Supplementary material

Algorithm description

Algorithm 1 Overview of the IgGraph algorithm
Inputs:
R: set of mAD reads
k: k-mer length
Output: L: [R| X 3 matrix of most likely V/D/J labelings of each read

1: procedure IGGRAPH(R, k)

2 G < ANTIBODY-GRAPH(R, k) > create de Bruijn graph over mAbs
3 G, Hc < ADD-REFERENCES(G,V, D, J) >add V, D, and J
4 for all € R do
5: for all ¥ € {V,D,J} do
6
7
8

C”™ <COLOR-PROFILE(G, r, X, Hc)
LX)  maxeer 3, C¥alli]
: end for
9: end for
10: return L
11: end procedure

The functions ANTIBODY-GRAPH() and ADD-REFERENCES() create an antibody graph, and add colored
reference sequences, as are described in the Methods section of the main text. The selection of labels is shown
in line 7 as taking simple maximum of the sum of columns of a specific row j of a color profile matrix C.
This is the simplest form, and is improved by selecting thresholds for V gene-segments, as described in the
main text and Supplemental Figures S8 and S9.

Algorithm 2 Get color profile for a read r, given a set of reference gene-segments C, and colored antibody
graph G

Inputs:

r read

C: set of reference gene-segments
G: colored antibody graph
Output: C: |C| X n color profile matrix, where n is the maximum length of a read
1: procedure COLOR-PROFILE(G,T,C)
2 P < aias...an > get path of read r
3 for all c € C do
4: fori< 1...ndo
5: if ¢ € Hclai) then
6 Clc]la;] — score[match]
7 else if ¢ ¢ Hcla;] then
8: Clc]]a;] < score[mismatch]
9: end if

10: end for
11: C'[c] <~ PROPAGATE-COLOR(P, ¢, r, C[c]) > Traverse bulges for color

12: end for
13: return C
14: end procedure

The PROPAGATE-COLOR() function traverses bulges, performs alignment, and propagates color; as de-
scribed in Figure 5 of the main text.



Simulating Antibody Sequences
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Fig. S1: Diagram of antibody simulation procedure. From pools of V, D, and J gene-segments, one of each is
selected for a single smAb. Exonuclease chewback, and non-templated nucleotide additions, are performed
based on empirical distributions. Finally, the read data can be generated from the smAb using a sequencing
simulator for Roche 454, Illumina, or bypassing sequencing simulator altogether. The Roche 454 simulator
can introduce homopolymer insertions and deletions, represented here by blue stars and red diamonds,
respectively. Alternatively, the simulated antibodies can obtain mutations along the V gene-segment, shown
as green circles.



Mutation distribution

Figure S2 shows the probability of mutating the first 275 positions of a V gene-segment. This distribution
was computed from the 23,051 IMGT annotated sequences; as described in the main text. It was used for
creating datasets with a given number of mutations, sampled from this distribution, without replacement.
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Fig. S2: Distribution of mutations along V gene-segments (CDR3 region is not included). Positions from 0
to 275 are shown on the x-axis, and the y-axis shows the mutation frequency at a given position on the
human dataset described in the main text. This mutation distribution shows peaks representing CDR1 and
CDR2 regions, and lower probability of mutations in framework regions. The positions are purposefully
truncated since deviations from the reference are difficult to attribute to somatic hypermutation events, or
to recombination events near the 3’ end of the V gene-segment.



Scoring V segments

Somatic hypermutation occurs primarily in V gene-segments, and can have an effect on their labeling. A
simple scoring approach can be taken for D and J gene-segments, with match/mismatch penalties, but when
considering somatic hypermutation events, sequence properties and positional information must be taken
into account. Considering only sequence properties, e.g., 4-mer motifs, ignores a strong signal that mutations
occur primarily in CDR1 and CDR2. While only considering position can obviously over-call mutations as
well.

We consider both 4-mer motifs and position in our scoring method. For the sake of simplicity, below we
assume that the references R and read r are aligned to the same position. In reality, these can differ, an we
can tolerate a shift in the read or reference. We wish to compute the probability of observing read r, given
reference R, written as: P(r|R) = II;P(a;|b;, 1), for a nucleotide in the read a; and an l-mer in the reference
b;, at position 1.

