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Supplementary Note 1. MAGNETO-SPS AT A METAL-DIELECTRIC INTERFACE (TWO-LAYER SETUP)

A. Maxwell’s equations

Maxwell’s equations in arbitrary media read as follows,

∇·~D = 0, (1)

∇·~B = 0, (2)

∇×~E =−∂t~B , (3)

∇× ~H = ∂t~D . (4)

We are interested in the case where the electric displacement ~D and the magnetic field ~H are related to the corresponding
electric fields ~E and the magnetic inductions ~B via the linear constitutive relations ~D = ε0

←→ε ~E and ~H = µ−1
0

←→µ −1~B , where

ε0 = 8.854×10−12 C
Vm and µ0 = 1.257×10−6 kgm

C2 are the permittivity and permeability of vacuum, and ←→ε and ←→µ are the

corresponding scaling (unitless) tensors for the medium in question. By taking the curl of Supplementary Equation (3),
we obtain the wave equation,

∇(∇·~E)−∇2~E =−
←→ε
c2 ∂

2
t E , (5)

where we have introduced the free space speed of light c = (µ0ε0)−
1
2 . A completely analogous equation holds for H by

taking the curl of Supplementary Equation (4), but the latter suffices for our purposes.

B. Permittivities

We are interested in (magneto-)SPs arising at the interface between a plasmonic metal (silver or gold) and a dielectric
medium which is endowed with magneto-optical (MO) properties (see Supplementary Figure 1). The latter can be a mix
of a magnetic oxide [1–3] dissolved in a polymer. We assume that the magnetization of both layers is null, ←→µ = 1.

Supplementary Figure 1. Metal-MO dielectric interface at z = 0. We solve for the surface plasmon (SP) modes arising at the metal-
dielectric interface, in particular, when the permittivity of the dielectric ←→ε MO is anisotropic due to the application of a perpendicular
external magnetic field. The SP modes in this case are referred to as magneto-SP modes. As a first approximation to the exciton-SP
coupling, we assume that the organic layer is embedded within the dielectric spacer medium.

The permittivity of the metal is taken to be isotropic ←→ε = εm
←→
I , where

εm(ω) = ε∞− ω2
P

ω2 + iωγ
(6)
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is of the Drude form (the parameters for Ag (Au) are ε∞ = 3.7(6.9), ωP = 8.8eV, and γ= 0.01(0.07)eV [4]). Throughout this
work, we will set γ = 0 in order to keep the formalism simple. Physically, as long as the relevant energy scales of interest
are larger than γ (see main text), this is a good approximation. Since we are interest in the plexciton (strong exciton-
SP coupling) regime [5–11], this should be a good approximation to take. Otherwise, the quantization of the problem
becomes much more complicated.

For the MO layer, the permittivity is anisotropic: upon interaction with an external magnetic field in the perpendicular
z-direction, it acquires the form,

←→ε MO =
 εd i g 0
−i g εd 0

0 0 εd

 , (7)

where the tensor has been written in Cartesian coordinates (x̂ , ŷ , ẑ), and we take εd = 1 and g = 0.1. Here, the off-
diagonal term is proportional to the Faraday rotation that a linearly polarized plane-wave electric field experiences as
it passes through the material; g changes sign upon change of magnetic field direction. Typically, MO magnetic oxides
like Bismuth- and Yttrium-Iron Garnets (BIG, YIG) [1, 2] have permittivities of εd ∼ 6 [1–3], which imply a severe index
mismatch with the metal and organic layers of interest. Hence, we are implicitly assuming that we have a Maxwell garnet
blend with a low index polymer or aerogel [12] at our disposition, which yields an effective εd = 1. On the other hand,
g ∼ 0.1 is a reasonable parameter for MO garnets under a magnetic field of 0.1 Tesla [1]. Just as with εm , we ignore imagi-
nary (absorptive) contributions to εd . Section B of Supplementary Note 3 discusses other MO materials that could be used
for the purposes of our study.

Chiu and Quinn [13] have solved a slightly different problem, namely, the magneto-SPs arising from a metal under a
strong magnetic field coupled to a isotropic non-MO dielectric. In their study, the anisotropy arises in the metal permit-
tivity rather than in the one corresponding to the dielectric. The resulting equations are, as expected, very similar, and one
could translate their equations to our setup by some careful changes of variables. However, for clarity of presentation and
in order to develop the three-layer calculation of Supplementary Note 2, which is a generalization of the two-layer case,
we shall outline the entire procedure here. Importantly, in doing so, we manage to go further than Chiu and Quinn and
construct a perturbation theory in the small parameter g . This allows us to develop explicit expressions for the electro-
magnetic modes which, as far as we are aware, have not appeared in the literature before.

C. Electromagnetic modes for each layer

The problem is rotationally symmetric about the vertical z-direction, so it is convenient to adopt a cylindrical coordi-
nate system. Let us search for SP modes labeled by k which propagate in-plane and decay along ẑ (this is precisely the
condition for SP modes),

~E(k) = E (k)e i (krk+kz z−ωt ), (8.1)
~B(k) = B (k)e i (krk+kz z−ωt ). (8.2)

For a given direction of k , we shall write vectors in the right-handed cylindrical coordinate system spanned by the unit
vectors k̂ , θ̂k , ẑ such that k̂ × θ̂k = ẑ . for instance, E = (Ek ,Eθk

,Ez ), where Ei = E · î (beware that we have defined the

tangential direction of θ̂k with respect to k̂ and not to r̂ ). Physically, k and ω = ω(k) denote the in-plane (propagating)
wavevector and frequency of the monochromatic wave, respectively, rk = r · k̂ is the projection of the position vector
r = (rk ,rθ, z) along the k̂ direction, and kz is the imaginary wavevector associated with the evanescent wave along the
perpendicular direction. Inserting these modes into Supplementary Equation (5) yields an anisotropic wave equation for
E ,

∑
l j m

[(δi lδ j m −δi mδ j l )k j kl +Ω2εi m]Em = 0, (9)

where we have used the notation Ω(k) = ω(k)
c corresponding to the free space wavevector. Here, the i , j , l ,m indices run

through k,θ, z and, formally, we may write k = (kk ,kθ,kz ) = (k,0,kz ). Due to rotational symmetry, ←→ε MO has the same
form in the k̂ , θ̂k , ẑ coordinates as Supplementary Equation (7).
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1. MO layer (z > 0)

Inserting the dielectric tensor associated with the MO layer (Supplementary Equation (7)) into Supplementary Equation
(9) yields a matrix equation MMO E MO = 0 which explicitly reads as,

 εd −Ω−2k2
z,MO i g Ω−2kkz,MO

−i g εd −Ω−2(k2 +k2
z,MO) 0

kkz,MOΩ
−2 0 εd −Ω−2k2

 1
Eθ,MO
Ez,MO

=
0

0
0

 . (10)

At this point, we have chosen the arbitrary normalization condition Ek,MO = 1. The secular equation corresponding to
Supplementary Equation (10) is,

(
kz

Ω

)4

+B
(

kz

Ω

)2

+C= 0, (11)

where,

B= 2

[(
k

Ω

)2

−εd

]
, (12.1)

C=
[(

k

Ω

)2

−εd

][(
k

Ω

)2

− ε2
d − g 2

εd

]
. (12.2)

The bi-quadratic Supplementary Equation (11) yields solutions kz,MO = iα±
MO ,−iα±

MO , where α±
MO are two different

evanescent decay or exponentially rising constants given by,

α±
MO =Ω

√√√√B

2
±

√
B2

4
−C. (13)

Note that these (in general, complex-valued) constants α±
MO must have positive real part for e−α

±
MO z to decay or for eα

±
MO z

to rise, respectively. In the first two-layer setup we are considering, we will assume that the MO layer extends indefinitely
for z > 0 so the field in this region must be a superposition of the two evanescent fields; exponentially rising fields will
become important when we add an additional interface at z = a (see Supplementary Note 2). The tangential and perpen-
dicular components of the electric field (given Ek,MO = 1) can be obtained from Supplementary Equation (10),

E±
θ,MO = −iΩ2g

k2 − (α±
MO)2 −Ω2εd

, (14.1)

E±
z,MO = i kα±

MO

k2 −Ω2εd
. (14.2)

2. Metal layer (z < 0)

In the metal, Mm E m = 0 corresponds to,

 εm −Ω−2k2
z,m 0 Ω−2kkz,m

0 εm −Ω−2(k2 +k2
z,m) 0

kkz,mΩ
−2 0 εm −Ω−2k2

 1
Eθ,m
Ez,m

=
0

0
0

 , (15)

where again we have chosen Ek,m = 1. This leads to the secular equation which yields the exponentially decaying field for
z < 0; by letting kz,m =−iαm ,

αm =
√

k2 −Ω2εm . (16)
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Supplementary Equation (15) reveals that

Ez,m =− i k

αm
(17)

but does not inform us about the tangential component Eθ,m as the entry (Mm)θθ = εm −Ω−2(k2 +k2
z,m) = 0. This missing

component will be deduced by matching the electromagnetic fields at the boundary z = 0.

D. Matching the modes at the boundary (z = 0)

We are looking for magneto-SP modes labeled by a propagating wavevector k and frequency ω(k), but, in general,
different kz evanescent wavevectors for each layer, which we have denoted k±

z,MO = iα±
MO and kz,m = −iαm . The energy

ω(k) (and thereforeΩ) is unknown.
To summarize, for each pair (k,ω), there are two possible modes in the MO layer associated with different decay con-

stants α±
MO (see Supplementary Equation (13), z > 0),

~E±
MO = E±

MOηe−α
±
MO z

= (1,E±
θ,MO ,E±

z,MO)ηe−α
±
MO z , (18.1)

~B±
MO = B±

MOηe−α
±
MO z

= −i

ω
(α±E±

θ,MO ,−i kE±
z,MO −α±

MO , i kE±
θ,MO)ηe−α

±
MO z , (18.2)

where the magnetic induction in Supplementary Equation (18.2) has been deduced from Supplementary Equation (18.1)
and Maxwell’s Supplementary Equation (3). The vectors have been written in cylindrical coordinates and we have defined
η≡ e i kr−iωt . Hence, the total fields in the MO layer read,

~EMO = t+MO
~E+

MO + t−MO
~E−

MO , (19.1)

~BMO = t+MO
~B+

MO + t−MO
~B−

MO . (19.2)

where t± are coefficients to be determined. Similarly, for the metal layer (z < 0),

~Em = E mηeαm z

= (1,Eθ,m ,Ez,m)ηeαm z , (20.1)

~Bm = B mηeαm z

= −i

ω
(−αmEθ,m ,−i kEz,m +αm , i kEθ,m)ηeαm z . (20.2)

Here, we keep the arbitrary normalization where Ek,m = 1. Later on, we shall fix this normalization via quantization of
the energy of the modes (see section F of this Supplementary Note). Furthermore, it is also safe to arbitrarily assume
E±

k,MO = 1 because Supplementary Equations (19.1) and (19.2) contain scaling coefficients t± which will be fixed by the
boundary conditions at the metal-MO interface.

