcttctg	cctaacgctg
4381	agcctttgca	tggacctgca	ccgcctttgc	aattctgggc	tggcaatatg	gacgacccgc
4441	agcacatgtg	ctttgcagtc	atccaagaag	tgctctccaa	actgacagcc	gaagacaggc
4501	agaggctgga	aggataccga	gtcgacgtgg	ttgaatggtt	tgaccacgtg	gttgagcaga
4361	cacgcctggg	ygagaatccc	ctttgcatga	aggagtgggt	Lyatgaagac	ccgaccgagg
4621	ccctcattca	cctggccaag	acggcgcaac	ccattattgt	ggagataaca	gacgttatta
40ŏ⊥	yyaaacattt	CCLYAATTTC	clycgcggcg	aaaccccgat	yaligaagtc	LALCGCCAGG
4741	acaacctcct	caccagattc	tatgaccaag	aacaagagct	gaagtacatg	agtcttcgag
--------	------------	-------------	--------------	-------------	-------------	-------------
4801	ttggtgatgt	ggctggacag	ttggcgtttc	ggtatccacg	catgaagatc	ttggagattg
4861	gagccggaac	tggctcggca	actcgagctg	tcctcgggcg	tatcggccaa	tacttccatt
4921	catacacttt	cacagatatc	tcagctggct	tttttgagga	tgctgaggcg	acgttcacag
4981	agtacgccga	tcggatggtt	tatcgggtgc	ttgatattga	acaggatece	acqqqacaaq
5041	gctttgacgc	gaattcgtat	gacttggtca	tcgcagcaaa	tgtgctgcat	gccaccaagt
5101	accttgagcc	taccatgaac	aatgtccgtc	gtctgctcaa	acccaacaac	cacctcatco
5161	ccctagaaat	сасааасдад	cacattctac	aggacgcctt	gcttttcagc	gccttcgaag
5221	gatggtggct	aaaaaaacac	gacaacagac	cttagaaccc	caagateteg	attocaaat
5281	dadadaact	tctcaggaaaa	acaggetttg	ataatataca	atcratactt	ccaactccaa
5341	aaaadactda	gtattcgttc	taggettet	caacctttat	cacacadddd	atcaatgatg
5401	aaataaaaaa	geteagete	cattaggetact	cogacceege	cacataggeg	atatoaacet
5461	ggetggagea	agaaaagttt	aggaagtaa	tasttattage	cacyccaatt	acaccaacyc
5521	agtatettet	ayaaaayttt	gggaccetga	tgaccactta	tttagaaaga	gacaagaccu
5521	cgtatettgt	ceeegcaety	aaaaayctyc	tygecectte	ccccgaacgg	attattata
5561	collgaccal	cgallccala	gaalalCaag	augegieali	ggcagcagca	trattana
5041	cagacatgga	cglgccgacc	ticcaagate	Lyaccyacaa	Caayalaago	LYCLLYAAAA
5701	ggttcgtacc	CTCTCCCTTG	tagegtttae	ctttggcag	tttatgggdt	accaggetet
5761	gcttcctgtt	tatactgatt	tccatatact	gacaccgata	ttttaggetg	ttggaggttg
5821	gccgaagatt	gctatgggtc	acageegget	ccgagtctga	aaacccatac	ctgagcatga
5881	gcaaaggatt	tctcagctgc	atcggatatg	agtatgaggg	ttccatccac	cagtacctca
5941	acattgtcga	cccagaagct	gtgaatgcgc	agatcctctc	gacaaccctg	atgcgcatgc
6001	ttctgtccga	ttccaccaat	gactacagcc	tttccacagg	cgttggaagt	atagagcttg
6061	agttacgcct	tgaagacaat	gtcatgaaga	ttccccgaat	catgaacgcg	acaccgttaa
6121	accaccgata	tgctgcaggc	caaagggcag	tatatagcca	agccgacttg	gaaaaatcga
6181	ccgttcaaat	ccgctctgtc	caaggcaatt	tggaattctt	tgagggccct	gttgagggtt
6241	cgacagaaac	ccagcttgat	cagggtcaat	ccacgattcc	ggtccatgtc	cgatactcgg
6301	cctctctggc	actgaaagtg	cagaacggcg	gattcctgaa	cctcgtcctg	ggaactcatg
6361	aagtctcaaa	cgttcgcctg	atcgcctttt	ccgataataa	tgcatcaagg	gtctcagtac
6421	cttcagcttt	gtgctgggag	ctcactaaca	atattgccga	ggatcaagag	gcgcagttct
6481	tgaacatcat	ggcgtctgca	gtgttagcca	gaaacataat	tcagacggcc	agcacgaaca
6541	caagtttact	ggtccacgaa	gcaaacgatg	cactcagaca	tgccatttgg	acccaagctg
6601	ttgccaaggg	taagcacaaa	gatgacttgc	acccgttgtt	accaaagcac	tcttcaccaa
6661	ttcacaatgt	ccctacgcga	agtggcagtt	tcctctccc	cattttgatt	tgaaacaaag
6721	ctgactctaa	tactctactt	aggcgttcaa	ccatatttca	gcacaagcga	cacttctaaa
6781	aagcagtcaa	actccagcac	cttggttttc	catgagacaa	gctcaactcg	agcgcttgcc
6841	cgaattcttc	ctacaggtct	ttcagtcatt	gcaaactttg	gcaaagcagc	gcccaacgga
6901	gtaatggcaa	agatcaagcc	acttctctct	ccggatgtaa	cacaagaaga	cacaggtacc
6961	ctctacaggg	tttcgccttt	gctctcgaag	ggtttcaact	tggatgaggt	aactcaaaca
7021	ttcaaggtct	cacgtatcgt	ggccaccgaa	gtgatgcact	cattggcaaa	caatttcgcg
7081	gcggtgcatg	gtgaaaccaa	tgtcatcagc	attgacaagc	tttctgggcg	agatgcaaaa
7141	actggtgaac	tggagatcct	ggactggacc	caagcgcgtg	agctaccagt	aagagtttct
7201	tctgcaagct	cacaagtcaa	actgtcggcc	agcaaaacct	atctcctggt	tggtatgtcg
7261	ggcgatctcg	gacaatccgt	ttgccactgg	atgatcacta	gaggagcacg	aaatatggtc
7321	ctagccagtc	gcacaccgaa	agtagagcca	caatggcttg	acgaaatgtc	gagattggga
7381	gccagagtcc	gaatagagcc	tatgtaagtt	tggcattcaa	agaagcatgt	aagaaatgtt
7441	ttatccgtac	taacaaacca	aacagggacg	tcacagaccg	agagtctatc	ctcagtgttg
7501	atcgcactat	tcgtcggact	ttgcctccca	ttggcggagt	tgtgaatggt	gccatggttc
7561	tgcaagatcg	aatgttcgca	gatgctacgt	tggacaacat	cctagggaca	tacaaaccaa
7621	aggtccaagg	tagtcgcttg	ctggaagaca	tctatggtga	cgaggacttg	gacttcttca
7681	tcttgttcgg	gtctgcaact	gccatcctag	gtaacatggg	acaatcctca	tacggagctg
7741	ccacaaactt	tatgaggagc	ttgatccgtg	qqcqacqaqa	gcgaaatctt	gtgggcagta
7801	ttatccatcc	agctgaagtc	cataatatca	gctacatttc	gcgcatgggc	atcgagctat
7861	cgcgactcat	gaacaagete	qtcqqcaqcc	acattqtctc	cqaqaaqqac	ttgcacgaaa
7921	catttqccqa	agctatcctc	gctggtaagc	cagegtetag	tcqcaatcca	gaagtcattt
7981	ctggcttcaa	tcaacacoat	cccdaddaaa	tacccratct	tatttootac	agcaat.ccgg
8041	aaacatooco	acttotcaat	tatcgattgc	agtocaccac	atcgcaatcg	acqaqcacqq
8101	tcatgccaat	caadcadcad	cttgagtcgc	ccactact++	accadadace	acagageacyc
8161	tactaatooo	cctcaacaca	aagattatco	aaaaaactaca	tetetennen	gatacacaca
8221	traccocara	taccadetta	acaaaactaa	acactastea	tttaattaca	attasettas
8281	agacctaga	tattagggarg	ctagacatoa	aaattoccat	totacadata	geogaeorge
8341	cctcaatcoo	tracctoret	aacagegeeg	catctaaaa+	ttcadacado	ctcattccaa
8401	acatasaaaa	ataa	Lucuycycca	Syccounder	cooligacayo	Juliu
JIOIOI	ucycyaayay	yuay				

gene		1693	3				
2		/a	ene="aurB"				
SOURCE	5	Calcaris	orium arbus	scula			
CI	- DS	1	. 693	000110			
0.		/ ~	ene="aurB"				
		/ 9 / n	ote="0-meth	wltransfora	so"		
		/ 11	odon start-	.1	.50		
		/ 0	roduct="Aur	т. Т.			
		/ P	monaletion-	.D UMERECADNVN			
		/ L		MIKESADNII		VQVLINSEWWR	CSINGILVPPPI
		DN	SIINHMEVGAG	JIGIFLRAKLDR	IERSKLKSSDDA	ILWPQNLILVL	FHERCMINKAANF
		15	PVRPNRVLANI	MEPIPLKGQKE	DSIAIMYVLHC	TAATPEAKGRV	FANLKPFLADEC
		TL	FGSTVLGKGVK	HNLIGGFLMWI	YNYIGMFDNWL	DGKEDFLKPLR	CEHFEVVESEVVG
		TV	'LLFKAEKPRH"				
BASE (COUN	NT 168 a	a 173 c	173 g 1	79 t		
ORIGIN	1						
	1	atgaccaaag	aatccgcgga	caactactat	aaccccctta	tgctatgggg	ttatgatgtc
	61	tttgtccagg	tcctcaccaa	ttccttctgg	tggcgatgtt	caaccaaggg	catcctcgtc
1	L21	ccttttttc	tcgacaacag	tactaccaac	cacatggaag	ttggagctgg	aaccggttac
1	L81	ttcctccgcg	ccaaactcga	ccatgagcga	agcaaactga	agagcagcga	tgacaagact
2	241	ttgtggcctc	aaaatctcac	acttgttgat	ttccatgagc	ggtgtatgaa	taaagccgcg
3	301	aaccgcatct	cccccgttcg	ccccaaccgc	gtactcgcca	acatcatgga	gccaattcct
3	361	ctcaagggcc	agaaattcga	ctccatcgcc	atcatgtacg	tcttgcactg	tattgctgcc
4	121	actccagagg	ccaaaggccg	ggtatttgcc	aacttgaagc	cgttccttgc	cgatgagggt
4	181	accctgttcg	gttcgacggt	cttgggcaag	ggagtgaagc	ataatctgat	cggtgggttt
5	541	ttgatgtggt	tgtataacta	catcggcatg	tttgataact	gggacgatgg	gaaagaagat
e	501	tttttgaagc	ctttgaggga	gcattttgaa	gttgttgaga	gtgaggttgt	tgggactgtg
6	561	ctgctcttca	aggcagagaa	gcccagacat	tga		