If we instead consider mutations and not nucleotides a;, then we can write the probability of a read r
given a reference R as: P(r|R) = II;P(m]b;, i), for m = mut representing a mutation (i.e., mismatch) and
m = —mut representing a match to reference. This turns into:

Pmlby. i) = P(b;,tlm)P(m) (1)

> P(b;,i|n)P(n)

ne{mut,-mut}

where the probability of a mutation can be the aggregate of non-matching identities at the jth position
of 4-mer b;, denoted b].

Unfortunately, the data used to compute the conditional joint probability P(b;,i|m = mut) is sparse
when using 67,108 mutation events. To remedy this, we simplify the joint probability to P(b;,ilm) =
P(b;|m)P(i|m), resulting in the form:

P(bi|m) P(ilm)P(m)
S PIn)Pin)P(n)

ne{mut,-mut}

P(mlb;,i) = (2)

whose probabilities can be easily computed from the data. This is the same relaxation that is performed
for Naive Bayes classifiers to avoid the curse of dimensionality. Further, counts from data used to compute
the conditional probability, P(i|m = mut), are modified to smooth the counts. A window of 5 downstream,
and 5 upstream positions is used to compute the local average count. This smoothing is to overcome any
effects caused by indels in the alignment of the IMGT database.

Plotting P(m = mut|b;, ), sorting each 4-mer according to the sum across their positions, provides
Figure S3(a). The top 40 4-mers are shown in Figure S3(b). These plots clearly show strong favoring of some
4-mers in CDR1 and CDR2.

Alternate model

The probabilistic model used in IgGraph is detailed in the Supplemental section: Scoring V segments. This
is ostensibly a Naive Bayes model, trained on the dataset described in the main text for predicting matching
or mutated base pairs in the V gene-segment. For completeness, this model’s performance is shown using
5-fold cross-validation on the described dataset in Figure S4. Performance of 4-mers, 5-mers, and 6-mers are
shown. Due to a large class imbalance, & 4% samples are mutations, SMOTE [1] is employed to over-sample
the minority class, while down-sampling the majority class. This class redistribution is performed only on
each fold’s training set, while the fold’s test set remain unchanged.
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Fig. S3: Probabilities of mutation for a given 4-mer and position. Shown are all 4-mers, across positions from
10 to 300, sorted according to the sum of mutation values across all positions for each 4-mer. The mutation
value in each square of the heatmap represents the probability of a mutation at that position, for that 4-mer.
(a) All sorted 4-mers reveal CDR1, CDR2, and CDR3 regions. (b) The top 40 4-mers show which motifs are
favored in each region.
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Fig. S4: Receiver operating characteristic (ROC) curve for different models. The ROC curve on 5-fold cross-
validated dataset for Naive Bayes using different size k-mers as input. The training datasets are re-sampled
using SMOTE [1], while the testing sets are unmodified.



Validating and evaluating predicted classifications

In order to assess the similarity of predicted VDJ classifications of antibody reads, we separate this task into
two components: supervised and unsupervised comparisons. Supervised comparisons consist of comparing
the predictions to ground truth labels. This supervised validation uses simulated reads since there is no
guaranteed way of determining the true antibody references from immunoglobulin sequencing data.

There is also value in assessing the similarity of tools prediction on real data, despite the uncertainty of
true labels. In this unsupervised comparison, the similarity of predictions between different tools is assessed.

Comparing the classifications of V, D, J, and total segments at the gene and allele level are performed
using the Jaccard index. The junction sequence is compared for absolute equality, since this is often used to
characterize the distribution of sizes across repertoires.