We are ready to match the fields at the interface at z = 0. The in-plane electric field and the perpendicular electric
displacement each need to be continuous across the boundary: Ei ,MO = Ei ,m for i = r,θ, while εd Ez,MO = εmEz,m . Fur-
thermore, the magnetic field, and because ←→µ = 1, its induction, are all continuous throughout, Bi ,MO = Bi ,m . These
constraints altogether read,

1 = t+MO + t−MO , (21.1)

Eθ,m = t+MOE+
θ,MO + t−MOE−

θ,MO , (21.2)

εmEz,m = εd (t+MOE+
z,MO + t−MOE−

z,MO), (21.3)

αmEθ,m =−t+MOα
+
MOE+

θ,MO − t−MOα
−
MOE−

θ,MO , (21.4)

kEz,m + iαm = t+MO(kE+
z,MO − iα+

MO)+ t−MO(kE−
z,MO − iα−

MO), (21.5)

Eθ,m = t+MOE+
θ,MO + t−MOE−

θ,MO . (21.6)
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These constraints read similarly to the ones derived by Chiu and Quinn in [13] (see their Supplementary Equations
(39)–(44)), except for the different coordinate conventions. Clearly, Supplementary Equations (21.2) and (21.6) are iden-
tical. Furthermore, Supplementary Equations (21.3) and (21.5) contain the same information, as can be shown by using
Supplementary Equations (16) (14.2), (17), and (21.1). The remaining constraints yield the equation,

k2 −Ω2εd +α+
MOα

−
MO + (α+

MO +α−
MO)αm](k2 −Ω2εd )εm

+αmεd {α+
MOα

−
MO(α+

MO +α−
MO)+αm[(α+

MO)2 +α+
MOα

−
MO + (α−

MO)2]−αm(k2 −Ω2εd )} = 0. (22)

By inserting Supplementary Equations (13), (16) into Supplementary Equation (22), we obtain a nonlinear equation in
Ω for every value of k . This equation can be numerically solved, at least in principle. Ω can be then used as input to
Supplementary Equations (14.1), (14.2), (17), (19.1), (19.2), and (21.1)–(21.6) to solve for the electromagnetic modes. As
we shall see, the most important qualitative feature of the solution of this problem is that the magneto-SP fields acquire
tangential components (see Supplementary Equations (14.1) and (21.2)) which are absent when g = 0 [14, 15], that is, in
the absence of an external magnetic field. Supplementary Equation (22) is identical to Supplementary Equation (45) in
[13] upon carrying out the substitutions εxx = εzz = εd .

E. Perturbation expansion on g

Chiu and Quinn reported a dispersion relation Ω vs k by numerically solving Supplementary Equation (22) for a very
similar setup to the one of our interest. However, a detailed description of the resulting electromagnetic modes was not
presented in that work. As explained, one may in principle solve for the profile of the electromagnetic modes once this
dispersion is known. However, a numerical attempt at the problem using a standard nonlinear solver yielded spurious
results for the modes.

Since the solution to the SP problem with no magnetic field (g = 0) is a well-known textbook result, and g is anyway
much smaller than εd in a realistic setup, we may use a perturbation expansion of the equation in powers of g . Our
goal is to obtain the electric fields up to O(g ), so that we can compute the magnitude of the exciton-SP coupling to that
same order. To accomplish such objective, we first need to solve for Ω as well as the coefficients t±MO up to O(g ). As
we shall see, however, knowledge of t±MO requires information about Ω up to O(g 2). Once this is done, we simply Taylor
expand the fields (18.1), 918.2), (20.1), (20.2) and collect the results according to Supplementary Equations (19.1)–(20.2)).
In retrospect, the original problem we faced by trying to directly solve Supplementary Equation (22) originated from the
fact that we were using the very small O(g 2) corrections toΩ as an input to solve for the O(g ) electromagnetic modes. This
requires an accurate solution ofΩ, which is complicated by the highly nonlinear dependence of Supplementary Equation
(22) onΩ. As a future consideration, it might be worth exploring numerical methodologies to attack this problem beyond
the perturbative regime, although for our purposes, the latter suffices.

Even though the algebra below seems involved, it is straightforward to derive using a symbolic algebra package such as
Wolfram Mathematica(c).

1. Solving forΩ

Given that the right hand side of Supplementary Equation (22) is zero, the polynomials at each power of g must each
vanishing identically.

To start with and as a consistency check, at zeroth order in g , Supplementary Equation (22) becomes

[2α2
d0 +2αd0αm0]α2

d0εm0 +αm0εd0{α2
d0(2αd0)+αm0[3α2

d0]−αmα
2
d0} =

[2α3
d0 +2α2

d0αm0](αd0εm0 +αm0εd0) = 0, (23)

where the 0-subscripted variables denote the corresponding functions in Supplementary Equation (6), (13), (16) taking
Ω=Ω0,

εm0 = ε∞− Ω
2
P

Ω2
0

, (24.1)

αd0 =
√

k2 −εdΩ
2
0, (24.2)

αm0 =
√

k2 −εm0Ω
2
0, (24.3)
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whereΩP ≡ ωP
c . Supplementary Equation (23) implies that either

2α3
d0 +2α2

d0αm0 = 0, (25)

or

αd0εm0 +αm0εd = 0. (26)

The condition in Supplementary Equation (25) requires that αd0 =−αm0, contradicting the very nature of the SP solution
we are looking for, where αd0, αm0 > 0 represent evanescent fields. However, the condition in Supplementary Equation
(26) is simply the standard equation for the dispersion relation of a SP at the interface of an unmagnetized MO sample
and a metal film [14, 15]. It can be readily solved yielding,

k =Ω0

√
εm0εd

εm0 +εd
, (27)

or more explicitly,

Ω0 =

√√√√εdΩ
2
P +k2(εd +ε∞)−

√
[εdΩ

2
P +k2(εd +ε∞)]2 −4ε∞εd k2Ω2

P

2ε∞εd
. (28)

At short k, the (linear) dispersion is very light-like,Ω0 = kp
εd

, and at large k, it plateaus toΩ0 → ΩPp
εd+ε∞ , corresponding to

collective charge oscillations in the metal (see Supplementary Figure 2).
Moving on to the g 1 terms of Supplementary Equation (22) yields an equation of the formΩ(1) f = 0 where f (αd0,αm0)

is a nonzero polynomial in αd0 and αm0, implying thatΩ(1) = 0. This result can be quickly derived as follows: the g 1 terms
stem only from the power expansion of α+

MO , α−
MO , αm , and εm . Some g 1 contributions from α+

MO , α−
MO are proportional

to Ω1 but some are not. Regardless, the ones from α+
MO come with the opposite sign to the ones from α−

MO ; hence, they
vanish identically as Supplementary Equation (22) is symmetric inα+

MO andα−
MO . On the other hand, every g 1 term forαm

and εm is strictly proportional toΩ1 requiringΩ1 = 0 for the all the g 1 terms to cancel. Hence, the lowest order correction
toΩ0 ofΩ arises at O(g 2), that is,

Ω≈Ω0 + g 2Ω2. (29)

As mentioned, we are solely interested in the calculation of the electric fields in each layer up to O(g ). However, as we shall
see in the next section of this Supplementary Note, these corrections depend onΩ2. To obtain this coefficient, we expand
α+

MO , α−
MO , αm , and εm up to O(g 2), but not beyond that,

α±
MO ≈αd0 ± gαd1 + g 2(αd20 +αd22Ω2), (30.1)

αm ≈αm0 + g 2αm22Ω2, (30.2)

εm ≈ εm0 + g 2εm22Ω2, (30.3)

where the coefficients in the expansions take the form,

αd1 =
iΩ0

2
p
εd

, (31.1)

αd20 =
Ω2

0

8εdαd0
, (31.2)

αd22 =
Ω0εd

αd0
, (31.3)

αm22 =−Ω0εi

αm0
, (31.4)

εm22 =
2Ω2

P

Ω3
0

. (31.5)
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Supplementary Figure 2. SP dispersion energy as a function of k = |k | for the two-layer (metal-MO dielectric) setup, assuming g = 0. Plots
generated using Supplementary Equation (28) with Drude parameters for Ag, ε∞ ∼ 4, ωP ∼ 9 eV, and varying the dielectric permittivity
εd . SinceΩ=Ω0 +O(g 2), the plots are correct up to O(g ), which is our perturbation order of interest. Notice that the dispersion curves
start-off linearly (light-like excitations), but plateau to constant values at large wavevectors (charge oscillations in the metal), which
become smaller as the dielectric permittivity increases.

Notice that in order to ultimately solve for Ω2, we have separated the g 2 terms into two categories: those which are
proportional to Ω2 (g 2αd22Ω2, g 2αm22Ω2, g 2εm22Ω2) and those that are not (g 2αd20). We substitute these expressions
into Supplementary Equation (22) and collect the g 2 terms, which ought to cancel. The manipulations yield in a linear
equation forΩ2 which gives,

Ω2 =
Ω5

0ε
2
m0(3εd −εm0)

8εd (εd −εm0)
[
Ω2

P (2α2
d0εm0 +Ω2

0ε
2
d )+Ω4

0εdεm0(εd −εm0)
] , (32)

where we have also used Supplementary Equation (26) in the form of αm0 =−αd0εm0
εd

to simplify the final expression.