gene	1	1629				
	/g	ene="aurC"				
SOURCE	Calcarisp	porium arbus	scula			
CDS	jo	oin(1293,3	366637,68	71057,1112	11629)	
	/g	ene="aurC"				
	/n	ote="FAD-de	pendent mon	ooxygenase"		
	/c	odon start=	1			
	/p	roduct="Aur	С"			
	/t	ranslation=	"MGAYSFRVII	VGGSITGMTLA	HCLDRAGIDYV	ILEKHKDIFAEP
	GI	SIGLMPNGSRI	LEOLGIYSDVH	ALFEGIKKIYO	YMPDGYCIETD	SPVNIVDRFGLP
	FC	VIDRYOFIKVI	YSKFEDKSRFH	MNKKVTSICHG	KSDVSVTTADG	ETYHGDLVVGAD
	GV	HSVVRSEMWRT	GNLARPGEVTE	REKSELAAEFA	CVFGVAKAVPG	OGRWEHTLRYNE
	DF	CEMEEPASGTD	VFFNVTYKLNO	KYVYPDTPRFT	KEEGIEVCESV	GDFPVWEDVKFR
		WAORTAFTCVP	T'EEHWEKNMHH	RRITCVGDSVS	KMSPNMGOGGN	TATESAAALTNG
	LR	KLVTSNYPDKP	SEROLSNTLET	FNRNOFKRLNT	VHGDARYVTRI	FALDGTLKRVFA
	BY	VMGHCGDLLVG	NLARIVAGGOV	LDFTPLTARSG	KDWPPCPWOHS	WGISESIDECKK
	FA	VASLTVI.TVVI.	ARALDSPACES	SGIRSSSWSF"	ind with the models	NGIGEGIDI CIUC
BASE COU	NT 394 a	383 C	438 a 4	14 +		
ORIGIN			100 g 11			
1	atgggagggt	attcattcag	ggtaatcatt	ataggggggt	ccattactor	catgaccetg
61	accettacc	ttgatcgcgc	tggcattgac	tatottatto	ttgagaaaca	caaggacatt
121	tttacagaac	ctggaeogege	cattoracto	atacccaaca	actococat	cttggaddee
181	ctaggagtat	actoggaaccet	tcacqccctc	tttgaggata	ttaaaaagat	ataccaatac
241	atacccata	acteggaege	caadactdac	agtocagtoa	acatacttca	taggcaaggc
301	totacttocc	222222222222	gagaeegae	ageeeageea	aaacctooad	ctggcdagge
361	catagettee	acttaccett	ttatatcatt	gacagatato	aattoctoaa	agtettatae
421	tcaaadtttg	aggacaagto	cogatttcac	atraacaaaa	aggtcacgtc	catctotcac
481	aacaaatcaa	aggacaagee	cacqacaqca	acquadada	cataccaca	catcttatc
5/1	ggcaaaccag	acgetette	cacquetagea	gacgggggaga	tatagagat	tggaaaggta
601	geeggageag	acyguguua	tagagagaga	aaatotgata	agtogagota	cgaatcocat
661	gegaggeetg	ggttegteac	tyaacygyay	aaatcuggug	ttagaataaa	tatttaasat
721	ageggegea	getgaagaag	aggatogata	ggetgeagag	ctoccataca	atgaggattt
721	gyccaaageg	gtteetggee	agggtegetg	ggagcacate	ttoogataca	atyayyatti
/01	clyclicaly	titettteeeg	caageggeae	agalgloll	LLCAACGLCA	lllaladyll
041	gaalCaaaag	Lalgigiate	cogalaloco	geggtttaet	aaayayyayy	ggallgaagl
901	ttgcgaatct	gtcggggatt	tteeegtetg	ggaggatgtc	aaattccgtg	acatatgggc
961 1001	acagaggatc	gctttcactt	gcgtcccact	ggaggagcac	atgttcaaga	actggcacca
1021	ccggcggata	atctgtgttg	gggacagcgt	cagcaaggtc	cgtcctctt	gcgtcttgct
1081	tgtgcatgtt	gaaagtgtta	actcggacag	atgtctccaa	acatgggaca	aggcggcaac
1141	actgcgattg	agtctgcggc	ggccttgaca	aatgggctcc	gtaaactggt	cacttcaaat
1201	tatccagaca	agccgtctga	gcggcagctc	agcaacacgc	tcgaaacctt	caaccggaac
1261	cagttcaaac	gcctgaatac	tgtccacgga	gatgcacgat	acgtcactcg	gcttgaagcc
1321	ttggatggga	cactcaagcg	cgtcttcgca	cgctacgtca	tgggccattg	cggagactta
1381	ctcgtaggca	atcttgctag	gattgtggca	ggcggtggcg	tgttggactt	catcccgttg
1441	acagctcgtt	ctgggaaaga	ttggccgcca	tgcccctggc	aacactcctg	gggaatctcg
1501	gagtcgattg	acttttgcaa	gaagtttgct	gtggcttcat	tgattgtttt	gatagtggtt
1561	ttggcccgcg	ctcttgatag	tccagctggc	ctgtcgagcg	gcatcagatc	ctccagttgg
1621	tccttctga					

gene	3951	L617				
	/g	ene="aurD"				
SOURCE	Calcaris	oorium arbus	scula			
CDS	jo	oin(395732	2,8041617)		
	/g	ene="aurD"				
	/ n	ote="alpha-	beta hydrol	ase"		
	/c	odon start=	1			
	/p	roduct="Aur	D"			
	/t	ranslation=	"MPQSTKYILP	VYGILALYSLG	YFSYRNGYVNI	VLEERQAWLDMP
	PG	DPTKVAQPTGI	ASLDETLAAMF	VFYWPVLDGSF	PGLSLMFCNYL	GALPLCLVLMTL
	ES	LRKGNRSSFSF	FYSPTFWGMIA	VMMTLAVSIPW	YLTIHLLISTT	ASHPTIENMSIP
	LA	ELKALIVNIVV	GLVLPSLLVAL	PETITQTLFTR	QTAITLWQLWP	FWSTAVHFIARK
	FI	SATERGADSRA	QWTRVRSAFRS	VYGLTFAAAAI	AHIATWSISLT	AAYALPDAMSAE
	TV	SSLHPQTVFVN	TWPWLPVTTDS	VGEGTLWLLQW	DKFVGVGAIYW	WSLDLYRAAHTA
	QR	KKINWYYFALK	TVAFCLVSGFT	GATIELLWERE	EMIMEAGRAKE	KTK"
BASE COUN	NT 391 a	a 406 c	386 g 43	34 t		
ORIGIN			2			
1	atggcctggt	acgacgaggc	gtcaacctgc	ttgcgtcctc	ctagacccag	acgttgtgat
61	ggtgtattag	aaaaaqaaaa	cqtatttcaa	aaaaaqaata	cccacatata	ttagctgggt
121	agtatgggca	gtatgggcta	tcttgagcta	tgagctagtt	cgttgataaa	actcaacqaa
181	atgctgcagg	caatctgcaa	tgccactcaa	cctcqccccc	acccatatct	agatagtcag
241	tcgtattacc	ccqaccqcqq	attqtctqat	qaaqcaaaqc	agcgaggact	tgaatggtcg
301	ttcacactac	ttcaaaactc	aaggcatcca	tgcgttcaac	cttttaatat	tccgaatttc
361	tottaccage	aacgacactt	tccactcage	acgtatgcct	caatccacga	aatacatctt
421	gccagtctat	qqcattttqq	cgctctatag	ccttgggtat	ttttcctatc	gaaacggcta
481	tgtcaacatc	gtcttggaag	agcgccaggc	atggctcgac	atgcccccgg	gagatccaac
541	aaaqqttqcq	caaccgactg	gtattgcatc	tctcgacgaa	accttqqctq	ccatqttcqt
601	cttttattqq	ccaqtcctcq	acqqqaqctt	tcccqqcttq	agcetcatgt	tttgcaatta
661	tctcqqaqcq	ttqcccttqt	acttaatatt	gatgaccttg	gagtccctaa	qqaaqqqaaa
721	cagaagttca	ttgtgagtga	ccqccctaca	tataattccg	aacacagctg	tactaatact
781	aaaacttccc	tctcttactq	tagttcattc	ttttacagcc	caacgttttg	qqqaatqatt
841	gcagtcatga	tgacattggc	cqtttcqata	ccctggtacc	tcaccataca	tctgttgatt
901	tctaccaccq	cgtctcaccc	taccattgag	aacatgtcga	ttccactggc	cgaattgaaa
961	gctctgattg	tcaatatcgt	cattagactc	gtattgccta	gtctattagt	ggccctgcca
1021	gagacaataa	ctcagacgct	gttcacgaga	caaacagcga	ttacgctgtg	gcagctgtgg
1081	ccattctgga	gcactgcagt	gcattttatt	gcaaggaagt	ttatatcggc	tactgagcgc
1141	agtgccgact	caagagetea	atggacaagg	gtcaggagtg	cattccgttc	catctataat
1201	ctgacatttg	cagetgeage	categracae	attocaacat	ggtcaatctc	cctaaccgcc
1261	acctatacte	taccadacac	tatgagtgcc	gaaaccgtct	cttcactcca	teegeaaace
1321	gtettgtca	atacttoocc	ctaactacct	gtcacgactg	actctgtggg	tgaagggact
1381	ctctaattac	tacaatggga	taagtttgtt	aaaattaata	ccatttacto	gtggagcete
1441	gatctataca	gagccgcaca	tacqqctcaa	cacaadaaaa	tcaactoota	ttattttgcg
1501	ctcaaaacag	taacatttta	cttagtatet	agattcacca	atactacat	agagttgctt
1561	taagaagaaga	aagaaatgat	tatggaggcc	agacatacta	aagaaaagac	aaaatga
661 721 781 901 901 1021 1081 1141 1201 1261 1321 1381 1441 1501 1561	cctcggagcg cagaagttca aaaacttcc gcagtcatga tctaccaccg gctctgattg gagacaataa ccattctgga ggtgccgact ctgacattg gcctatgctc gtctttgtca ctctggttgc gatctataca ctcaaaacag tggagagagg	ttgcccttgt ttgtgagtga tctcttactg tgacattggc cgtctcaccc tcaatatcgt gcactgcagt caagagctca cagctgcagc tgccggacgc atacttggcc tacaatggga gagccgcaca tggcgtttg aaaaatgat	gcttggtgtt ccgccctaca tagttcattc cgtttcgata taccattgag cgttggactc gttcacgaga gcattttatt atggacaagg catcgcacac tatgagtgcc ctggctgcct taaggttgt tacggctcaa cttagtatct	gatgaccttg tataattccg ttttacagcc ccctggtacc aacatgtcga gtattgccta caacagcga gcaaggaagt gtcaggagtg attgcaacat gbaaccgtct gtcacgactg ggggttggtg cgcaagaaa gggttcaccg gggcgcaccat	gagtccctaa aacacagctg caacgttttg tcaccataca ttccactggc gtctattagt ttatacggc cattccgttc ggtcaatctc cttcactcca actctgtggg ccatttactg tcaactggta gtgctacgat aagaagac	ggaagggaaa tgctggtgct gggaatgatt tctgttgatt cgaattgaaa ggccctgcca gcagctgtgg tactgagcgc cgtctatggt cctaaccgcc tccgcaaacc tgaagggact gtggagcctc ttattttgcg agagttgctt aaaatga