Additionally, comparing the clone partitioning is important to determine if different tools would cluster
reads into the same, or different, clones which could drastically impact downstream analysis of clone evolution.
Clone partitioning can be compared using indices for comparing clustering algorithms, specifically the Rand
index, Jaccard index [2], and Fowlkes-Mallows index [3]. These three indices can be computed by comparing
pairs of points (i.e., reads), and determining if partition A has clustered them together (1) or separate (0).
Similarly, a 1 or 0 can be assigned to the same pair of points for partitioning B. Thus, each pair of points
can be in one of the four categories: ny1 for A and B both placing the pair in the same cluster; ngg for both
A and B placing the pair in separate clusters; nig for A placing them together while B separates them; and
no1 for A separating them while B places them together. When A is viewed as the predicted clustering and
B as the ground truth, nq1, ngg, n10, 701 can be viewed as true positives, true negatives, false positives, and
false negatives, respectively.

With this formulation, we can compute any of the Rand, Jaccard, or Fowlkes-Mallows indices. However,
due to the nature of clone abundances in Ig-seq datasets containing many clones, this results in many clusters.
The Rand index will be skewed due to the high number of different clusters. As such, the Fowlkes-Mallows
(FM) index [3] provides us with an alternative. The FM index is computed as:

ni1
\/(nn +no1) * (n11 + n1o)

and can be interpreted as the geometric mean of the precision in recall in a supervised setting. In our
setting the geometric mean can normalize differences in scale between the two partitionings, while still pro-
viding a similarity comparison. A tool for simplified comparison of predicted labels, partition ranges, and
clonal clusterings is provided as IgVALVE (Ig Vdj Antibody Labeling Validation and Evaluation). IgVALVE
will compute accuracy in a supervised setting, i.e., when using simulated reads; or can compare predic-
tions using the Jaccard index and Fowlkes-Mallows index, as described above, in an unsupervised set-
ting when labels are not available. The validation and evaluation tool IgVALVE is available for use at:
https://github.com/sbonisso/ig_valve

FM =

(3)




Stanford S22 VJ analysis

Analyzing the VJ pairings of labeled heavy/light chains can provide an idea of the distribution for the
selection of which V and J are favored within a population of B-cells. When comparing different V/D/J
labeling tools, this can help show the differences in labeling. The Stanford S22 dataset from [4] is used
to highlight differences between tools. The predictions from IgBlast, IMGT, and SoDA are taken from the
online resource !, and IgGraph was run with k& = 21 since only V and J gene-segments were sought. This
returns slightly better results for V/J gene-segments as a longer k is more robust for the longer segments,
but obviously, misses D segments that are smaller than this parameter. The values in Figure S5 below are
computed by counting VJ pairs for which a prediction for both exists, and if more than one gene-segment
is predicted, each predicted label is given an equal proportion of the read. Meaning, if three V segments
are predicted for a single read, each obtains 0.33 points. This seeks to normalize for predicting many gene
segments. The values for each VJ pair are then log2 transformed for easier comparison.
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Fig. S5: VJ pairs for IgBlast, IMGT, SoDA, and IgGraph. The V and J gene-segments are index on the x-axis
and y-axis, respectively. Each cell represents a V-J pair, and shows the log transformed count indicated by
the colorbar.

Figure S5 shows the distributions of VJ pairings for various tools. One element to note is how IgBLAST,
seen in Figure S5(a), dilutes its predictions across multiple allelic variants.

Table S1 compares performance of various tools for VDJ classification and illustrates that IgGraph
performs well for all gene-segments. While the error percentage is higher for V gene-segments, this could

! http://www.emi.unsw.edu.au/ ihmmune/IGHUtilityEval /eval_help_datasets.php
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Fig. S6: Comparison of predictions from different tools on the Stanford S22 dataset. Similarity is measured
by the Jaccard index in predictions of (a) V, (b) D, (c) J, and (d) total.



potentially be further improved with a more sophisticated scoring model than the one we employed. One
detail to note, is that, like for most other VDJ classification tools, the majority of errors are mispredictions
of allelic variants. These types of errors particularly difficult to distinguish, but our approach (along with
most others) is able to correctly identify the correct genotype. An example of a typical error is shown in
Supplementary Figure S10.