2. Solving for t±MO

Next, we expand the coefficient t+MO , which denotes the contribution of the + fields in Supplementary Equations (19.1)
and (19.2) (t−MO can be subsequently found using the constraint in Supplementary Equation (21.1)),

t+MO ≈ td0 + g td1. (33)

Here, td0 and td1 are unknown, but we shall solve for them using the boundary condition on the perpendicular electric
fields (see Supplementary Equation (21.3)). We expand E±

z,MO and Ezm in Supplementary Equations (14.2) and (17) up

to O(g 2). Here, as opposed to Suplementary Equations (30.1)–(30.3), we do not separate the g 2 terms in E±
z,MO and Ezm

(g 2Ezd2 and g 2Ezm2) into those contributions which are proportional to Ω2 and those which are not, as Ω2 has already
been determined in Supplementary Equation (32). The result is,

E±
z,MO ≈ Ez,d0 ± g Ez,d1 + g 2Ez,d2, (34.1)

Ez,m ≈ Ez,m0 + g 2Ez,m2, (34.2)

where,
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Ez,d0 =
i k

αd0
, (35.1)

Ez,m0 =− i k

αm0
, (35.2)

Ez,d1 =− kΩ0

2α2
d0

p
εd

, (35.3)

Ez,d2 =
i (αd0αd20k +αd0αd22kΩ2 +2kΩ0Ω2εd )

α3
d0

, (35.4)

Ez,m2 =− i kΩ0Ω2εi

α3
m0

. (35.5)

We plug these expressions into Supplementary Equation (21.3). At zeroth-order in g , we get εm0Ezm0 = εd Ezd0, which is
equivalent to Supplementary Equation (26) and does not give us information on td0 or td1 (this indeterminacy ultimately
reveals why we need expansions up to O(g 2) to obtain fields up to O(g )). At O(g ) we get the intuitive result,

td0 =
1

2
, (36)

and at O(g 2) we obtain,

td1 =
−Ez,d2εd +Ez,m0Ω2εm22 +Ez,m2εm0

2Ezd1εd

= i

(16α3
d0α

2
m0Ω2Ω

2
P +8α3

d0Ω
4
0Ω2ε∞εm0 +α3

m0Ω
5
0 +8α3

m0Ω
4
0Ω2ε

2
d

8αd0α
3
m0Ω

4
0
p
εd

)
︸ ︷︷ ︸

≡τd1

, (37)

which, together with Ω2 in Supplementary Equation (32), can be readily evaluated with zeroth-order parameters. We
notice that td1 is purely imaginary-valued, so we have written it in terms of a purely real-valued τd1. Given Supplementary
Equation (33), it is clear from Supplementary Equation (21.1) that

t−MO ≈ td0 − g td1. (38)

3. Collecting the expressions for the fields

We now have all the ingredients to evaluate ~EMO and ~BMO (see Supplementary Equations (19.1)–(19.2)) up to O(g ),

~EMO ≈ ~Ed0 + g~Ed1, (39.1)
~BMO ≈ ~Bd0 + g~Bd1, (39.2)

where, at zeroth-order, in the absence of external magnetic field, we have the standard SP mode which is a transverse
magnetic (TM) mode [14, 15],

~Ed0 =
(
1,0,

i k

αd0

)
︸ ︷︷ ︸

≡E d0

η0e−αd0z , (40.1)

~Bd0 =
−i

Ω0c

(
0,

k2

αd0
−αd0,0

)
η0e−αd0z

=− iεdΩ0

αd0c
(0,1,0)︸ ︷︷ ︸

≡B d0

η0e−αd0z . (40.2)

In going from the first to the second line of Supplementary Equation (40.2), we have used Supplementary Equation
(24.2). Supplementary Equations (40.1)–(40.2) feature an elliptically-polarized electric field with no tangential compo-
nent, and a purely tangential and imaginary-valued magnetic induction. The opposite is true for the first-order correction:
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it consists of a purely tangential and imaginary-valued electric field (recall that td1 is purely imaginary, see Supplementary
Equation (37)) and an elliptically polarized electric field with no tangential part,

~Ed1 =
iΩ0(4τd1

p
εd −Ω0z)

2αd0
(0,1,0)︸ ︷︷ ︸

≡E d1

η0e−αd0z , (41.1)

~Bd1 =
1

2αd0c

(
−4αd0τd1

p
εd +Ω0(1−αd0z),0, i k(4τd1

p
εd −Ω0z)

)
︸ ︷︷ ︸

≡B d1

η0e−αd0z . (41.2)

In deriving Supplementary Equations (39.1)–(41.1), we have used the O(g ) Taylor expansion for the fields (see Supple-
mentary Equations (14.1)–(14.2), (18.2)). Notice that besides the exponentially decreasing dependence of the fields, we
also obtain a polynomial contribution in z. We already computed some of the relevant expansion coefficients in Supple-
mentary Equations (34.1)–(35.3); the remaining ones that we used are,

E±
θ,MO ≈±Ω0

p
εd

αd0
, (42.1)

B±
r,MO ≈∓ i

p
εd

c
+ g

Ω0

2αd0c
, (42.2)

B±
θ,MO ≈− iΩ0εd

αd0c
+ g

Ω2
0
p
εd

2α2
d0c

, (42.3)

B±
z,MO ≈±k

p
εd

αd0c
, (42.4)

as well as those for the plane wave components,

ηe−α
±
MO z = e i (kr−ωt )−α±

MO z

≈ e i (kr−cΩ0t )︸ ︷︷ ︸
≡η0

e−αd0z
(
1∓ g

iΩ0

2
p
εd

z

)
. (43)

Finally, given ~EMO , ~Em can be readily obtained from the boundary conditions for the fields at z = 0 (see Supplemen-
tary Equations (21.1)–(21.6)) as well as the original ansatz for their functional forms (see Supplementary Equation (20.1)–
(20.2)),

~Em ≈ ~Em0 + g~Em1, (44)

where, at zeroth-order we have the standard SP electric field as if there were no magnetic field present,

~Em0 =
(
1,0,

εd

εm0

i k

αd0

)
η0eαm0z =

(
1,0,− i k

αm0

)
︸ ︷︷ ︸

=E m0

η0eαm0z , (45.1)

~Bm0 = iεm0Ω0

αm0c
(0,1,0)η0eαm0z =− iεdΩ0

αd0c
(0,1,0)︸ ︷︷ ︸

≡B m0

η0eαm0z . (45.2)

Here, we have used Supplementary Equation (26) in both lines. Similarly, the first order correction to ~Em0 is,

~Em1 =
2iτd1Ω0

p
εd

αd0
(0,1,0)︸ ︷︷ ︸

≡E m1

η0eαm0z , (46)

~Bm1 = 2τd1

αd0c

(
Ω0 −αd0

p
εd ,0, i k

p
εd

)
︸ ︷︷ ︸

≡B m1

η0eαm0z .
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F. Quantization and normalization of modes

The previous section of this Supplementary Note shows how to (perturbatively) compute the frequency Ω, the electric
field, and the magnetic induction of an SP mode with wavevector k . Note that, so far, we have invoked an arbitrary normal-
ization (setting Er = 1). To fix this, we first ought to compute the energy associated with the unnormalized modes. Con-
sider placing electric field amplitude Ak into the radial component of the k mode. The energy in this mode is quadratic in
the fields (note that even if the electric field is much larger than the magnetic induction, the prefactors of ε0 and 1

µ0
weigh

them in a way that their contributions to the energy density are on the same order of magnitude) [15, 16],

HSP,k = 1

2

∑
i

ˆ
dV

[
ε0

∑
j

d(ωε∗i j (ω))

dω
(~E)∗j (~E)i + 1

µ0µ
|(~B)i |2

]
|Ak |2, (47)

where i , j ∈ {r,θ, z}, and electric field and magnetic inductions in each k mode (throughout z) are conveniently written as,

~E =Θ(−z)~Em +Θ(z)~EMO , (48.1)
~B =Θ(−z)~Bm +Θ(z)~BMO , (48.2)

and (~E)i , (~B)i denote the i -th components of the respective fields (which include the plane wave exponential factors,
see (19.1)–(20.2)). In Supplementary Equation (47), we have absorbed the electric field units into Ak , so Ei is taken to be
a unitless quantity. The integration

´
dV is carried out over all 3D space.

Assuming a finite size box of in-plane area S and infinite perpendicular dimension and plugging in Supplementary
Equations (19.1), (19.2), (20.1), and (20.2) into Supplementary Equation (47), we obtain,

HSP,k = S|Ak |2
2

∑
i

ˆ ∞

−∞
d z

(
ε0

∑
j

d(ωε∗i j (ω))

dω
(~E)∗j (~E)i + 1

µ0µ
|(~B)i |2

)
= S|Ak |2

2

∑
i

∑
γ,δ∈{+,−}

(tγMO)∗tδMO

[
ε0

∑
j
ε∗MO,i j (Eγ

j ,MO)∗Eδ
i ,MO + 1

µ0µ
(Bγ

i ,MO)∗Bδ
i ,MO

]

×
[ˆ ∞

0
d ze−[(α

γ
MO )∗+αδMO ]z

]
+S|Ak |2

2

∑
i

[
ε0

d(ωεm(ω))

dω
|Ei ,m |2 + 1

µ0µ
|Bi ,m |2

][ˆ 0

−∞
d ze(α∗

0+α0)z
]

= S|Ak |2
∑

i

∑
γ,δ∈{+,−}

(tγMO)∗tδMO

[
ε0

∑
j
ε∗MO,i j (Eγ

j ,MO)∗Eδ
i ,MO + 1

µ0µ
(Bγ

i ,MO)∗Bδ
i ,MO

]
1

2(α∗
γ +αδ)

+S|Ak |2
∑

i

[
ε0

d(ωεm(ω))

dω
|Ei ,m |2 + 1

µ0µ
|Bi ,m |2

]
1

2(α∗
m +αm)

≡ S

(
ε0Lk

4

)(
2|Ak |2

)
= S

ε0Lk

4
(AkA ∗

k +A ∗
k Ak ), (49)

where, following [16], we have defined the vertical mode length as,

Lk =∑
i

∑
γ,δ∈{+,−}

(tγMO)∗tδMO

[
ε0

∑
j
ε∗MO,i j (Eγ

j ,MO)∗Eδ
i ,MO + 1

µ0µ
(Bγ

i ,MO)∗Bδ
i ,MO

]
1

ε0(α∗
γ +αδ)

+∑
i

[
ε0

d(ωεm(ω))

dω
|Ei ,m |2 + 1

µ0µ
|Bi ,m |2

]
1

ε0(α∗
m +αm)

. (50)

Since Ei is taken to be unitless, Lk effectively has units of length. Physically, Lk defines a mode volume SLk with a quan-
tized amount of energy corresponding to the frequency ωk . Importantly Supplementary Equation (49) is quadratic in the
electric field amplitude Ak , which implies that each k mode corresponds to a harmonic oscillator. If we wish to quantize
the energy in quanta of ωk ,
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HSP,k = ω(k)

2
(αkα

∗
k +α∗

kαk ), (51)

we can define αk so that,

Ak =
√
ω(k)

SLk
αk . (52)

Other multiplicative phase factors in this amplitude definition (U(1) gauge choice) do not affect the quantization. Pro-
moting the complex amplitudes to operators, αk → ak and α∗

k → a†
k with [ak , a†

k ] = 1,

HSP,k = ω(k)

2
(ak a†

k +a†
k ak )

=ω(k)
(
ak a†

k + 1

2

)
. (53)

To summarize, we have normalized each k mode in Supplementary Equations (48.1) and (48.2) by associating energy
quantaωk to a SP excitation in such mode. Note that in the main text, the Hamiltonian HSP ignores the zero-point energy
ω(k)

2 for each mode since the energy gap of the excitons is also given relative to a ground state. Finally, the final electric
field and magnetic induction are superpositions of amplitudes in such modes,

~E =∑
k

Ak~E(k). (54.1)

~B =∑
k

Ak~B(k). (54.2)

Promoting these amplitudes to operators (in the Heisenberg picture) and using Supplementary Equation (52),

~̂E (r , t ) =∑
k

2

√
ω(k)

2ε0SLk
ak~E(k)

=∑
k

√
ω(k)

2ε0SLk
ak~E(k)+

√
ω(k)

2ε0SLk
a†

k
~E∗(k), (55.1)

~̂B(r , t ) =∑
k

√
ω(k)

2ε0SLk
ak~B(k)+

√
ω(k)

2ε0SLk
a†

k
~B∗(k), (55.2)

where we have used the fact that ~E and ~B are real valued to write the operators in a more conventionally symmetric form.