gene		158	30				
		/g	ene="aurE"				
SOURC	ΈE	Calcaris	porium arbus	scula			
C	CDS	j	oin(1136,2	218347,43	6580)		
		/g	ene="aurE"				
		/ n	ote="Snoal-	like protei	.n"		
		/ c	odon start=	-1			
		/p	roduct="Aur	Е"			
		/t	ranslation=	"MSTSCSNPDI	QVKARNDKFMA	ALNDATDIDLV	MSFFSPDVSYSD
		FA	FEAVNMDFTST	RDYMDKMFHAV	/DDLHLTQVSLT	GDKDFTASEWV	MTYKLKSSDKVG
		EV	VKMRGVSLSWY	DAQGLIVRNNI	YSLKWSGDID"		
BASE	COUN	NT 151 a	a 138 c	119 g 1	72 t		
ORIGI	N						
	1	atgtctactt	cctgttcaaa	cccagacgac	caagtcaagg	ctcgcaatga	caaattcatg
	61	gcagcattga	acgatgccac	tgatattgat	cttgtcatgt	cctttttctc	tccggatgta
	121	tcttacagtg	actttggtat	tctatcctct	cttccctctt	aatcccctaa	tatttcttgc
	181	tcaacttctc	tcatgctgta	gactaacttt	ctaccagcat	ttgaagcagt	gaatatggac
	241	tttacctcga	cccgcgacta	catggacaaa	atgttccacg	ccgtcgacga	tcttcatctc
	301	acccaagtga	gccttacagg	agacaaggac	ttcaccgctt	cggaatggta	cgtcttccct
	361	cattctcttc	ttctctttcc	cgcaatgcaa	cgtctcattt	ggcccatctt	gagatgctga
	421	atcgcaatga	tgtagggtaa	tgacatacaa	actaaagagt	agtgacaaag	ttggagaggt
	481	ggtgaaaatg	cgaggtgtga	gtcttagctg	gtacgacgcc	cagggattga	ttgtaaggaa
	541	caatgattat	agtttgaaat	ggtcaggaga	cattgattag		

gene	1	1940				
	/g	ene="aurf"				
SOURCE	Calcaris	porium arbus	scula		1.000 1.000	1010
CDS	יכ ג	oin(11/3,2	248545,61.	1/04,/66.	.1663,1727.	.1940)
	/ g	ene="aurb"				
	/ n	ote="putati	ve transcri	ptional fac	tor"	
	/ c	odon_start=	- 			
	/p	roduct="Aur	.F			
	/t	ranslation=	"MCRFVDAIKS	LLDESDITTLV	ALANRLSPFRV	DYRRVVVGDALS
	VK	PILVLEHEQPP	CDGAWRSAAHI	NLGLGAAQQQH	HPVPTRAVHGA	AVGGVQCDGLAS
	PF	VSNNVMSDGTV	DGDDDDLGYDQ	DTLYNQGTDYE	NEGGAVGQDGL	PAPDAGLFQECM
	FS	HRSASTPRAGG	HGESYCQEVAQ	SSHAITCRELL	ERCILPNFEIN	HLENCESSTSGO
	IH	IHCLPDEHSGMT	GLARNTPSASP	VENSITVELDG	ALEIATDVRTG	KFNTLRAAKRHF
	RN	ITSSLRLSSHDA	GCVGDARSSAG	VVKSPARRSTA	VSDAALRKVKY	AARTCIRADYFÇ
	FI	EANLPRWVRDG	IWGKEWSPNQT	ANVDGYENLQK	AYWHVCRLDRQ	MRDDAIRSRMAM
	VI	LHLEYENTCLS	WKTCAHSGKKP	VTKVGRGNISS	LIDNIIENTHP	EWRTADPGERSE
	LF	AKFHDRKRYGK	RWWMLVKPLGS	SILMLCSSKFA	.GMIKNTTVTAA	MINEIKLAIQRS
	EI	GLMSLLSLANP	IAESLFLDQGY	DGHNAEQVLKA	LRAARLEVAPG	EGVA"
BASE COUL	NT 442 a	a 558 c	568 g 3'	72 t		
ORIGIN						
1	atgtgtcgtt	tcgtcgacgc	catcaagtct	ctcctcgacg	aaagtgacat	cacaaccctc
61	gttgccctcg	ccaatcgcct	gagcccgttt	agagtcgact	accgccgagt	cgtcgtgggc
121	gatgctctgt	ccgtcaagcc	catcctggtc	ctcgagcatg	agcagccgcc	atggtgaggc
181	cccgtccccg	gcaatcgtcg	tgttggcccc	cctcggatta	ctgacaggcg	ggtctctccg
241	tgcgtagcga	tggagcgtgg	aggtcggctg	cgcatataaa	cctcggcctt	ggagcagcac
301	agcagcaaca	tcaccccgtc	cccacgagag	ccgtgcatgg	cgcggccgtg	ggcggcgtcc
361	agtgcgacgg	cctggcgagc	cctcccgttt	cgaacaacgt	aatgtctgat	ggcacggtcg
421	atggagatga	cgacgacctc	ggctacgacc	aggatacgct	atataaccag	ggcacagatt
481	acgagaatga	aggaggcgct	gttggacaag	acggcctacc	cgcgcctgat	gccggcttgt
541	tccaggtttg	taccatgtct	gatatttaca	aaaccctcga	gccaaagtaa	ccaggatgcc
601	acctctctag	gaatgcatgt	ttagccacag	atcagctagc	acgccgcgcg	cgggcggcca
661	cggagagtcc	tattgccagg	aagtcgccca	atcgtcacat	gccagtctgt	atcttgccca
721	tcactcctcg	ttaagcgagg	cgagtcggct	aacgtgagtc	gacagtcact	tgcagggagc
781	tgctggagcg	ttgcatatta	ccaaactttg	agataaatca	ccttgaaaac	tgcgagagct
841	caacgagcgg	cggcatccat	cactgcctcc	ccgatgagca	ttctgggatg	acgggcttgg
901	cacgtaatac	tccatctgcc	agcccagtcg	aaaactccat	taccgtggag	ctcgatggcg
961	ctctggaaat	tgccacagat	gtcaggaccg	gcaagttcaa	cactctgcgt	gcagcaaagc
1021	gccaccgtag	aaacacttca	tcgctgcgcc	tcagttcgca	cgacgctggg	tgcgtcggcg
1081	atgcgcgctc	ctcggccggc	gtggtgaaga	gtcccgccag	gcgctcgacg	gctgtctctg
1141	atgcggcgtt	gcgcaaggtg	aagtatgcag	cgcggacctg	cattcgagcc	gactatttcc
1201	agtttttgga	ggcgaacctg	ccacqctqqq	tcagagacgg	catctggggt	aaaqaqtqqt
1261	ctccaaacca	gacggcaaac	gtcgacgggt	atgagaacct	acaaaaqqcq	tattggcacg
1321	tgtgccggct	agataggcag	atgagagacg	atgcaatccg	gagccgcatg	gcaatggtcc
1381	tcctccattt	ggagtatgaa	aacacatocc	tctcgtggaa	aacttgcgcc	cacageggga
1441	agaagcccgt	gaccaaggtg	qqcaqqqqa	atatcagete	gttgatcgac	aacatcatcq
1501	agaacacgca	cccagagtag	cacactacca	accetogaga	gaggtetgag	ctacatacaa
1561	aattocacga	cagaaagcga	tacqqcaaqa	aataataaat	actaattaaa	ccccttaaat
1621	ctagcatect	gatgetatgt	tetteaaagt	ttacagaaat	gatgtatggc	cataacatta
1681	cactetteac	actocacage	gggaacagat	gctaaaccac	gtacagaaag	aataccacoo
1741	tcaccactac	catgatcaat	gaaatcaage	taaccattca	acaatcaaaa	acagaactaa
1801	tgagectge	gagettagee	aaccccatto	cadadadcct	attectorac	caaqqatacq
1861	acaacacaa	caccasacee	atattaaaaa	cactcadade	cacccaccta	gaggacacg
1921	cannanana	aattacataa	gegeegaagg	cycecayaye	cycccyccty	guggeggege
エンムエ	cayyyyayyy	yyııyıya				