Table S1: Table of error percentages on Stanford S22 dataset reproduced from [4] with the colored antibody
graph (IgGraph) appended. The errors shown are the percentage of incorrect allelic variant reported, and the
percentage of incorrect gene reported; a rarer event than incorrect allelic variant. The total column represents
the percentage of sequences that include an incorrect gene or allele for either the V, D, or J gene-segments.
The results for IgGraph shown are with £ = 11 and m = 2.

Alleles Genes

Citation Utility IGHV IGHD IGHJ Total IGHV IGHD IGHJ
[5) iHMMune-align 3.21 2.21 1.95 7.11 0.21 1.27 0.0
[6] IMGT 4.90 5.09 1.55 10.87 0.22 281 0.0
(7] IgBLAST 3.84 3.96 0.85 8.39 0.75 2.16 0.0
8] Ab-origin 4.06 7.94 2.53 13.74 0.22 553 0.0
9] JOINSOLVER 6.17 6.93 1.24 7.89 0.86 4.92 0.0
[10] SoDA 2.68 6.82 1.50 10.37 0.29 6.63 0.0
[11] VDJSolver 6.87 1.96 0.71 9.09 0.48 0.79 0.0

IgGraph 547 0.93 0.65 6.07 0.15 0.82 0.0

Table S2 benchmarks performance of IgGraph for different values of k-mer sizes (k) along with different
sizes of [-mers used for scoring. While increasing k improves performance labeling V gene-segments, the [-mer
used influences the performance. The left part of the table referes to 213 alleles, while the right part refers
to 55 genes.

Table S2: Table of error percentages for V gene-segments on Stanford S22 dataset for different parameteri-
zations of IgGraph, and different sized [-mers for scoring. Errors involving an incorrect gene, and errors for
an incorrect allelic variant, are shown.

Alleles Genes
Parameters 4-mers 5-mers 6-mers 4-mers b-mers 6-mers
k=11 7.65 547 8.90 0.12 0.15 0.74
k=15 6.32 4.29 17.67 0.09 0.10 0.68

k=21 594 395 7.1 0.09 0.08 0.68




Simulated dataset VJ distribution

The simulated dataset with no mutations, described in the main text, is visualized in Figure S7 by showing
the distribution of counts for all VJ pairs.
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Fig. S7: VJ pairs represented in the simulated antibody dataset containing no mutations. The V and J gene-
segments are index on the x-axis and y-axis, respectively. Each cell represents a V-J pair, and shows the log
transformed count indicated by the colorbar.



Threshold determination

To select the maximal number of labels to return for each gene segment, the mean accuracy of labelings,
varying the threshold for maximal labels, m, is plotted. Providing an additional option allows for improved
accuracy, without providing a long candidate list. Manual inspection showed that these improvements are
typically in cases where the gene segment is indistinguishable from a different allelic variant. Based on this
plot, we select a threshold of 3 for human.
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Fig. S8: Mean accuracy of labeling each class of gene segments on human dataset using colored antibody graph
with k£ = 11. Providing even a single alternative explanation, i.e. a threshold of 2, improves the accuracy
greatly, particularly for D gene segments, while there are diminishing returns for additional options.

The threshold m determines the maximal number of gene-segment labels to report, but we allow for 0 to m
labels to be reported for each read. This is based on the probabilistic score of each label. Rather than simply
selecting the top m scoring labels, we select the top m scoring labels that cumulatively exceed a threshold ¢.
This means that if there are m + 1 labels that cumulatively do not exceed ¢, no label is reported. Conversely,
if a single label exceeds t, despite m = 2, only that single label is reported. This threshold ¢ is not a user
tunable parameter, and was selected by identifying the threshold at which there were diminishing returns
correctly identified labels. Figure S9 shows, for each threshold, the ratio between the number of correctly
identified gene-segments at that threshold compared to the previous threshold. The threshold when the delta
plateaus and/or drops below 1.0 is how a t = 0.8 is selected for use in all datasets; all mutation datasets with
an even number of mutations and the Stanford S22 dataset.. The curves are generated over the mutation
datasets with an odd number of mutations, each curve in gray, and their average shown in red.