G. Perturbation expansion of Lk

The fields deduced in section E of this Supplementary Note are only correct up to O(g ), so it is important that we keep
Lk up to that order too. Importantly, since (←→ε MO)rθ = i g and Eθd ∝ g , the lowest order contribution to Lk appears at
O(g 2). Hence, we do not need to take the anisotropic effects of εMO into account, and we can set g = 0 in Supplementary
Equation (7), i.e. ←→ε MO ≈ εd I, where I is the 3×3 identity matrix. Therefore, the calculation for Lk ≈ Lk0 reduces to that of
the standard SP mode in the absence of external magnetic field (αd0 and αm0 are purely real) [16],

Lk0 =
∑

i

{[
ε0εd |Ei ,d0|2 +

1

µ0µ
|Bi ,d0|2

]
1

2ε0αd0
+

[
ε0

d(ωεm0(ω))

dω

∣∣∣∣
ω=Ω0

c

|Ei ,m0|2 + 1

µ0µ
|Bi ,m0|2

]
1

2ε0αm0

}

=
[
εd

(
1+ k2

α2
d0

)
+

(
εdΩ0

αd0

)2] 1

2αd0
+

[
d(ωεm0(ω))

dω

∣∣∣∣
ω=Ω0

c

(
1+ k2

α2
m0

)
+

(
εdΩ0

αd0

)2] 1

2αm0

= −εm0

αd0
+ 1

2αm0

[
d(ωεm0(ω))

dω

∣∣∣∣
ω=Ω0

c

(
εm0 −εd

εm0

)
−εm0 −εd

]
. (56)
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In this derivation, we have used µ= 1, ε0µ0 = c−2, Supplementary Equations (27), (35.1), and (35.2) as well as the expres-
sions for (24.2), and (24.3). The final result in Supplementary Equation (56) is twice of what is reported in the Supplemen-
tary Material of [16]. We believe our derivation has the correct prefactors; however, the use of either result gives the same
order of magnitude of the effects we are interested in.
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Supplementary Note 2. MAGNETO-SPS IN A THREE-LAYER SETUP

We shall now adapt the results from Supplementary Note 1 to the situation where the MO layer has a finite height a, and
an organic layer of isotropic dielectric εor g is placed on top of it (see Supplementary Figure 3). As far as we are aware, the
resulting expressions for the corresponding magneto-SPs have not appeared before in the literature.

Supplementary Figure 3. Three-layer (metal-MO dielectric-organic) setup. We are interested in the (magneto)-SP modes arising at the
dielectric-organic interface (z = a) upon application of a perpendicular external magnetic field.

A. Electromagnetic modes for each layer

1. Organic layer (z > a)

Just as we did for the MO and the metal layers (see Supplementary Equations (10) and (15)), Supplementary Equation
(9) for the organic layer can be expressed in matrix form Mor g E or g = 0,

 εm −Ω−2k2
z,or g 0 Ω−2kkz,or g

0 εm −Ω−2(k2 +k2
z,or g ) 0

kkz,or gΩ
−2 0 εm −Ω−2k2

Ek,or g
Eθ,or g
Ez,or g

=
0

0
0

 . (57)

Importantly, we do not fix the radial component Ek,or g to 1 because of the boundary conditions at the organic crystal and
MO interface at z = a. In our (arbitrary) normalization before quantization, we may set only one of the field components
in one of the layers to 1, and our convention is to choose Er,m = 1 as in the two-layer case. The rest of the fields are
not arbitrary and satisfy the wave equation Supplementary Equation (9) as well as boundary conditions at each of the
interfaces. The corresponding secular equation for the decaying field for z > a, with kz,or g = iαor g yields

αor g =
√

k2 −Ω2εor g , (58)

as expected (see Supplementary Equation (16)). Finally, just like in the metal layer, Supplementary Equation (57) tells us
that
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Ez,or g = i k

αor g
Er,or g , (59)

but does not inform us about the tangential component Eθ,or g (nor about Ek,or g ), The missing components will be de-
duced by matching the boundary at z = a. Altogether, the fields in the organic layer read like those in Supplementary
Equations (18.1) and (18.2),

~Eor g = E or gηe−αor g z

= (Ek,or g ,Eθ,m ,Ez,m)ηeαm z , (60.1)

~Bor g = B or gηe−αor g z

= −i

ω
(αor g Eθ,or g ,−i kEz,or g −αor g Ek,or g , i kEθ,or g )ηe−αor g z , (60.2)

denoting exponentially decreasing fields.

2. MO layer (a > z > 0)

For the MO layer, we translate Supplementary Equations (18.1) and (18.2) to this setup,

~E±
MO↓ = E±

MO↓ηe−α
±z

= (1,E±
θ,MO↓,E±

z,MO↓)ηe−α
±z , (61.1)

~B±
MO↓ = B±

MO↓ηe−α
±z

−i

ω
(α±E±

θ,MO↓,−i kE±
z,MO↓−α±, i kE±

θ,MO↓)ηe−α
±z , (61.2)

where ~E±
MO↓ and ~B±

MO↓ indicate exponentially decreasing fields (kz = iα±
MO), and by slightly adapting these expressions,

~E±
MO↑ = E±

MO↑ηeα
±z

= (1,E±
θ,MO↑,E±

z,MO↑)ηeα
±z , (62.1)

~B±
MO↑ = B±

MO↑ηeα
±z

−i

ω
(−α±E±

θ,MO↑,−i kE±
z,MO↑+α±, i kE±

θ,MO↑)ηeα
±z , (62.2)

where ~E±
MO↑ and ~B±

MO↑ denote exponentially increasing fields (kz =−iα±
MO). In Supplementary Note 1, where MO was

considered to fill up all the space z > 0, the latter fields were not considered, the reason being that eα
±
MO z was unbounded

as z →∞; this is not the case when the largest value of z is a. A more intuitive way to describe this situation is that ~E±
B IG↓

and ~B±
B IG↓ denote fields that exponentially decrease starting from z = 0 going upwards; similarly, ~E±

B IG↑ and ~B±
B IG↑ describe

exponentially decreasing fields starting from z = a going downwards. Hence, the analogous expressions to Supplementary
Equations (19.1) and (19.2) are,

~EMO = t+↓ ~E
+
MO↓+ t−↓ ~E

−
MO↓+ t+↑ ~E

+
MO↑+ t−↑ ~E

−
MO↑, (63.1)

~BMO = t+↓ ~B
+
MO↓+ t−↓ ~B

−
MO↓+ t+↑ ~B

+
MO↑+ t−↑ ~B

−
MO↑. (63.2)

where t±↓ and t±↑ are the unknown coefficients. Here, E±
θ,MO↓ = E±

θ,MO↑ = E±
θ,MO but E±

z,MO↓ = −E±
z,MO↑ = E±

z,MO . These

identities are easy to check as ~E±
MO↓ is associated with kz = iα±

MO and ~E±
MO↑ with kz =−iα±

MO , but Supplementary Equa-

tions (14.1) and (14.2) were derived for kz = iα±
MO .
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3. Metal layer (z < 0)

Finally, for the metal layer, all the expressions we derived in Sec. Supplementary Note 1 hold, in particular Supplemen-
tary Equations (20.1) and (20.2); we still assume Ek,m = 1.

B. Matching the modes at the boundaries (z = 0 and z = a)

Given this prelude, the analogous boundary conditions to Supplementary Equations (21.1)–(21.6) for z = 0 are,

1 = t+MO↓+ t−MO↓+ t+MO↑+ t−MO↑, (64.1)

Eθ,m = t+MO↓E+
θ,MO↓+ t−MO↓E−

θ,MO↓+ t+MO↑E+
θ,MO↑+ t−MO↑E−

θ,MO↑, (64.2)

εmEz,m = εd (t+MO↓E+
z,MO↓+ t−MO↓E−

z,MO↓+ t+MO↑E+
z,MO↑+ t−MO↑E−

z,MO↑), (64.3)

αmEθ,m =−(α+
MO t+MO↓E+

θ,MO↓+α−
MO t−MO↓E−

θ,MO↓)+ (α+
MO t+MO↑E+

θ,MO↑+α−
MO t−MO↑E−

θ,MO↑), (64.4)

kEz,m + iαm = k(t+MO↓E+
z,MO↓+ t−MO↓E−

z,MO↓+ t+MO↑E+
zMO↑+ t−MO↑E−

z,MO↑)

−iα+
MO(t+MO↓− t+MO↑)− iα−

MO(t−MO↓− t−MO↑), (64.5)

Eθ,m = t+MO↓E+
θ,MO↓+ t−MO↓E−

θ,MO↓+ t+MO↑E+
θ,MO↑+ t−MO↑E−

θ,MO↑, (64.6)

whereas for z = a they are,

Ek,or g = t+MO↓χ
++ t−MO↓χ

−+ t+MO↑
1

χ+
+ t−MO↑

1

χ−
, (65.1)