gene	1	1313				
2	/ c	gene="aurG"				
SOURCE	Calcaris	porium arbu:	scula			
CDS	i	oin(1788,8	8691313)			
	/. /.	ene="aurG"				
	/r	note="0-acvl	-transferas	se"		
	/ c	odon start=	:1			
	/r	oroduct="Aur	G"			
	/ t	ranslation=	"MGLWLVLANQ	VGLVGTLVLVV	CFTPANSLVRP	LLLPGITALVSY
	GI	ILNKEAIANAG	AWSLVNLNTAG	GLFLQYLDVGLI	SRWTYSAYGPT	SSRGGQPNASLD
	LA	GRKKPPSSSLL	SRLOWGFSTAT	SWRAPSTVWEA	KGTPHFEELPS	RGRFLARNAMTL
	LV	ISVLVLDVMGLV	GGDLDPVANAA	HFTWDRVRFLA	RLGDVSRDEVI	LRATVVYMRWGA
	MY	FSLQVVYSFLA	IVFVMVGLSPV	QRWPPLFGSFI	EIYTLRNTWGK	AWHQLIRQKVSS
	PA	HYTTYSLLGLR	KGGIAGRYTCI	LATFFVSGLLH	LFCAEYSYGIQ	WDQSGTLRFYSI
	QA	LGIAMEDAVQA	TSRRLFAYRSI	YWTRAIGYVWV	LLWFLWTSPAY	FFPLLKYDTEKR
	PI	VLLGPIETWLQ	SRHVQ"			
BASE COUN	NT 223	a 397 c	370 g 3	23 t		
ORIGIN						
1	atgggcctct	ggctggtgct	ggccaatcaa	gtcgggctgg	tgggcacgct	ggtcctcgtc
61	gtttgcttca	cgccggccaa	ctccctcgtc	cgcccgcttc	tgctgcccgg	gataaccgcc
121	ctcgtgtctt	acggcctcat	cttgaacaag	gaggccatcg	caaacgccgg	cgcatggtct
181	ctggtcaacc	tgaacactgc	gggcctgttc	ctccagtacc	tagacgtcgg	cctgatcagc
241	cggtggacct	attccgcgta	tggtcccaca	tcatcccgcg	gtggacagcc	aaatgccagc
301	ctcgacctgg	ccggccgcaa	gaagccaccg	tcgtcaagcc	tcctctcccg	tctgcagtgg
361	gggttctcca	cggctacgtc	ttggcgtgct	ccatctacag	tgtgggaggc	caagggcacc
421	ccacactttg	aggaactgcc	tagccgcgga	cgcttcctcg	cgaggaatgc	catgaccttg
481	ctctggtcag	tgctcgtcct	tgacgtcatg	ggattggtgg	gcggcgacct	cgaccccgtg
541	gcaaacgctg	cccatttcac	atgggacagg	gttcgcttct	tggcacgcct	gggtgacgtc
601	tcaagggacg	aggtcatctt	gagggccact	gtcgtataca	tgcgctgggg	tgccatgtac
661	ttttccctcc	aagtggtcta	cagcttcctg	gcgattgtct	tcgttatggt	gggcctttcg
721	ccggttcaga	ggtggccgcc	gctcttcggc	tcgtttacgg	agatatatac	tcttcggaac
781	acatgggggt	aggtttcgtc	cgtctcctct	tggccccatc	ctttcatcta	gggttctcgg
841	cgttactgac	gtggtaaatt	gtaaacagca	aagcctggca	ccagttgatc	cgtcagaaag
901	tcagtagccc	ggcgcattac	acaacgtact	cattgctcgg	gctcaggaag	ggggggatcg
961	cgggcagata	cacgtgtatc	ctcgccacct	tttttgtctc	ggggctgctt	catctgttct
1021	gtgcagagta	ttcctacggt	attcagtggg	atcagtccgg	cacgcttcgc	ttctacagca
1081	tccaggccct	ggggatcgcg	atggaagatg	ccgtgcaggc	cacttcccgt	cggctcttcg
1141	cgtataggtc	cacctattgg	acaagggcga	ttggctacgt	atgggtctta	ctgtggtttc
1201	tctggacatc	tccggcgtat	ttctttcccc	tgctcaagta	cgatactgag	aaaagacccc
1261	ccgtgcttct	aggtccaatt	gagacatggc	ttcagagtcg	ccatgtccaa	tga

Supplementary Computation Data

Cartesian coordinates, energies, free energies (1 atm, 298 K) and number of imaginary frequencies of all stationary points and values of imaginary frequencies of all transition structures.

Acid-catalyzed 5-exo-tet TS

M06-2X/6-31G(d)-IEFPCM(water) Energy =	-730.918173
M06-2X/6-31G(d)-IEFPCM(water) Free Energy =	-730.663185
M06-2X/6-311++G(d,p)-IEFPCM(water) Energy =	-731.148140
Number of Imaginary Frequencies =	1 (-437.56)

~		0.400.600	1
0	-0.509872	0.439603	1.320640
С	-0.438501	1.164373	0.105885
С	-1.601577	0.581550	-0.755361
С	-1.353772	-0.892398	-0.428661
С	-1.178241	-0.825025	1.093262
С	-0.578125	2.655061	0.366153
0	-2.849272	0.966752	-0.260967
С	-2.383899	-1.878645	-0.924167
0	-0.043169	-1.148208	-0.964988
С	-0.388543	-1.956845	1.715591
Н	-2.173892	-0.757240	1.545950
Н	-1.486720	0.797255	-1.823762
Н	-1.590255	2.836159	0.732115
Н	0.124214	2.984080	1.134975
Н	-0.405474	3.231992	-0.545599
Н	-3.162461	1.743099	-0.747779
Н	-3.366123	-1.605126	-0.533040
Н	-2.434137	-1.863950	-2.017439
Н	-2.135054	-2.891328	-0.596434
Н	-0.113748	-1.365447	-1.911233
Н	0.575650	-2.086528	1.218097
Н	-0.220366	-1.747774	2.774730
С	2.042402	0.326589	0.080917
С	0.841274	0.799729	-0.607538
Н	0.956468	1.063013	-1.655836
Н	-0.949067	-2.892952	1.637794

Н	1.863089	-0.021870	1.097519
С	3.064222	-0.446653	-0.664195
С	3.669045	-1.498377	-0.120518
Н	3.278358	-0.123001	-1.680301
Н	3.450964	-1.816189	0.895874
0	2.290684	1.774437	0.038047
Н	2.115296	2.156181	0.918322
Н	4.400582	-2.077213	-0.674008

Base-catalyzed 5-exo-tet TS

M06-2X/6-31G(d)-IEFPCM(water) Energy =	-806.388506
M06-2X/6-31G(d)-IEFPCM(water) Free Energy =	-806.137205
M06-2X/6-311++G(d,p)-IEFPCM(water) Energy =	-806.674425
Number of Imaginary Frequencies =	1 (-598.97)

0	0.962457	-0.623191	1.286603
С	0.962336	-1.170253	-0.045265
С	1.893884	-0.183268	-0.770587
С	1.133942	1.080553	-0.340257
С	1.062912	0.819224	1.187897
С	1.473143	-2.593591	0.013826
0	3.232465	-0.281668	-0.322390
С	1.792548	2.401369	-0.700899
0	-0.108594	0.911782	-0.921665
С	-0.092733	1.497527	1.893752
Н	2.007680	1.113213	1.672499
Н	1.897684	-0.298941	-1.858126
Н	2.507971	-2.607279	0.367059
Н	0.837058	-3.181702	0.673913
Н	1.434294	-3.041518	-0.983369
Н	3.192364	-0.432682	0.636177
Н	2.822274	2.449372	-0.331836
Н	1.801738	2.518756	-1.789179
Н	1.228064	3.239121	-0.274936
Н	-1.318123	2.051855	-0.722076
Н	-1.017829	1.360043	1.329424
Н	-0.211709	1.094642	2.904287
С	-1.632875	-1.204225	0.133225
С	-0.423850	-1.018237	-0.662090

Н	-0.534996	-1.151221	-1.730081
Н	0.100379	2.573082	1.976970
Н	-1.530693	-0.926471	1.194539
С	-2.926065	-0.688983	-0.421343
С	-3.870476	-0.099503	0.312713
Η	-3.085863	-0.863696	-1.486736
Н	-3.726380	0.063825	1.379519
0	-1.335110	-2.529064	-0.173851
0	-2.129349	2.622767	-0.622936
Н	-2.801827	1.956351	-0.418639
Н	-4.813633	0.234570	-0.111328

Base-catalyzed 5-endo-tet TS

M06-2X/6-31G(d)-IEFPCM(water) Energy =	-806.344667
M06-2X/6-31G(d)-IEFPCM(water) Free Energy =	-806.094020
M06-2X/6-311++G(d,p)-IEFPCM(water) Energy =	-806.637885
Number of Imaginary Frequencies =	1 (-572.66)

0	-1.478213	-1.379119	0.676877
С	-0.245750	-0.665945	0.743716
С	-0.344707	0.247085	-0.478092
С	-1.791081	0.764043	-0.440837
С	-2.483472	-0.390873	0.365147
С	-0.109706	0.053788	2.085587
0	0.748450	1.059326	-0.612306
С	-1.953948	2.142403	0.185242
0	-2.354124	0.809145	-1.756510
С	-3.623790	-1.082786	-0.352235
Н	-2.857710	0.029705	1.310990
Н	-0.401520	-0.484026	-1.318815
Н	-0.997727	0.631624	2.351005
Н	0.050829	-0.688383	2.876093
Н	0.752652	0.727411	2.066189
Н	1.615789	1.895930	0.549169
Н	-1.541946	2.196510	1.194919
Н	-1.423060	2.878988	-0.427251
Н	-3.013756	2.416387	0.221350
Н	-1.741398	1.340148	-2.288796
Н	-3.276225	-1.503617	-1.297958

Н	-4.020915	-1.886383	0.274636
С	1.881827	-0.705525	-0.504983
С	1.085446	-1.434854	0.513011
Н	1.627621	-1.466297	1.481551
Н	-4.428291	-0.373176	-0.564624
Н	1.522985	-0.785899	-1.518587
С	3.311381	-0.460188	-0.314663
С	4.068384	0.099917	-1.263626
Н	3.730071	-0.690652	0.663578
Н	3.653311	0.344071	-2.238525
0	1.238052	-2.577589	-0.216433
Н	5.111904	0.345192	-1.092747
0	2.314631	2.312094	1.123659
Н	3.119521	1.879227	0.805929