1.04 1.04 1.04
% 102 % 102 % 102
E E E
= = =
o O o
1r 1r 1F
q I I I I | I I I I I I I I
0‘)80 0.2 0.4 0.6 0.8 1 []'980 0.2 0.4 0.6 0.8 1 [)'980 0.2 0.4 0.6 0.8 1
Threshold Threshold Threshold
(a) k=11 (b) k =15 (¢) k=21

Fig. S9: Change in correctly labeled samples when varying the threshold. Each gray curve represents a single
dataset with a fixed number of odd mutations, and the red curve is the mean across all used datasets.
Thresholds are varied and the change in number of correctly labeled samples is shown on the y-axis. The
threshold at which the change plateaus or drops below 1.0 is selected.

Analysis of common errors

One common error IgGraph commits on the Stanford S22 dataset is calling IGHV3-33*01 as IGHV3-33*06,
an example of this error is shown in Figure S10 below. The beginning of the read matches perfectly with
IGHV3-33*01, at position 166 of the read, where the SNP that distinguishes IGHV3-33*01 from IGHV3-
33*06 occurs, the nucleotide matches IGHV3-33*06. This is labeled as IGHV3-33*01, however, the 4-mer
surrounding the mismatch is not among the most prevalent 4-mers from the training dataset, and as such,
receives a low probability. Disambiguating such a labeling is difficult to perform, with significant confidence,
in favor of either gene-segment.

IGHV3-33%06 . .ttt e 172

IGHV3-33%01 . .o e e 172
read AGGGGCTGGAGTGGGTGGCAGTTATATGGTATGATGGAAGTAATA 45
TGHV3=33%06 . . ottt ittt e e e e e e e e e e e e e e e 217
TGHV3-33*%01 . .o e e e e 217
read AATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAG 90
TGHV3=33%06 . . ottt ittt e e e e e e e e e e e e e e e 262
TGHV3=33*%01 . .ttt e e e e 262
read ACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAG 135
SNP
1
IGHV3=33*%06 . ... ittt ettt e e e e A---- 296
IGHV3-33*%01 . ...t e e e G..A-—-—- 296
read CCGAGGACACGGCTGTGTATTACTGTGCGAAAGTATCG 173
)

Junction start

Fig. S10: Alignment of read and reference sequences. This alignment shows a read from the Stanford S22
dataset and reference gene-segments IGHV3-33*01 and IGHV3-33*06. This read has ground truth labeling
as IGHV3-33*01, and IgGraph assigns it as IGHV3-33*%06. Distinguishing between these two is difficult due
to the SNP at position 293 of IGHV3-33*01.



Selectng the k-mer size

The selection of k£ can have consequences on performance, and must be chosen carefully. Here, we show
how k can negatively impact the antibody graph by creating cycles, or loops, bridging two segments of the
antibody that are far away from each other. For example, if a (k-1)-mer is shared between a V segment and a
J segment, this can bridge the two gene-segments and cause difficulties in assigning a label. Figure S11 shows
the mean number of shared k-mers across all 99,450 human, 4,290 rabbit, and 52,272 mouse combinations
of VDJ gene-segments.
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Fig. S11: The effect of varying k over the average number of shared k-mers per antibody transcript. All values
of k between 4 and 25 where computed, and each curve is truncated at the value of £ where all k-mers are
unique within each transcript.

Each curve ends where there no longer exist any shared k-mers among any possible re-arrangement
of VDJ gene-segments. This shows that a selection of k=18 would ensure no sharing for any dataset, this
selection for k will miss some D gene-segments in human and mouse. For this reason, we are willing to tolerate
some redundancy and can see that smaller selections for k can be tolerated. This plot is a simplification of
the scenario since it does not take into account non-templated nucleotides and how they may affect k-mer
sharing. This is particularly possible since these nucleotides are GC rich.
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Fig. S12: Accuracy over alleles for different values of k for V/J (kv ;) and D (kp) gene-segments. Accuracy
for total V, D, and J segments over a dataset of 2000 simulated antibody reads is shown. Standard scoring
was used.
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