Eθ,or g = t+MO↓E+
θ,MO↓χ

++ t−MO↓E−
θ,MO↓χ

−+ t+MO↑E+
θ,MO↑

1

χ+
+ t−MO↑E−

θ,MO↑
1

χ−
, (65.2)

εor g Ez,or g = εd

(
t+MO↓E+

z,MO↓χ
++ t−MO↓E−

z,MO↓χ
−+ t+MO↑E+

z,MO↑
1

χ+
+ t−MO↑E−

z,MO↑
1

χ−

)
, (65.3)

−αor g Eθ,or g =−
(
α+

MO t+MO↓E+
θ,MO↓χ

++α−
MO t−MO↓E−

θ,MO↓χ
−
)

+
(
α+

MO t+MO↑E+
θ,MO↑

1

χ+
+α−

MO t−MO↑E−
θ,MO↑

1

χ−

)
, (65.4)

kEz,or g − iαor g Er,or g = k

(
t+MO↓E+

z,MO↓χ
++ t−MO↓E−

z,MO↓χ
−+ t+MO↑E+

z,MO↑
1

χ+
+ t−MO↑E−

z,MO↑
1

χ−

)
−iα+

MO

(
t+MO↓χ

+− t+MO↑
1

χ+

)
− iα−

MO

(
t−MO↓χ

−− t−MO↑
1

χ−

)
, (65.5)

Eθ,or g = t+MO↓E+
θ,MO↓χ

++ t−MO↓E−
θ,MO↓χ

−+ t+MO↑E+
θ,MO↑

1

χ+
+ t−MO↑E−

θ,MO↑
1

χ−
. (65.6)

Here, χ± = e−α
±
MO a embodies the vertical thickness dependence of the problem. Supplementary Equations (64.1)–(65.6)

can be manipulated to yield an entirely analogous expression to Supplementary Equation (22). This resulting expression
can then be perturbatively expanded in g and the analogous procedure of section E of Supplementary Note 1 follows, with
the caveat that the algebra becomes much more laborious. We bypass the latter by automatizing such work with Wolfram
Mathematica(c). We summarize the results in the following sections of this Supplementary Note.

C. Perturbation expansion on g

1. Solving for t±↓ and t±↑

It is clear that provided that the frequenciesΩ0 andΩ2 are modified accordingly (one findsΩ1 = 0 again), the expansions
for the dielectric constants and the wavevectors can all be recycled from section E of Supplementary Note 1. On top of
these quantities, following that section, we ought to expand αor g and χ± up to O(g 2) in Supplementary Equation (58),
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Supplementary Figure 4. SP dispersion energy as a function of k = |k | for the three-layer (metal-MO dielectric-organic) setup, assuming
g = 0. Plots generated using Supplementary Equation (69) with Drude parameters for Ag, ε∞ ∼ 4, ωP ∼ 9 eV, and varying the dielectric
permittivity εd as well as that of the organic layer. Since Ω = Ω0 +O(g 2), the plots are correct up to O(g ), which is our perturbation
order of interest. Just like with Supplementary Figure (2), notice that the dispersion curves start-off linearly (light-like excitations), but
plateau to constant values at large wavevectors (charge oscillations in the metal), which become smaller as the dielectric permittivity
increases.

αor g ≈αor g 0 + g 2αor g 22Ω2, (66.1)

αor g 0 =
√

k2 −Ω2
0εor g , (66.2)

αor g 22 =−Ω0εor g

αor g 0
, (66.3)

χ± ≈χ0

{
1∓agαd1 − g 2

[
a2
α2

d1

2
+a(αd20 +αd22Ω2)

]}
, (67)

but we only need t±MO↓ and t±MO↑ up to O(g ),

t±MO↓ ≈ td↓0 ± g td↓1, (68.1)

t±MO↑ ≈ td↑0 ± g td↑1. (68.2)

Collecting the zeroth-order in g contributions in Supplementary Equations (64.1)–(65.6), we derive an implicit equation
for Ω0 which coincides with the standard textbook result for a three-layer system in the absence of an external magnetic
field [14],

χ2
0 =

(
αd0εm0 +αm0εd

αd0εm0 −αm0εd

)(
αd0εor g +αor g 0εd

αd0εor g −αor g 0εd

)
, (69)

where αd0, αm0, αor g 0, and εm0 are all functions of Ω0. This equation is the analogue of Supplementary Equations (27)
and (28) for three layers. It is not possible to explicitly solve for Ω0, but one can readily compute it numerically from
such implicit equation (see Supplementary Figure 4). The formula forΩ2 is too long to display it here and is, anyway, not
relevant on its own. However, we make use of it to obtain our final results.

Next, we compute the coefficients in Supplementary Equations (68.1) and (68.2) in analogy to the two-layer case in
Supplementary Equations (36) and (37). At zeroth-order in g ,
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td↓0 =
αm0εd −αd0εm0

4αm0εd
, (70.1)

td↑0 =
αm0εd +αd0εm0

4αm0εd
, (70.2)

while their first-order in g corrections are,

td↓1 =αd1

(
aα3

d0(χ2
0 −1)εm0

−α2
d0{χ2

0[aεm0(αm0 +αor g 0)+aαm0εd +εm0]+aαm0εd −aαm0εm0 +aαor g 0εm0 −εm0}

+αd0{aα2
m0(χ2

0 +1)εd +αm0(aαor g 0 +1)[χ2
0(εd +εm0)−εd +εm0]+2αor g 0εm0}

−α2
m0(χ2

0 −1)εd (aαor g 0 +1)
)
/

{4αm0εd [χ2
0(αm0 −αd0)(αd0 −αor g 0)+ (αd0 +αm0)(αd0 +αor g 0)]} (71.1)

and

td↑1 =
[
αd1χ

2
0

(
αd0εm0{aα2

d0 −αor g 0[a(αd0 +αm0)+2]+aαd0αm0 +αd0 −αm0}

−αm0εd (αd0 +αm0)[a(αd0 −αor g 0)−1]
)

−αd1(αd0 +αm0)[a(αd0 +αor g 0)+1](αd0εm0 +αm0εd )
]

/

{4αm0εd [χ2
0(αm0 −αd0)(αd0 −αor g 0)+ (αd0 +αm0)(αd0 +αor g 0)]}. (71.2)

Hence, at zeroth order, t+MO↓+ t−MO↓ = 2td↓0 and t+MO↑+ t−MO↑ = 2td↑0, and these total coefficients for exponentially de-
creasing and increasing fields become identical to the textbook results for SP modes in the three-layer setup in the absence
of an external magnetic field.

2. Collecting the expressions for the fields

For reference, the zeroth-order fields are given by,

~Eor g 0 = (Ek,or g 0,0,Ez,or g 0)η0e−αor g 0z , (72.1)

~Bor g 0 = (0,Bθ,or g 0,0)η0e−αor g 0z , (72.2)

~Ed0 = 2td↓0(1,0,Ez,d↓0)η0e−αd0z +2td↑0(1,0,Ez,d↑0)η0eαd0z , (72.3)

~Bd0 = 2td↓0(0,Bθ,d↓0,0)η0e−αd0z +2td↑0(0,Bθ,d↑0,0)η0eαd0z , (72.4)

~Em0 = (1,0,Ez,m0)η0e−αm0z , (72.5)
~Bm0 = (0,Bθ,m0,0)η0e−αm0z , (72.6)

with each of the components being,
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Ek,or g 0 =
αm0(χ2

0 +1)εd −αd0(χ2
0 −1)εm0

2αm0χ0εd
, (73.1)

Ez,or g 0 =− i k[αd0(χ2
0 +1)εm0 +αm0(εd −χ2

0εd )]

2αd0αm0χ0εor g
, (73.2)

Bθ,or g 0 =
i {2αd0αm0αor g 0χ0εor g +k2[αd0(χ2

0 +1)εm0 +αm0(εd −χ2
0εd )]}

2αd0αm0χ0Ω0cεor g
, (73.3)

Ez,d↓0 =−Ez,d↑0 =
i k

αd0
, (73.4)

Bθ,d↓0 =−Bθ,d↑0 =− i (k2 −α2
d0)

αd0Ω0c
, (73.5)

Ez,m0 =− i k

αm0
, (73.6)

Bθ,m0 =
i (k2 −α2

m0)

αm0Ω0c
. (73.7)

The expressions for the O(g ) fields at each layer are also cumbersome; we only show the electric field in the organic
layer, as it is the one associated with the coupling with excitons (see Supplementary Equation (39.1)),

~Eor g ≈ ~Eor g 0 + g~Eor g 1. (74)

The first order in g contribution is

~Eor g 1 = E or g 1η0e−αor g 0z , (75)

where E or g 1 is purely tangential and purely-imaginary valued,

E or g 1 · θ̂ =−iΩ2
0

(
αm0εd {a[χ2

0(αd0 −αor g 0)+αd0 +αor g 0]−χ2
0 +1}

+εm0{χ2
0[aαd0(αor g 0 −αd0)+αor g 0]+aαd0(αd0 +αor g 0)−αor g 0}

)
/

2αm0εd [χ2
0(αm0 −αd0)(αd0 −αor g 0)+ (αd0 +αm0)(αd0 +αor g 0)]. (76)

Compared with Supplementary Equation (41.1), the z-dependence of ~Eor g 1 is purely exponential, as the lowest order
correction of αor g to αor g 0 is O(g 2).