5-endo-tet product

M06-2X/6-31G(d)–IEFPCM(water) Energy =	-730.528795
M06-2X/6-31G(d)-IEFPCM(water) Free Energy =	-730.282782
M06-2X/6-311++G(d,p)-IEFPCM(water) Energy =	-730.761069
Number of Imaginary Frequencies =	0

0	1.123653	1.318627	0.764290
С	-0.120250	0.654364	0.629879
С	0.157316	-0.235486	-0.564323
С	1.479109	-0.906009	-0.266430
С	2.116766	0.261201	0.620239
С	-0.547657	-0.017859	1.930358
0	-1.074671	-0.865621	-0.824399
С	1.410134	-2.250003	0.444514
0	2.156473	-1.065971	-1.505674
С	3.370544	0.871259	0.038351
Н	2.323935	-0.138661	1.621700
Н	0.389222	0.451390	-1.393539
Н	0.288053	-0.512919	2.427846
Н	-0.933573	0.744965	2.613540
Н	-1.339152	-0.750907	1.752724
Н	0.974301	-2.989799	-0.232136
Н	2.419239	-2.580379	0.717744
Н	0.809208	-2.217396	1.354039

Н	2.979495	-1.551660	-1.341572
Н	3.177907	1.249372	-0.968047
Н	3.709996	1.692415	0.675039
С	-2.007189	0.238616	-0.755283
С	-1.305149	1.417808	0.033139
Н	-1.977582	1.850019	0.784694
Н	4.171272	0.127474	-0.014724
Н	-2.171136	0.625292	-1.771855
С	-3.312032	-0.209097	-0.170799
С	-3.566923	-1.441242	0.258518
Н	-4.079844	0.562414	-0.130703
Н	-2.808105	-2.216387	0.213033
0	-0.881880	2.403022	-0.884622
Н	-4.538595	-1.707345	0.661473
Н	-0.031263	2.740332	-0.554987

5-exo-tet product

M06-2X/6-31G(d)-IEFPCM(water) Energy =	-730.552673
M06-2X/6-31G(d)-IEFPCM(water) Free Energy =	-730.307905
M06-2X/6-311++G(d,p)-IEFPCM(water) Energy =	-730.784526
Number of Imaginary Frequencies =	0

0	-0.763764	0.593517	1.300589
С	-0.438392	1.152018	0.016838
С	-1.594201	0.670130	-0.866788
С	-1.361675	-0.794798	-0.459250
С	-1.449292	-0.656434	1.068015
С	-0.210836	2.634807	0.143449
0	-2.813511	1.227217	-0.451951
С	-2.196152	-1.874583	-1.094032
0	0.022229	-0.970869	-0.807575
С	-0.815911	-1.781939	1.859517
Н	-2.499841	-0.530689	1.360308
Н	-1.400843	0.829814	-1.935259
Н	-1.140923	3.116808	0.455538
Н	0.570454	2.835199	0.879069
Н	0.103225	3.052939	-0.817284
Н	-3.503266	0.934606	-1.065663
Н	-3.253810	-1.717737	-0.861337

Н	-2.065526	-1.861316	-2.179479
Н	-1.903867	-2.860613	-0.720502
Н	-0.738074	-1.500272	2.913221
Н	0.182689	-2.012817	1.479113
С	1.908594	0.091045	0.316230
С	0.686182	0.288170	-0.577541
Н	1.038777	0.698911	-1.534755
Н	-1.432800	-2.683741	1.794221
Н	1.549590	-0.143026	1.328701
С	2.761948	-1.045499	-0.184648
С	3.979138	-0.888552	-0.696222
Н	2.313956	-2.034029	-0.106809
Н	4.428842	0.095884	-0.789365
0	2.586269	1.334579	0.303438
Н	3.322416	1.274605	0.930986
Н	4.562801	-1.736256	-1.040135

Acid-catalyzed 6-endo-tet TS

M06-2X/6-31G(d)-IEFPCM(water) Energy =	-730.930163
M06-2X/6-31G(d)-IEFPCM(water) Free Energy =	-730.674640
M06-2X/6-311++G(d,p)-IEFPCM(water) Energy =	-731.161283
Number of Imaginary Frequencies =	1 (-250.22)

0	-0.476090	0.540809	1.276692
С	-0.365397	1.238854	0.033434
С	-1.210634	0.448173	-0.989543
С	-1.226768	-0.964263	-0.377314
С	-1.303792	-0.628019	1.120324
С	-0.804793	2.685535	0.206718
0	-2.498438	1.012806	-1.030087
С	-2.351292	-1.853689	-0.872496
0	0.045642	-1.506519	-0.729096
С	-0.835409	-1.705594	2.073078
Н	-2.339697	-0.344372	1.347712
Н	-0.742330	0.431459	-1.982058
Н	-0.758097	3.214990	-0.748689
Н	-1.831373	2.707762	0.571010
Н	-0.158594	3.195497	0.926118
Н	-2.967790	0.639848	-1.791274

Η	-3.325218	-1.416364	-0.641660
Н	-2.266370	-1.997235	-1.953568
Н	-2.299377	-2.836776	-0.392653
Н	0.102035	-2.425166	-0.419308
Н	0.186952	-2.023247	1.846175
Н	-0.857288	-1.333853	3.099887
С	1.901125	-0.009634	-0.070601
С	1.114579	1.197646	-0.335843
Н	1.352128	1.713238	-1.265841
Н	-1.494263	-2.576832	2.013200
Н	1.621225	-0.569106	0.814067
С	3.066805	-0.378582	-0.806030
С	3.767275	-1.457437	-0.412624
Н	3.333116	0.187504	-1.692372
Н	3.488972	-2.021189	0.473541
0	1.967372	1.734902	0.707109
Н	1.512409	1.567883	1.560597
Н	4.625477	-1.807970	-0.976447

Base-catalyzed 6-endo-tet TS

M06-2X/6-31G(d)-IEFPCM(water) Energy =	-806.385620
M06-2X/6-31G(d)-IEFPCM(water) Free Energy =	-806.133997
M06-2X/6-311++G(d,p)-IEFPCM(water) Energy =	-806.672276
Number of Imaginary Frequencies =	1 (-625.71)

0	1.050110	-0.535351	1.325338
С	0.896719	-1.320305	0.125916
С	1.362989	-0.395905	-1.004397
С	0.852601	0.978554	-0.494028
С	1.297270	0.837973	0.982844
С	1.673179	-2.612539	0.288327
0	2.778883	-0.470135	-1.107386
С	1.527809	2.164547	-1.183583
0	-0.521572	1.058937	-0.668181
С	0.605637	1.765300	1.959904
Н	2.384335	1.005642	1.034839
Н	0.888668	-0.646140	-1.963348
Н	2.722237	-2.411000	0.512763
Н	1.229402	-3.190613	1.104560

Н	1.617906	-3.209265	-0.628402
Н	3.047069	0.138481	-1.811132
Н	2.616117	2.170044	-1.058627
Н	1.291066	2.154402	-2.253290
Н	1.133413	3.097458	-0.766073
Н	-1.376116	2.353134	-0.199273
Н	-0.478665	1.726489	1.838800
Н	0.862067	1.504874	2.991129
С	-1.452957	-0.487885	0.220668
С	-0.593561	-1.600759	-0.113621
Н	-0.729781	-2.000475	-1.135917
Н	0.924012	2.797793	1.779549
Н	-1.243426	-0.028535	1.173634
С	-2.764881	-0.263596	-0.423661
С	-3.585932	-1.229644	-0.828395
Н	-3.015686	0.787294	-0.556674
Н	-3.333468	-2.270618	-0.649657
0	-1.354260	-2.221669	0.855847
0	-2.021475	3.074891	0.071790
Н	-2.380587	2.757174	0.911269
Н	-4.525273	-1.003974	-1.323257

6-endo-tet product

M06-2X/6-31G(d)-IEFPCM(water) Energy =	-730.561084
M06-2X/6-31G(d)-IEFPCM(water) Free Energy =	-730.314996
M06-2X/6-311++G(d,p)-IEFPCM(water) Energy =	-730.792331
Number of Imaginary Frequencies =	0

0	-1.093413	0.667446	1.116339
С	-0.731882	1.154176	-0.198660
С	-1.054207	-0.012200	-1.137000
С	-0.565361	-1.175181	-0.255090
С	-1.193331	-0.770809	1.087883
С	-1.481578	2.440789	-0.476125
0	-2.418581	-0.106311	-1.482299
С	-0.951970	-2.555147	-0.738438
0	0.861668	-1.135607	-0.231066
С	-0.607551	-1.405801	2.333225
Н	-2.261829	-1.033341	1.047181

Н	-0.492900	0.032615	-2.074708
Н	-2.560222	2.273933	-0.444807
Н	-1.219386	3.195521	0.268306
Н	-1.215283	2.820899	-1.466902
Н	-2.953903	0.044964	-0.687501
Н	-0.466241	-2.756274	-1.697327
Н	-0.629667	-3.315131	-0.020607
Н	-2.033664	-2.621740	-0.870827
Н	0.479871	-1.325561	2.372181
Н	-1.030181	-0.933491	3.223747
С	1.481682	0.045558	0.250233
С	0.787775	1.352916	-0.195535
Н	1.121563	1.647726	-1.196172
Н	-0.871930	-2.467100	2.356165
Н	1.435803	0.066499	1.349816
С	2.925585	0.048290	-0.157911
С	3.515473	-0.901265	-0.876246
Н	3.477770	0.924768	0.177223
Н	2.965128	-1.774834	-1.210030
0	1.175516	2.390242	0.681166
Н	0.741896	2.197274	1.530795
Н	4.563833	-0.830841	-1.147667

β -keto ester conformer 1

M06-2X/6-31G(d)-IEFPCM(water) Energy =	-1079.128235
M06-2X/6-31G(d)-IEFPCM(water) Free Energy =	-1078.760482
M06-2X/6-311++G(d,p)-IEFPCM(water) Energy =	-1079.431647
Number of Imaginary Frequencies =	0

С	8.236914	-0.256017	0.140567
С	8.148151	1.214095	0.499263
С	6.833605	1.886823	0.227872
0	5.732348	1.089708	0.140855
С	5.805742	-0.285013	0.056885
С	6.972966	-0.980200	0.026167
С	4.495216	-0.890926	-0.025072
С	3.340373	-0.187193	-0.041768
С	2.037456	-0.797141	-0.111558
С	0.895670	-0.070968	-0.139034

С	-0.426852	-0.640474	-0.203548
С	-1.551119	0.110152	-0.240409
С	-2.888242	-0.433709	-0.299427
С	-3.990901	0.345073	-0.338710
С	-5.372324	-0.124837	-0.383602
С	-6.353516	0.807560	-0.357202
С	-7.812330	0.609390	-0.346652
С	-8.389753	-0.326853	0.426404
С	-9.860565	-0.607129	0.563646
С	-10.455717	0.088855	1.794773
С	-8.582515	1.581277	-1.209461
С	-5.608825	-1.609374	-0.481857
С	7.018175	-2.475428	-0.138959
0	6.680265	3.072583	0.131311
0	9.330569	-0.783660	0.017184
Н	8.062066	-2.790522	-0.170622
Н	6.529459	-2.990240	0.694086
Н	6.534150	-2.797981	-1.065632
Н	8.945421	1.778180	0.012277
Н	8.320279	1.290813	1.582283
Н	4.468587	-1.975121	-0.070853
Н	3.378370	0.899501	-0.000329
Н	1.985832	-1.884943	-0.142675
Н	0.964437	1.017204	-0.110156
Н	-0.506464	-1.727295	-0.222500
Н	-1.459114	1.196972	-0.223822
Н	-2.978324	-1.518747	-0.302914
Н	-3.855381	1.427133	-0.318449
Н	-6.036284	1.852496	-0.373602
Н	-6.638733	-1.829294	-0.765737
Н	-4.938666	-2.049577	-1.227429
Н	-5.405341	-2.111221	0.471502
Н	-8.374310	1.411142	-2.271824
Н	-9.661046	1.518789	-1.055819
Н	-8.269796	2.607866	-0.986149
Н	-7.741250	-0.915269	1.075460
Н	-10.005068	-1.689575	0.660230
Н	-10.406513	-0.299904	-0.333085
Н	-11.511909	-0.166800	1.920696
Н	-9.922423	-0.206345	2.703997

Н	-10.373088	1.175928	1.696342
---	------------	----------	----------

β-keto ester conformer 2

M06-2X/6-31G(d)-IEFPCM(water) Energy =	-1079.127541
M06-2X/6-31G(d)-IEFPCM(water) Free Energy =	-1078.758822
M06-2X/6-311++G(d,p)-IEFPCM(water) Energy =	-1079.431114
Number of Imaginary Frequencies =	0

С	-8.252711	-0.027328	0.143009
С	-8.114682	1.431544	-0.244090
С	-6.750584	2.036772	-0.078776
0	-5.688529	1.183432	-0.074173
С	-5.826924	-0.183985	0.040746
С	-7.022995	-0.815314	0.175872
С	-4.548435	-0.859035	0.033397
С	-3.358746	-0.221509	-0.056569
С	-2.091034	-0.904162	-0.065853
С	-0.909798	-0.247284	-0.144187
С	0.377992	-0.893352	-0.148384
С	1.545273	-0.212269	-0.213516
С	2.848431	-0.833835	-0.210771
С	3.995892	-0.120565	-0.254779
С	5.350352	-0.664725	-0.230493
С	6.366121	0.234104	-0.204537
С	7.821421	0.077615	-0.102207
С	8.569128	1.175841	-0.336045
С	10.065309	1.284472	-0.267889
С	10.527834	1.845649	1.084609
С	8.450101	-1.233362	0.309964
С	5.474056	-2.167564	-0.244979
С	-7.132094	-2.303305	0.372584
0	-6.529678	3.213243	-0.002325
0	-9.360449	-0.495483	0.352388
Н	-8.180643	-2.556900	0.534525
Н	-6.777845	-2.854955	-0.504103
Н	-6.558221	-2.642522	1.239903
Н	-8.844087	2.043101	0.289582
Н	-8.360083	1.503807	-1.313329
Н	-4.576929	-1.941850	0.103467

Н	-3.339578	0.864475	-0.123862
Н	-2.099370	-1.991815	-0.002743
Н	-0.917207	0.841720	-0.205304
Н	0.394860	-1.981670	-0.091546
Н	1.516180	0.876885	-0.268052
Н	2.873687	-1.920990	-0.159698
Н	3.917355	0.966687	-0.291580
Н	6.060416	1.279512	-0.264367
Н	6.486623	-2.509094	-0.440924
Н	5.140040	-2.600328	0.705666
Н	4.829695	-2.581421	-1.027718
Н	8.531616	-1.935570	-0.526983
Н	9.454664	-1.077062	0.707613
Н	7.857934	-1.716502	1.091817
Н	8.045904	2.103592	-0.571008
Н	10.407037	1.952435	-1.066718
Н	10.540706	0.315757	-0.447676
Н	11.614457	1.969252	1.107402
Н	10.068958	2.820401	1.277204
Н	10.239626	1.173095	1.898658

Enol conformer 1

M06-2X/6-31G(d)-IEFPCM(water) Energy =	-1079.127453
M06-2X/6-31G(d)-IEFPCM(water) Free Energy =	-1078.757563
M06-2X/6-311++G(d,p)-IEFPCM(water) Energy =	-1079.435479
Number of Imaginary Frequencies =	0

С	8.172823	-0.124276	0.119986
С	8.111470	1.235803	0.219011
С	6.842640	1.896854	0.236744
0	5.735037	1.073477	0.145215
С	5.794767	-0.281115	0.047557
С	6.989100	-0.939731	0.032115
С	4.479913	-0.891379	-0.033754
С	3.329510	-0.184726	-0.030712
С	2.021731	-0.788704	-0.113098
С	0.881308	-0.062107	-0.119994
С	-0.443104	-0.628655	-0.201304
С	-1.567774	0.120998	-0.216479

С	-2.905116	-0.421761	-0.296104
С	-4.009004	0.355521	-0.312453
С	-5.389948	-0.114483	-0.379002
С	-6.373378	0.814082	-0.324262
С	-7.831903	0.613061	-0.329011
С	-8.413411	-0.351866	0.404648
С	-9.885291	-0.637918	0.518203
С	-10.495134	0.021261	1.762336
С	-8.599342	1.614169	-1.160533
С	-5.623410	-1.594971	-0.531158
С	7.158889	-2.428985	-0.070837
0	6.630605	3.089247	0.321474
0	9.324752	-0.810904	0.096170
Н	7.720355	-2.806456	0.789174
Н	6.206313	-2.954549	-0.113017
Н	7.731535	-2.686700	-0.966989
Н	4.440330	-1.972832	-0.102247
Н	3.371489	0.900596	0.035663
Н	1.967665	-1.875506	-0.173194
Н	0.950458	1.024888	-0.061381
Н	-0.522422	-1.714638	-0.253605
Н	-1.477185	1.206938	-0.165798
Н	-2.993681	-1.506325	-0.336764
Н	-3.875701	1.436577	-0.254651
Н	-6.058275	1.859572	-0.302385
Н	-6.651515	-1.806200	-0.827958
Н	-4.948535	-2.007253	-1.288379
Н	-5.423735	-2.130380	0.404624
Н	-8.391328	1.477972	-2.227864
Н	-9.678125	1.549406	-1.009232
Н	-8.284242	2.632248	-0.904239
Н	-7.769302	-0.962856	1.036963
Н	-10.029683	-1.722815	0.581187
Н	-10.421474	-0.304786	-0.375311
Н	-11.552848	-0.237451	1.867865
Н	-9.972905	-0.301096	2.668774
Н	-10.411076	1.110733	1.697250
Н	8.999354	1.853086	0.284123
Н	10.079380	-0.203165	0.163112

Enol conformer 2

M06-2X/6-31G(d)-IEFPCM(water) Energy =	-1079.126743
M06-2X/6-31G(d)-IEFPCM(water) Free Energy =	-1078.755480
M06-2X/6-311++G(d,p)-IEFPCM(water) Energy =	-1079.434937
Number of Imaginary Frequencies =	0

С	-8.183789	0.087937	0.133140
С	-8.066141	1.443557	0.024991
С	-6.772549	2.045961	-0.080348
0	-5.700285	1.171874	-0.062527
С	-5.816368	-0.178280	0.044611
С	-7.036097	-0.781055	0.143913
С	-4.530219	-0.851185	0.039282
С	-3.347900	-0.205174	-0.050428
С	-2.072853	-0.880014	-0.051294
С	-0.893836	-0.222043	-0.131147
С	0.395893	-0.867892	-0.128824
С	1.564637	-0.191190	-0.197867
С	2.866454	-0.817810	-0.190657
С	4.017637	-0.111826	-0.241442
С	5.369679	-0.663515	-0.215329
С	6.391314	0.228511	-0.200032
С	7.846340	0.063779	-0.101796
С	8.600389	1.154297	-0.350081
С	10.097606	1.254204	-0.289898
С	10.570360	1.832479	1.051704
С	8.468029	-1.246895	0.322093
С	5.484340	-2.167166	-0.217596
С	-7.266995	-2.260866	0.263778
0	-6.512457	3.227377	-0.182564
0	-9.363227	-0.542547	0.237438
Н	-7.893735	-2.614923	-0.560392
Н	-6.338595	-2.829198	0.253174
Н	-7.797431	-2.489787	1.193122
Н	-4.539843	-1.932821	0.115024
Н	-3.336823	0.880483	-0.124559
Н	-2.076622	-1.967613	0.018911
Н	-0.901953	0.866535	-0.199617
Н	0.411174	-1.956052	-0.064367
Н	1.539555	0.897664	-0.260258

Н	2.886426	-1.904803	-0.131380
Н	3.945571	0.975599	-0.286654
Н	6.092204	1.275382	-0.267829
Н	6.494645	-2.516548	-0.411395
Н	5.148275	-2.590228	0.736701
Н	4.836754	-2.583462	-0.996393
Н	8.543586	-1.958038	-0.507870
Н	9.474382	-1.092798	0.716145
Н	7.874518	-1.718667	1.109859
Н	8.082238	2.082930	-0.592827
Н	10.439858	1.907948	-1.100267
Н	10.566104	0.280006	-0.457648
Н	11.657821	1.949841	1.067462
Н	10.118362	2.812780	1.232082
Н	10.282129	1.173945	1.877113
Н	-8.927650	2.100183	0.015268
Н	-10.088795	0.103134	0.227177