D. Quantization and normalization of modes

Equipped with these results, we use Supplementary Equations (64.1)–(65.6) to compile expressions for the fields in each
layer. First, we aim to compute the vertical normalization length Lk for each mode. In analogy to Supplementary Equation
(50), we obtain,

Lk =∑
i

[
ε0εor g |Ei ,or g |2 + 1

µ0µ
|Bi ,or g |2

]
1

ε0

ˆ ∞

a
d ze−(α∗

or g +αor g )z

+∑
i j

∑
γ,δ∈{+,−}

∑
u,v∈{↑,↓}

(tγMOu)∗tδMOv

[
ε0(εMO,i j Eγ

j ,MO)∗Eδ
i ,MO + 1

µ0µ
(Bγ

i ,MO)∗Bδ
i ,MO

]

× 1

ε0

ˆ a

0
d ze[(sgn(u)(α

γ
MO )∗+sgn(v)αδMO ]z

+∑
i

[
ε0

d(ωεm(ω))

dω
|Ei ,m |2 + 1

µ0µ
|Bi ,m |2

]
1

ε0

ˆ 0

−∞
d ze(α∗

m+αm )z , (77)
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where sgn(↑) = −sgn(↓) = 1 denote the exponentially increasing or decreasing fields, respectively. At O(g ), Lk ≈ Lk0 as in
Supplementary Equation (56), and the anisotropy of the MO layer is unimportant. Carrying out the integrations explicitly
(and taking care of the possibility that αd0 is complex-valued),

Lk0 =
∑

i

[
ε0εor g |Ei ,or g 0|2 + 1

µ0µ
|Bi ,or g 0|2

]
e−2ℜαor g 0a

2ε0ℜαor g 0

+4
∑

i

∣∣∣td↑0

∣∣∣2
[
ε0εd |Ei ,d↑0|2 +

1

µ0µ
|Bi ,d↑0|2

](
e2ℜαd0a −1

2ε0ℜαd0

)

+4
∑

i

∣∣∣td↓0

∣∣∣2
[
ε0εd |Ei ,d↓0|2 +

1

µ0µ
|Bi ,d↓0|2

](
1−e−2ℜαd0a

2ε0ℜαd0

)
+

{
4
∑
i j

(td↑0)∗(td↓0)

[
ε0

∑
i
εd (Ei ,d↑0)∗Ei ,d↓0 +

1

µ0µ
(Bi ,d↑0)∗Bi ,d↓0

](
a

ε0

)
+c.c.

}

+∑
i

[
ε0

d(ωεm(ω))

dω
|Ei ,m0|2 + 1

µ0µ
|Bi ,m0|2

]
1

2ε0ℜαm0
, (78)

One may numerically compute Lk by plugging Supplementary Equations (70.1), (70.2), and (72.1)–(73.7) into Supplemen-
tary Equation (78). We do not display the resulting analytical expression, which anyhow, is lengthy and not particularly
illuminating.
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Supplementary Note 3. EXCITON-EXCITON AND EXCITON-SP COUPLINGS

In Secs. Supplementary Note 1 and Supplementary Note 2, we solved for the electromagnetic profile of the magneto-
SP modes in a two- and three-layer setup. We are now ready to describe the organic superlattice. We regard the latter
to be either “embedded” in the MO layer (in the two layer setup) or in its separate third layer (in the three-layer one). As
explained in the following paragraphs, the superlattice consists of a monoclinic array of organic aggregate nanopillars. For
simplicity, we take each of the nanopillars to be a rectangular parallelepiped of volume WxWy Wz (here, Wi is the width
of the nanopillar along the i -th axis). If the nanopillar density is ρnp , it contains Nnp = ρnpWxWy Wz chromophores.
Furthermore, the three-dimensional positions of the individual chromophores constituting each nanopillar are denoted,

r ms = (mxδx x̂ +myδy ŷ)︸ ︷︷ ︸
≡r m

+ sδz︸︷︷︸
≡zs

ẑ , (79)

where δi is the spacing between chromophores along the i -th direction,

A. Dipolar couplings between nanopillars

We shall first study the energetic contribution due to the excitons alone. We model this as,

Hexc =
∑
n,s
ωnσ

†
nσn + ∑

n 6=n′
(Jnn′σ†

nσn′ +h.c.), (80)

where ωn is the bare energy of the n-th collective nanopillar dipole, which we take in the ideal case to be ωn = ω̄. The
exciton hopping amplitude between the n-th and n′-th nanopillars is approximated as a near-field dipolar coupling,

Jnn′ = η

ε|r n − r n′ |3
[
µn ·µn′ −3(µn ·enn′ )(µn′ ·enn′ )

]
, (81)

where η = 0.625meV(nm3/D2), enn′ = r n−r n′
|r n−r n′ | , where r n is the average in-plane location of the n-th nanopillar, and we

take ε≈ 1, the dielectric permittivity in the medium surrounding the nanopillars. Supplementary Equation (81) implicitly
relies on a separation of energy scales, namely, that the coupling between chromophores is much stronger within a single
nanopillar than between different ones. Hence, we start with the collective superradiant nanopillar transitions which scale
asµn =∑

ms pms ≈
√

Nnp pn [17], where pms is the transition dipole moment of the ms-th chromophore in the nanopillar,
the sum is over all ms values associated with the n-th nanopillar, and pms = pn , that is, we take the dipole to be equal for all
chromophores within the corresponding nanopillar. This approximation should provide a semi-quantitative description
of the dispersion of the organic superlattice alone. A more refined description would rely on the coupled-dipole method
[18–20], but is beyond the scope of this work, as this simplified model illustrates the essence of the problem.

We shall now consider a general two-dimensional monoclinic superlattice with unit cell defined by vectors ~OD and ~OC
depicted in Supplementary Figure 5. For convenience, we temporarily adopt the θ-rotated coordinate system x ′y ′ which,
with respect to the original x y system, is defined by,

[
x̂
ŷ

]
=

[
cosθ −sinθ
sinθ cosθ

][
x̂ ′

ŷ ′

]
. (82)

We will later explain how to obtain θ. We take two sides of the parallelogram (AB and C D) to be parallel to x̂ ′. For simplicity,
the nanopillars are taken to be rectangular parallelepipeds. Their transition dipoles µn =µ are fixed in the x ′y ′ plane and

make an angle α′ with respect to x̂ ′ (or α≡α′+θ with respect to x̂). Notice that all sites are equivalent. We only account
for nearest-neighbor (NN) and next-nearest-neighbor interactions (NNN). We classify the interactions as horizontal NNN
(AB , C D), vertical NNN (AD , BC ), diagonal type A NN (O A, OC ), and diagonal type B NN (OB ,OD), respectively,
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Jh = ηµ2 (1−3cos2α′)
∆3

h

, (83.1)

Jv = ηµ2 [1−3cos2(α′−β)]

∆3
v

, (83.2)

Jdi ag A = ηµ2 [1−3cos2(α′−γ)](
∆2

h+2∆h∆v cosβ+∆2
v

4

)3/2
, (83.3)

Jdi ag B = ηµ2 [1−3cos2(α′+δ)](
∆2

h−2∆h∆v cosβ+∆2
v

4

)3/2
. (83.4)

Here, |µ| =µ and the side lengths are AB =C D =∆h and BC = AD =∆v . We have also conveniently introduced the angles
β≡∠BC D =∠D AB , as well as the following,

γ= atan
∆v sinβ

∆h +∆v cosβ
, (84.1)

δ= atan
∆v sinβ

∆h −∆v cosβ
. (84.2)

Assuming that all site energies are equal, ωn = ω̄, we may rewrite Supplementary Equation (80) in k space, Hexc =∑
k Hexc,k , where Hexc,k =ωexc,kσ

†
kσk , where k = kx′ x̂ ′+ky ′ ŷ ′ and

ωexc,k = ω̄+2Jhcos(kx′∆h)+2Jv cos

[
kx′∆v cosβ+ky ′∆v sinβ

]
+2Jdi ag Acos

[
kx′
∆h +∆v cosβ

2
+ky ′

∆v sinβ

2

]
+2Jdi ag B cos

[
kx′
∆h −∆v cosβ

2
−ky ′

∆v sinβ

2

]
(85)

is the resulting dispersion relation for the excitons alone.
As explained in the main text, we would ideally like to design a plexciton dispersion which features a global gap in the

bulk. This requires a superlattice with an “H-aggregate” dispersion along all wavevector directions. Mathematically, this
means that the dispersionωexc,k should be a maximum at k = 0. It turns out that this is not possible in a rectangular lattice
(β = π

2 ), as the resulting J-couplings (Ji < 0) arising from the geometric constraints end up dominating the H-couplings
(Ji > 0) at least along one direction, yielding a minimum, or at best a saddle point for ωexc,k at k = 0. Hence, we proceed
in a more systematic fashion. Taylor expanding Supplementary Equation (85) up to quadratic order in ki ′ ,

ωexc,k ≈ ω̄′
e f f + [ kx′ ky ′ ]

[
Mx′x′ Mx′y ′
My ′x′ My ′y ′

][
kx′
ky ′

]
, (86)

where the constant offset is obtained by evaluating ωexc,k at k = 0,

ω̄′
e f f = ω̄+2Jh +2Jv +2Jdi ag A +2Jdi ag B . (87)

Here, Mi ′ j ′ = 1
2
∂2Eexc,k
∂ki ′∂k j ′

∣∣∣∣
k=0

denotes a Hessian matrix, which can be readily diagonalized,

[
Mx′x′ Mx′y ′
My ′x′ My ′y ′

]
=

[
Sxx′ Sy x ′
Sx y ′ Sy y ′

][
mx 0

0 my

][
Sxx′ Sx y ′
Sy x′ Sy y ′

]
. (88)

where Si j ′ is a unitary matrix, and ultimately yields the result,
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Supplementary Figure 5. Geometry of two-dimensional monoclinic superlattice of organic nanopillars. x′y ′ denotes a temporary Carte-
sian coordinate system which is rotated at θ from the original x y system. The collective transition dipole moments of the nanopillars
make an angle α′ with respect to x̂ ′ (or α≡α′+θ with respect to x̂). The horizontal and vertical distances ∆h and ∆v , together with the
angles β, γ, and δ fully define the superlattice.

ωexc,k ≈ ω̄′
e f f +mx k2

x +my k2
y (89.1)

≈ ω̄e f f +2Jx coskx∆x +2Jy cosky∆y , (89.2)

where ki = Si x′kx′ + Si y ′ky ′ , and for our simulation, we choose (arbitrary) effective unit cell dimensions ∆i such that
Ji = −mi

∆2
i

for i = x, y , and ω̄′
e f f = ω̄e f f +2Jx +2Jy ; this identification renders Supplementary Equations (89.1) and (89.2)

equal up to quadratic order in ki . We have thus arrived at a very convenient expression; Supplementary Equation (89.2)
shows that the oblique lattice renders the same long-wavelength physics as a much simpler rectangular lattice with only
NN interactions. This approximation is insightful in that it exposes the physical origin of the global gap; it also remains
valid for our purposes as the topological phenomena of our interest occurs at small ki .