Pyrone-polyene 11, conformer 1

M06-2X/6-31G(d)-IEFPCM(water) Energy =	-1118.410291
M06-2X/6-31G(d)-IEFPCM(water) Free Energy =	-1118.013022
M06-2X/6-311++G(d,p)-IEFPCM(water) Energy =	-1118.722816
Number of Imaginary Frequencies =	0

С	-7.742345	0.050712	0.103381
С	-7.629795	1.408781	-0.001290
С	-6.334221	2.014049	-0.101913
0	-5.256553	1.151013	-0.082866
С	-5.366526	-0.201382	0.021133
С	-6.582134	-0.809559	0.114812
С	-4.075405	-0.865806	0.018952
С	-2.896700	-0.213232	-0.067430
С	-1.618257	-0.882404	-0.064236
С	-0.441195	-0.220914	-0.141168
С	0.850184	-0.863883	-0.134238
С	2.018206	-0.185883	-0.200904
С	3.320557	-0.811615	-0.188954
С	4.471768	-0.105692	-0.238369
С	5.823764	-0.657487	-0.207868

С	6.845691	0.234167	-0.193747
С	8.300569	0.069137	-0.093015
С	9.055576	1.157973	-0.345546
С	10.552829	1.257095	-0.284585
С	11.025133	1.841403	1.054532
С	8.921055	-1.239875	0.337817
С	5.938074	-2.161164	-0.205305
С	-6.800551	-2.291655	0.229881
0	-6.084471	3.198092	-0.201165
0	-8.901248	-0.607628	0.204039
Н	-7.422422	-2.648701	-0.596532
Н	-5.866950	-2.851371	0.219732
Н	-7.331576	-2.528006	1.156879
Н	-4.077925	-1.947475	0.094610
Н	-2.890707	0.872413	-0.141752
Н	-1.618089	-1.970014	0.006811
Н	-0.451984	0.867567	-0.210714
Н	0.867143	-1.951964	-0.068185
Н	1.992298	0.902844	-0.265106
Н	3.340765	-1.898497	-0.127388
Н	4.399903	0.981637	-0.286238
Н	6.547123	1.280932	-0.265548
Н	6.949015	-2.511449	-0.394068
Н	5.598083	-2.581341	0.748869
Н	5.293436	-2.579572	-0.985438
Н	8.998267	-1.954659	-0.488868
Н	9.926610	-1.084303	0.733350
Н	8.325740	-1.708104	1.126334
Н	8.538279	2.085785	-0.593222
Н	10.896140	1.906710	-1.097831
Н	11.020720	0.281774	-0.447425
Н	12.112679	1.958010	1.070456
Н	10.573798	2.822907	1.229967
Н	10.735880	1.187071	1.882917
Н	-8.477678	2.078450	-0.013950
С	-10.103657	0.154964	0.208083
Н	-10.206129	0.713997	-0.726654
Н	-10.912689	-0.566941	0.301117
Н	-10.117268	0.844089	1.057649

Pyrone-polyene 11, conformer 2

M06-2X/6-31G(d)-IEFPCM(water) Energy =	-1118.411018
M06-2X/6-31G(d)-IEFPCM(water) Free Energy =	-1118.014574
M06-2X/6-311++G(d,p)-IEFPCM(water) Energy =	-1118.723365
Number of Imaginary Frequencies =	0

С	7.729913	-0.117170	0.095788
С	7.665018	1.244333	0.196989
С	6.390377	1.899609	0.220917
0	5.283120	1.080020	0.132774
С	5.345134	-0.275830	0.033402
С	6.539254	-0.931367	0.012408
С	4.029332	-0.885930	-0.043411
С	2.879061	-0.179485	-0.037163
С	1.570903	-0.783941	-0.115806
С	0.430071	-0.058218	-0.121250
С	-0.894273	-0.625758	-0.199714
С	-2.019569	0.122835	-0.215039
С	-3.356629	-0.421186	-0.292474
С	-4.461226	0.354999	-0.310207
С	-5.841856	-0.116337	-0.375043
С	-6.826117	0.811473	-0.322860
С	-8.284500	0.609151	-0.327007
С	-8.865250	-0.353881	0.409730
С	-10.336880	-0.640945	0.524151
С	-10.947428	0.021787	1.766057
С	-9.052680	1.606928	-1.161837
С	-6.074091	-1.597465	-0.522806
С	6.705645	-2.420818	-0.093446
0	6.181345	3.092438	0.308913
0	8.865481	-0.821465	0.063304
Н	7.264154	-2.802095	0.766721
Н	5.751614	-2.943342	-0.139624
Н	7.280344	-2.677586	-0.988390
Н	3.988900	-1.967381	-0.111340
Н	2.920762	0.905855	0.028591
Н	1.517212	-1.870871	-0.174699
Н	0.498525	1.028904	-0.064062
Н	-0.972832	-1.711916	-0.250047
Н	-1.929893	1.208953	-0.166516

Н	-3.444270	-1.505934	-0.330506
Н	-4.328879	1.436322	-0.255200
Н	-6.511970	1.857313	-0.304004
Н	-7.102179	-1.810506	-0.818367
Н	-5.399268	-2.011352	-1.279200
Н	-5.873376	-2.129946	0.414425
Н	-8.843949	1.467850	-2.228657
Η	-10.131470	1.541399	-1.010897
Η	-8.738870	2.626119	-0.908365
Η	-8.220632	-0.962258	1.044046
Н	-10.480236	-1.725769	0.590740
Н	-10.873376	-0.311311	-0.370467
Η	-12.004852	-0.237739	1.872532
Η	-10.424791	-0.296891	2.673562
Η	-10.864598	1.111129	1.697238
Η	8.535781	1.881000	0.261292
С	10.095329	-0.108154	0.136826
Η	10.162964	0.443408	1.079160
Н	10.879178	-0.861711	0.089179
Н	10.189222	0.582639	-0.706303

5-exo-tet TS formic acid system, conformer 1

M06-2X/6-31G(d)-IEFPCM(water) Energy =	-1109.429332
M06-2X/6-31G(d)-IEFPCM(water) Free Energy =	-1109.144622
M06-2X/6-311++G(d,p)-IEFPCM(water) Energy =	-1109.807916
Number of Imaginary Frequencies =	1 (-712.70)

-0.530516	-1.659941	0.232935
0.064498	-0.915282	-0.834163
1.566995	-1.222168	-0.651000
1.623302	-0.915068	0.851964
0.393276	-1.695313	1.348547
-0.500564	-1.376779	-2.163640
1.892630	-2.548656	-0.983930
2.921497	-1.242002	1.558130
1.291654	0.465543	0.926086
-0.251763	-1.153504	2.608149
0.675690	-2.745470	1.508453
	-0.530516 0.064498 1.566995 1.623302 0.393276 -0.500564 1.892630 2.921497 1.291654 -0.251763 0.675690	-0.530516-1.6599410.064498-0.9152821.566995-1.2221681.623302-0.9150680.393276-1.695313-0.500564-1.3767791.892630-2.5486562.921497-1.2420021.2916540.465543-0.251763-1.1535040.675690-2.745470

Н	2.209185	-0.555887	-1.233859
Н	-1.590308	-1.346912	-2.136398
Н	-0.145993	-0.724841	-2.966571
Н	-0.166132	-2.397540	-2.362736
Н	1.197502	-3.125210	-0.626004
Н	2.824772	-1.089064	2.637439
Н	3.195188	-2.283631	1.370074
Н	3.715975	-0.591006	1.182913
Н	2.119923	1.020980	0.596800
Н	-1.188338	-1.683037	2.802768
Н	0.413013	-1.307779	3.463991
С	-1.257979	1.147343	0.085421
С	-0.099793	0.572512	-0.589487
Н	0.537318	1.243162	-1.162632
Н	-0.453853	-0.084516	2.513150
Н	-1.817171	0.455990	0.719366
С	-1.134874	2.506281	0.682570
С	-1.689267	2.824021	1.849011
Н	-0.561702	3.236300	0.111602
Н	-2.268925	2.093047	2.408473
0	-1.737939	1.135665	-1.263831
Н	-2.613593	0.395418	-1.315608
Н	-1.590303	3.814454	2.282003
С	-4.292175	-0.536403	-0.354922
0	-3.584490	-0.420744	-1.422253
0	-4.117501	0.027196	0.722724
Н	-5.145207	-1.234672	-0.474420
С	3.354724	2.020265	-1.049529
Н	4.287551	2.523972	-1.387673
0	2.473797	1.807402	-1.896062
0	3.334633	1.731387	0.187149

6-endo-tet TS formic acid system

M06-2X/6-31G(d)-IEFPCM(water) Energy =	-1109.432981
M06-2X/6-31G(d)-IEFPCM(water) Free Energy =	-1109.144631
M06-2X/6-311++G(d,p)-IEFPCM(water) Energy =	-1109.813660
Number of Imaginary Frequencies =	1 (-544.61)

0	1.245022	-1.748880	0.936213
С	0.363334	-1.487797	-0.168835
С	1.190175	-0.647833	-1.159572
С	2.115347	0.124953	-0.195046
С	2.459594	-0.997172	0.789823
С	-0.166701	-2.798061	-0.718899
0	1.921456	-1.520072	-2.002625
С	3.324977	0.764394	-0.858068
0	1.358198	1.116477	0.488864
С	2.959987	-0.550786	2.147783
Н	3.209500	-1.642135	0.309951
Н	0.555928	0.036661	-1.736592
Н	0.654049	-3.414595	-1.087399
Н	-0.697117	-3.328408	0.076175
Н	-0.873036	-2.604982	-1.531811
Н	2.309928	-0.987873	-2.711977
Н	2.993520	1.528670	-1.568365
Н	3.950346	1.249066	-0.102186
Н	3.930055	0.020434	-1.383156
Н	1.066562	1.826833	-0.201353
Н	3.061820	-1.412607	2.812702
Н	3.942407	-0.078710	2.048590
С	-0.487136	0.365082	1.331648
С	-0.790827	-0.613202	0.300160
Н	-1.364526	-0.221808	-0.541505
Н	2.275389	0.170897	2.599863
Н	0.137772	0.014410	2.142142
С	-1.238840	1.600733	1.486830
С	-1.085772	2.344736	2.585944
Н	-1.873137	1.895627	0.656560
Н	-0.425968	2.030208	3.390915
0	-1.630981	-1.168208	1.306584
Н	-2.648145	-0.834857	1.038748
Н	-1.603427	3.290104	2.712567
С	-4.110080	-0.651788	-0.536871
0	-3.828312	-0.321595	0.668420
0	-3.422212	-1.318609	-1.311429
Н	-5.095346	-0.271115	-0.881963
С	-0.346649	2.739130	-1.819771
Н	-0.601100	3.542040	-2.550880