For an arbitrary fixed value of∆h , we Monte Carlo sample through the parameters r ≡ ∆v
∆h

∈ [0,2],α ∈ [0,π], and β ∈ [0,π]
and record those which yield mx ,my < 0. We observe that only ~8% of the parameter space satisfies the H-aggregate
condition we are looking for. One such set of parameters is α′ = 1.20(= 68.5degrees), β = 0.23(= 13.1degrees), r = 0.88,

yielding (mx ,my ) = −(1.49,0.44)J0∆
2
h , where J0 ≡ ηµ2

∆3
h

sets the energy scale of the dipolar interactions. The associated

eigenvector matrix is,

[
Sxx′ Sy x′
Sx y ′ Sy y ′

]
=

[ −0.91 −0.41
0.41 −0.91

]
=

[
cosθ −sinθ
sinθ cosθ

]
(90)

where we obtain θ = 2.72(= 155.7o), which defines the angle of rotation of our temporary coordinates x ′y ′ with respect
to the original ones x y ; then, α = α′+θ = 3.9(= 224o). Now, each nanopillar has a collective transition dipole moment
value of µ=√

Nnp |pn | =
√

Nnp ×12D =√
WxWy Wzρnp ×12D (D=Debye). Choosing the nanopillars to be separated from

one another by ∆h , we N get a value for the energy scale of J0 = ηWx Wy Wzρnp

∆3
h

×100D2. Taking ρnp = 38molecules/nm3, we

obtain,
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Jx =−mx

∆2
x
= 3.45eV×ζx

Jy =−my

∆2
y
= 1.02eV×ζy

where ζi = Wx Wy Wz

∆h∆
2
i

are dimensionless ratios which govern the effective dispersion of the superlattice. By choosing the

physically reasonable parameters ∆h = 100nm, Wx = 10nm, Wy = 75nm, Wz = 70nm, ω̄e f f = 0.57eV (the latter is chosen
to obtain maximum coupling of the exciton with the magneto-optical interaction) and the effective simulation parameters
∆x = ∆y = 50nm, we obtain ∆v = r∆h = 88nm, ζx = ζy = 0.21, Nnp = 2×106 molecules, µ = 1.7×104 D, Jx = 1.04eV, Jy =
0.31eV. We emphasize that even though Jx and Jy can have arbitrary values which depend on our choice of parameters
∆x and ∆y , the latter set the spatial resolution of our real space simulations, and hence, the size of the systems we can
computationally study. These simulations are carried out in order to calculate edge states as well as understand the effects
of disorder.

We note that when choosing parameters, we need to make sure that (a) the nanopillars do not yuxtapose each other and
(b) the number of chromophores in the organic layer is large enough to achieve considerable coupling with the SPs (see
Supplementary Equations (96) and (99)), (c) the thickness Wz is not too large to induce very strong dipolar interactions
between nanopillars which overwhelm the exciton-SP coupling in (b). Condition (a) is easily checked computationally
and graphically. With respect to condition (b), we note that the surface area of the ABC D parallelogram in Supplementary
Figure 5 is ∆h∆y sinβ. It contains two nanopillars of surface area WxWy . The surface coverage fraction of the organic layer
is hence,

f = 2WxWy

∆h∆v sinβ
. (91)

For our chosen parameters, f = 0.78. In general, we need both f and Wz to not be very small ( f > 0.2, Wz > 40nm) in order
to achieve strong exciton-plasmon coupling. Condition (c) is optimized numerically and yields parameters Wz < 100nm.

In the next section of this Supplementary Note, we shall work with the effective rectangular superlattice of Nx × Ny

nanopillars (where Ni is the number of nanopillars along the i -th direction) instead of the original monoclinic one. This is
a good approximation not only for the interactions between the various nanopillars, but also for the exciton-SP couplings,
as long we use the average density of the original monoclinic lattice (see Supplementary Equations (96) and (99)).

B. Exciton-SP couplings

We are now ready to discuss the effective interaction between SPs and a single nanopillar. Consider the dipole operator
p̂ms = pms (b†

ms + bms ), where b†
ms (bms ) creates (annhilates) an exciton at the ms-th chromophore of some nanopillar.

The time-independent electric field operator is ~̂E ′(r ) ≡ ∑
k

√
ω(k)

2ε0SLk
ak~E

′(k)+h.c., which results from transforming Sup-

plementary Equation (55.1) from the Heisenberg to the Schrodinger picture by removing the dynamical phases e−iω(k)t

(see Supplementary Equations (18.1) and (20.1)), i.e., ~E ′(k) ≡ ~E(k)e iω(k)t . Using Supplementary Equation (74) and (75),
the dipolar coupling between the n-th nanopillar and the SP modes is given by

H (n)
exc−SP =−∑

m,s
p̂ms · ~̂E ′(r )

= ∑
k ,m,s

Jk ,ms ak b†
ms e i k ·rm +h.c., (92)

where the sum over ms is restricted to the chromophores in the n-th nanopillar. We have also used the rotating-wave
approximation to discard far-off-resonant terms of the form akσns and a†

kσ
†
ns . Using Supplementary Equation (55.1), the

corresponding coupling is given by,

Jk ,ms =−
√

ω(k)

2ε0SLk
e−α(k)zs pms ·E (k , zs ), (93)

where, depending on whether we use the two-layer or three-layer setup results, we make the following substitutions,
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Two-layer setup

Lk Lk0 Supplementary Equation (50)

α αd0 Supplementary Equation (24.2)

E (k , zs ) E MO(k , zs ) = E d0(k)+ g E d1(k , zs ) Supplementary Equations (40.1), (41.1)

Three-layer setup

Lk Lk0 Supplementary Equation (78)

α αor g 0 Supplementary Equation (66.2)

E (k , zs ) E or g (k , zs ) = E or g 0(k)+ g E or g 1(k , zs ) Supplementary Equations (72.1), (73.1), (73.2), (76).

Supplementary Equation (93) exposes the 3D nature of our problem with its zs dependence: there is an exponential con-
tribution e−α(k)zs from the SP evanescent field, and even a linear correction in zs due to E d1 for the two-layer setup. In any
case, it will prove convenient to derive an effective 2D description for our model. We have two ways to do so.

1. Mean-field approximation (MFA)

Using Supplementary Equations (92) and (93),

H (n)
exc−SP =−∑

k

√
ω(k)

2ε0SLk
e−α(k)z̄(k)ak pms ·

[∑
ms

E (k , zs )e i k ·(r m−r n )−α0(k)(zs−z̄(k))b†
ms

]
e i k ·r n +c.c. (94.1)

≈−∑
k

√
ω(k)

2ε0SLk
e−α(k)z̄(k)e i k ·r nµn ·E (k , z̄(k))︸ ︷︷ ︸

≡Jkn

akσ
†
n +c.c., (94.2)

where we have formally taken z̄(k) to be an average (k-dependent) vertical position for the chromophores in the nanopil-
lar (we will discuss how to compute this parameter later, see Supplementary Equation (101)), made the MFA that
e i k ·(r m−r̄ )−α0(k)(zs−z̄) ≈ 1, assumed that the dipoles pms = pn for all the chromophores in the n-th nanopillar, and de-
fined the collective exciton operator,

σ†
n = 1√

Nnp

∑
ms

b†
ms , (95)

such that its corresponding transition dipole is superradiantly enhanced at µn = 〈0|σn
∑

ms p̂ms |0〉 =
√

Nnp pn [17].
Having addressed the effective interaction between a single nanopillar and the SP modes, we can move on to the de-

scription of the superlattice, Hexc−SP = ∑
n H (n)

exc−SP . If µn = µ and we assume periodic boundary conditions (PBCs),

we can construct Fourier k modes for the excitons too, σ†
k = 1p

Nx Ny

∑
n σ

†
n e i k ·r n . Then, we arrive at the Hamiltonian,

Hexc−SP =∑
k Hexc−SP,k =∑

k J (k)akσ
†
k +h.c., where

J (k) =
√(

Nx Ny

S

)(
ω(k)

2ε0Lk0

)
e−α0(k)z̄(k)µ ·E (k), (96)

and k runs for all the allowed discretized wavevectors ki =− π
∆i

+ 2π
Ni∆i

qi for qi = 0,1, · · · , Ni −1.
Within the MFA, we have achieved to represent each nanopillar as a single collective transition dipoleµn associated with

the operator σ†
n . There is, however, an ambiguity in this approximation, namely, the criterion to optimize the parameter

z̄(k). We will discuss this in subsection 3 below.

2. Beyond the MFA

Going back to Supplementary Equation (94.1) and assuming pms = pn , we can consider alternative nanopillar modes.
We follow González-Tudela, et al [10]. Let us define the new modes (distinguished from the others by the overbar notation),
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σ̄†
n (k) = 1p

N

∑
ms

pn ·E (k , zs )e i k ·(r m−r n )−α0(k)zs b†
ms , (97)

where the corresponding normalization is given by,

N =∑
ms

∣∣∣pn ·E (k , zs )e i k ·(r m−r n )−α0(k)zs

∣∣∣2

≈ Nnp

Wz

ˆ z f

z0

d z|pn ·E (k , z)|2e−2ℜα0(k)z . (98)

where we identified z f − z0 = Wz as the vertical thickness of each nanopillar. Introducing the corresponding k mode

σ̄†
k = 1p

Nx Ny

∑
n σ̄

†
n (k)e i k ·r , Supplementary Equation (94.1) becomes Hexc−SP =∑

k Hexc−SP,k ≈∑
k J̄ (k)ak σ̄

†
k+h.c., where,

J̄ (k) ≈
√
ρ

(
ω(k)

2ε0Lk0

)√ˆ z f

z0

d ze−2ℜα0(k)z |pn ·E (k , z)|2, (99)

where we have identified

ρ = Nx Ny Nnp

SWz
= (NxWx )(Ny Wy )

S︸ ︷︷ ︸
<1

ρnp (100)

as the average density of chromophores in the organic superlattice which, due to the “void space” between nanopillars,
is lower than ρnp . Except for a different convention in the phases of our exciton modes σ̄†

k , this solution has the same
structure as the one presented in [10], even though the latter deals with an organic layer of uniform density.

3. Comparison

When we wrote Hexc−SP ≈ ∑
k J (k)akσ

†
k +h.c., we made a MFA to Supplementary Equation (94.1) by invoking defini-

tions for the modeσ†
n and the coupling J (k) (Supplementary Equations (95) and (96)). The essence of this approximation

is the exponential factor e−α0(k)z̄(k) in J (k), which implies that when each nanopillar interacts with the k-th electro-
magnetic mode, it behaves as a collective dipole placed at the effective height z = z̄(k). On the other hand, when going
beyond the MFA, we introduced σ̄†

n (k) and J̄ (k) (Supplementary Equations (97) and (99)) and showed that Hexc−SP ≈∑
k J̄ (k)ak σ̄

†
k +h.c. is an exact representation of Supplementary Equation (94.1) (notwithstanding the excellent approx-

imations of converting the sums over chromophores to integrals and the PBCs). Hence, σ̄†
k (and not σ†

k ) is the natural

exciton mode which couples to the SP mode a†
k .