0	-1.155109	1.806562	-1.689134
0	0.758198	2.909052	-1.222115

5-exo-tet TS formic acid system, conformer 2

M06-2X/6-31G(d)-IEFPCM(water) Energy =	-1109.428867
M06-2X/6-31G(d)-IEFPCM(water) Free Energy =	-1109.142060
M06-2X/6-311++G(d,p)-IEFPCM(water) Energy =	-1109.807172
Number of Imaginary Frequencies =	1 (-727.23)

0	-1.623099	0.999455	-1.486653
С	-0.571236	0.040447	-1.361774
С	-1.283408	-1.205996	-0.787373
С	-2.048865	-0.458567	0.304019
С	-2.637999	0.704619	-0.507290
С	0.093442	-0.177180	-2.703149
0	-2.181924	-1.796623	-1.693048
С	-3.045510	-1.256928	1.115043
0	-1.009188	0.093370	1.108228
С	-2.970066	1.944955	0.298012
Н	-3.528845	0.345974	-1.039345
Н	-0.572669	-1.926917	-0.363077
Н	-0.629453	-0.623044	-3.392345
Н	0.435592	0.779361	-3.099670
Н	0.965594	-0.825571	-2.584752
Н	-1.683844	-2.380221	-2.283716
Н	-3.561869	-0.609797	1.830691
Н	-3.785171	-1.712930	0.451953
Н	-2.527685	-2.044301	1.669547
Н	-0.610002	-0.669165	1.729375
Н	-3.283144	2.751293	-0.370800
Н	-3.791553	1.740150	0.992034
С	0.757548	1.875578	-0.057803
С	0.381584	0.477449	-0.264883
Н	1.056202	-0.274730	0.141129
Н	-2.098303	2.271275	0.870529
Н	0.000675	2.593041	-0.393568
С	1.315882	2.244067	1.279958
С	0.918108	3.314726	1.961625
Н	2.077078	1.574119	1.679143

Н	0.162896	3.988829	1.562633
0	1.699804	1.586583	-1.077348
Н	2.698930	0.956698	-0.582860
Н	1.326471	3.557815	2.937818
С	3.669975	-0.822236	-0.539658
0	3.513655	0.364997	-0.034590
0	3.167184	-1.254180	-1.564600
Н	4.352558	-1.446835	0.064261
С	0.861168	-2.340336	2.176412
Н	1.210418	-3.154745	2.849092
0	1.479615	-2.153713	1.119689
0	-0.153249	-1.706625	2.609959

Acid-catalyzed C-O bond cleavage TS

M06-2X/6-31G(d)-IEFPCM(water) Energy =	-730.918124
M06-2X/6-31G(d)-IEFPCM(water) Free Energy =	-730.663466
M06-2X/6-311++G(d,p)-IEFPCM(water) Energy =	-731.151952
Number of Imaginary Frequencies =	1 (-86.20)

0	-0.216005	-0.082715	1.248663
С	0.030569	0.934691	0.283923
С	-0.648523	0.400626	-0.989343
С	-1.824752	-0.483666	-0.459414
С	-1.565668	-0.542712	1.072261
С	-0.500872	2.289633	0.737678
0	-0.999278	1.470333	-1.824912
С	-3.190234	0.101787	-0.770152
0	-1.808621	-1.760678	-1.075583
С	-1.706442	-1.904749	1.712040
Н	-2.237407	0.169184	1.570099
Н	0.045707	-0.279388	-1.511908
Н	-0.008579	2.584517	1.668278
Н	-0.310728	3.045462	-0.026562
Н	-1.578558	2.247534	0.912780
Н	-1.280731	1.111230	-2.679889
Н	-3.370125	0.089728	-1.848090
Н	-3.267311	1.131973	-0.415971
Н	-3.962911	-0.501398	-0.283757
Н	-0.957890	-2.189540	-0.895089

Η	-1.528652	-1.831302	2.787478
Н	-2.715847	-2.290599	1.548468
С	2.236140	-0.300349	-0.089909
С	1.547449	0.984890	0.168801
Н	1.897942	1.811273	-0.450350
Н	-0.989981	-2.614413	1.290244
Н	1.788760	-1.177913	0.377878
С	3.465399	-0.417631	-0.755428
С	4.027720	-1.652030	-0.836160
Н	3.912488	0.447985	-1.232808
Н	3.571716	-2.509388	-0.348761
0	2.178650	1.063432	1.453253
Н	4.939022	-1.824511	-1.399943
Н	1.590393	0.593645	2.080747

Alkoxide conformer 1

M06-2X/6-31G(d)-IEFPCM(water) Energy =	-1078.658639
M06-2X/6-31G(d)-IEFPCM(water) Free Energy =	-1078.302257
M06-2X/6-311++G(d,p)-IEFPCM(water) Energy =	-1078.977105
Number of Imaginary Frequencies =	0

С	8.308580	-0.228763	0.135989
С	8.201073	1.177409	0.248479
С	6.976435	1.862442	0.260111
0	5.820345	1.078734	0.147298
С	5.859508	-0.279427	0.041893
С	7.027069	-0.969615	0.031096
С	4.523677	-0.856215	-0.050255
С	3.386681	-0.130843	-0.051050
С	2.067993	-0.716716	-0.136946
С	0.930096	0.012093	-0.146340
С	-0.395580	-0.555590	-0.225376
С	-1.525653	0.184929	-0.242188
С	-2.859003	-0.370989	-0.314263
С	-3.973184	0.390882	-0.331522
С	-5.348555	-0.098592	-0.385632
С	-6.346055	0.814786	-0.334784
С	-7.801596	0.590892	-0.327504
С	-8.363901	-0.371438	0.424233

С	-9.830282	-0.679538	0.552024
С	-10.442312	-0.012338	1.790787
С	-8.589317	1.566936	-1.169774
С	-5.561775	-1.583887	-0.520645
С	7.146280	-2.460415	-0.081759
0	6.762754	3.070853	0.355078
0	9.387093	-0.865637	0.121805
Н	7.700051	-2.853732	0.777003
Н	6.186823	-2.974404	-0.140140
Н	7.733606	-2.721921	-0.968120
Н	4.457254	-1.937284	-0.121123
Н	3.447699	0.953367	0.017337
Н	2.004448	-1.803890	-0.195645
Н	0.999884	1.099193	-0.089628
Н	-0.470626	-1.642591	-0.272592
Н	-1.444598	1.271894	-0.197056
Н	-2.935199	-1.457027	-0.346638
Н	-3.854618	1.474160	-0.282835
Н	-6.047389	1.865331	-0.325782
Н	-6.589515	-1.813441	-0.804695
Н	-4.888199	-1.993992	-1.280270
Н	-5.344540	-2.106634	0.418391
Н	-8.381408	1.420424	-2.235781
Н	-9.666458	1.485006	-1.014808
Н	-8.291869	2.593868	-0.927929
Н	-7.706336	-0.962810	1.061452
Н	-9.956698	-1.765619	0.631806
Н	-10.378377	-0.368471	-0.342193
Н	-11.494684	-0.287234	1.908432
Н	-9.907849	-0.312175	2.697834
Н	-10.377207	1.077319	1.709005
Н	9.103197	1.773058	0.331085

Alkoxide conformer 2

Number of Imaginary Frequencies =	0
M06-2X/6-311++G(d,p)-IEFPCM(water) Energy =	-1078.976507
M06-2X/6-31G(d)–IEFPCM(water) Free Energy =	-1078.300274
M06-2X/6-31G(d)–IEFPCM(water) Energy =	-1078.657858

С	-8.329517	0.013324	0.109760
С	-8.148979	1.413650	0.022416
С	-6.890812	2.030946	-0.050875
0	-5.776386	1.181303	-0.036947
С	-5.886197	-0.174451	0.044648
С	-7.087946	-0.799225	0.117951
С	-4.582452	-0.827306	0.041215
С	-3.407107	-0.169664	-0.032353
С	-2.123025	-0.833398	-0.031459
С	-0.944502	-0.175440	-0.101331
С	0.346366	-0.822692	-0.097789
С	1.518834	-0.153408	-0.163730
С	2.817810	-0.788380	-0.157574
С	3.974835	-0.093185	-0.213389
С	5.323264	-0.655719	-0.191780
С	6.353375	0.226164	-0.191162
С	7.808213	0.048523	-0.105715
С	8.570781	1.126993	-0.378195
С	10.069564	1.213311	-0.337278
С	10.564306	1.822799	0.982184
С	8.420874	-1.262081	0.332002
С	5.425437	-2.160305	-0.184687
С	-7.282408	-2.283860	0.206287
0	-6.615659	3.228225	-0.126483
0	-9.440124	-0.562088	0.179637
Н	-7.859394	-2.637990	-0.654683
Н	-6.349544	-2.845818	0.249550
Н	-7.876218	-2.527650	1.092784
Н	-4.574276	-1.910932	0.102432
Н	-3.407681	0.916625	-0.094976
Н	-2.121527	-1.922228	0.031088
Н	-0.951497	0.913618	-0.163339
Н	0.357830	-1.911519	-0.036384
Н	1.500906	0.935752	-0.224251
Н	2.829518	-1.875651	-0.096679
Н	3.912204	0.994772	-0.261255
Н	6.063647	1.275346	-0.264651
Н	6.432142	-2.519533	-0.379453
Н	5.088711	-2.574449	0.773298
Н	4.771609	-2.576150	-0.958532

Н	8.488010	-1.984129	-0.489298
Н	9.429833	-1.111397	0.720882
Н	7.826115	-1.719413	1.127296
Н	8.059432	2.057163	-0.629672
Н	10.408379	1.841643	-1.169077
Н	10.526943	0.230606	-0.484712
Н	11.652827	1.931381	0.981337
Н	10.122677	2.811359	1.142198
Н	10.281165	1.188969	1.828384
Н	-9.018769	2.060517	0.013184