The solution beyond MFA might be a more convenient description if one is interested in a careful description of the
energetics of the problem. However, for purposes of the topological characterization of the plexciton band-structure, it
is more pertinent to adopt the MFA description. Notice from Supplementary Equation (97) that σ̄†

n (k) depends explicitly
on k , so that the Fourier modes σ̄†

k = 1p
Nx Ny

∑
n σ̄

†
n (k)e i k ·r have an additional dependence on k beyond the phase factor

e i k ·r . This introduces a technicality for the numerical computation of the Chern number for each plexciton band, which
we wish to avoid at present. This complication does not occur in the MFA, where σ†

n uniformly sums over the excitons
operators b†

ms for a given nanopillar regardless of k . Thus, we make a compromise: we formally use the structure of the

MFA, but heuristically make the energetic approximation
∣∣∣J (k)

∣∣∣= J̄ (k). Comparing Supplementary Equations (96) and

(99), this identity requires that z̄(k) satisfies,

∣∣∣∣pn ·E (k , z̄(k))e−αor g 0(k)z̄(k)
∣∣∣∣=

√
1

Wz

ˆ z f

z0

d z|pn ·E (k , z)|2e−2ℜαor g 0(k)z . (101)

This constraint has the appealing physical content of computing the mean-field effective position z̄(k) of the collective
nanopillar dipole by averaging interaction of the SP with respect to the interval z ∈ [zi , z f ]. Operationally, however, it is
not necessarily to solve for z̄(k), as having the value of J̄ (k) in Supplementary Equation (99) suffices for our calculations.
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To remind ourselves, when dealing with the dispersion of the organic layer alone, we have coarse grained it into an
effective rectangular superlattice. However, when computing the exciton-SP coupling via Supplementary Equation (99),
ρ must be taken to be the density of the original monoclinic superlattice. Supplementary Equation (100) is undetermined
as Nx and Ny are artificial simulation parameters, instead, we shall write

ρ = f ρnp , (102)

the average density is equal to the surface coverage fraction times the original nanopillar density.

4. Representative coupling values

While the simulations for the main text use the three-layer setup, it is instructive to also consider the two-layer one.
Supplementary Figures 6 and 7 plot representative exciton-SP coupling values J̄ (k) using Supplementary Equation (99)
for the two-layer and three-layer setups, respectively. We display calculations for different orientations of the transition
dipoles of the nanopillars, when µ ∥ k̂ , µ ∥ θ̂k , and µ ∥ ẑ . Throughout the plots, we have chosen silver Drude parameters
ε∞ = 3.7,ωP = 8.8 eV and g = 0.3. Each of the panels displays results corresponding to a particular dielectric permittivity εd
and the base height of the nanopillars z0, and fixing the same organic layer height Wz = 70nm. Taking the parameters for
the organic superlattice described in section A of this Supplementary Note and assuming ρnp = 38chromophores/nm3,
the average density using f = 0.78 and Supplementary Equation (102) is computed to be ρ = 29.7chromophores/nm3.
Supplementary Figure 7 assumes that the MO dielectric layer has a width a and the base height of the nanopillars is also
a. Supplementary Figure 6 corresponds to the potential scenario where the organic nanopillars are “embedded” in the
MO dielectric layer starting at the base height z0.

As a reminder, in the absence of the MO effect, the electric field of the k-th SP mode has no tangential component
(see Supplementary Equations (40.1), (72.1)). Thus, the blue curves in the plots (µ ∥ θ̂k ) must vanish identically for g = 0.
For g 6= 0, these couplings scale linearly with g (see Supplementary Equations (41.1), (76)), so it is easy to predict these
perturbative exciton-SP couplings for other values of g . On the other hand, the red (µ ∥ k̂) and black (µ ∥ ẑ) curves are
independent of the value of g , as they are O(g 0). Notice that all the curves peak at short wavevectors. For the plexciton
dispersion calculation in the main text, we optimized large topological anticrossing gaps by choosing the effective site
energy ω̄e f f for excitons (see Supplementary Equation (87)) such that the exciton dispersion Hexc,k and the SP dispersion
HSP,k become degenerate (Dirac points) at wavevectors k∗ where the coupling to the tangential MO electric field is largest;
in other words, we maximized J̄ (k∗) for µ ∥ θ̂k .

The simulations displayed in the main text correspond to the first (upper left corner) panel of Supplementary Figure
7, yielding J̄ (1.60× 107 m−1) = 0.115eV for µ ∥ θ̂k , or equivalently, a topological anticrossing gap of 2J̄ (k∗) = 0.23eV.
This value becomes slightly larger than the linewidths of the exciton and SP modes. Note that quite often, the largest
couplings occur when µ ∥ ẑ , reaching values which are comparable to the exciton site energies. This regime, known as
ultra-strong coupling [21], is interesting in its own right and gives rise to novel effects, which are beyond the scope of our
work. Unfortunately, for our purposes, we cannot exploit these large couplings, as they do not vanish for any k and hence,
does not yield Dirac points (see main text).

A few interesting trends can be obtained from scanning through εd and z0; some of these results are displayed in Sup-
plementary Figures 6 and 7. First, couplings J̄ (k) for µ ∥ θ̂k and µ ∥ ẑ decrease as z0 increases, eventually becoming very
small for photonic distances (Supplementary Figure 6h and 7h). This is not surprising, as owing to the evanescent nature
of the SP fields, these couplings should be strongest for the chromophores that are closest to the interface at z = 0. For the
three-layer setup, however, the MO effect becomes naturally very small as the MO spacer thickness a vanishes. Contrary
to the evanescent decay of the field, Faraday rotation increases with propagation distance. Hence, we expect the largest
MO effect in plasmons to peak at a particular MO spacer thickness a, large enough to experience Faraday rotation, but
short enough that it has substantial amplitude despite of its evanescent decay. Keeping all other parameters of the simu-
lation in the main text equal, we find that a = 175nm maximizes J̄ (k∗) at J̄ (1.24×107 m−1) = 0.124eV for µ ∥ θ̂k . In our
simulations, we do not choose this value of a because the latter is barely larger than what we get with a = 80nm but, due to
the exponential decay of the field as a function of distance, renders much smaller values of J̄ (k) forµ ∥ k̂ (J̄ (k) < 0.25eV)
compared with the preferred scenario (J̄ (k) < 0.55eV). Large couplings J̄ (k) forµ ∥ k̂ guarantee a global topological gap.
also these values of which are small not optimal to generate the global topological gap.

Another interesting trend is that couplings decrease as the permittivity εd increases. This is an effect of index mismatch
between the different layers. A possibility to ameliorate this problem is to embed the MO material inside of a low dielectric
polymer, or consider multilayer structures which adiabatically change the dielectric function as a function of height. No-
tice that J̄ (k) for µ ∥ θ̂k for the two-layer setup are about an order of magnitude larger than the corresponding couplings
in the three-layer setup. This is explained by the fact that in this setup, the organic layer is embedded in the MO layer, so
the MO effect does not end sharply at z0 = a, as in the three-layer setup. Just to get an intuition about the plexciton dis-
persion that one would obtain under this hypothetical scenario, we present it in Supplementary Figure 8 with all the other
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Supplementary Figure 6. Representative exciton-SP coupling values for two-layer (metal-MO dielectric) setup. The calculations have
been carried out using Supplementary Equation (99). We display results for different orientations of the transition dipoles of the
nanopillars, when µ ∥ k̂ , µ ∥ θ̂, and µ ∥ ẑ . Notice that all the curves have maxima at short wavevectors. The calculations assume
that ε∞ = 3.8, ωP = 8.8 eV, g = 0.3, and the height of the nanopillars being Wz = 70nm.

parameters being equal to the three-layer simulation in the main text (i.e., using the coupling values in Supplementary
Figure 6a). Notice that due to the large values of J̄ (k) for µ ∥ θ̂k , all the edge states clearly reside in the global topological
gap, in contrast with the edge states in the dispersion of Supplementary Figure 3b in the main text, where only a fraction
is in the global topological gap. This indicates that in order to optimize the topological plexciton structures, we need to
find materials providing substantial J̄ (k∗) values (> 0.1eV) for µ ∥ θ̂k we need to find materials with large g values at
the UV/visible (recall the crossing between the SP and exciton dispersions at k∗ happens at 2.86eV in our calculation).
Some examples of the latter are Co alloy films [22], orthoferrites [23], or spinels [24]. A caveat about the latter is that they
are also highly absorptive at those same wavelengths (large imaginary part of εd , which we have neglected in this work).
Ce substituted YIG has less of a problem in that regard [25]. Typical solutions to weak MO effects rely on the formation
of Fabry-Perot cavities which force propagating modes to bounce many times within an MO material [26]. A plasmonic
analogue of this effect is desirable for the present problem. We are currently working towards these directions in order to
induce strong MO effects.

5. Bulk energy dispersion cross-sections

For illustration, we display dispersion relations for the three-layer setup (which is ultimately the calculation we display
in the main text) in order to ellucidate the onset of the formation of Dirac points and their opening due to the MO effect.
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Supplementary Figure 7. Representative exciton-SP coupling values for three-layer (metal-MO dielectric-organic) setup. Just as with
Supplementary Figure 6, the calculations have been carried out using Supplementary Equation (99). We display results for different
orientations of the transition dipoles of the nanopillars, when µ ∥ k̂ , µ ∥ θ̂, and µ ∥ ẑ . Notice that all the curves have maxima at short
wavevectors. The calculations assume that ε∞ = 3.8, ωP = 8.8 eV, g = 0.3, and the height of the nanopillars being Wz = 70nm.

Supplementary Figure 8. Plexciton dispersion for two-layer setup. All parameters are held equal to those used in Supplementary Figure
3b in the main text, except for using a two-layer setup rather than a three-layer one. Notice that all the topological edge states reside in
the global gap, which is possible due to the increase MO effect with respect to the three-layer simulation.
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Supplementary Figure 9. Cross-sections of the independent bulk dispersion curves of exciton (red) and plasmon (blue) modes for fixed
values of ky . The calculations assume that ε∞ = 3.8, ωP = 8.8 eV, the height of the nanopillars is Wz = 70nm. The plotted energies are
independent of g in our perturbation theory framework.
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Supplementary Figure 10. Cross-sections of the bulk plexciton dispersion curves for fixed values of ky and g=0. The rest of the parameters
remains as in Supplementary Figure (9). The upper (red) and lower (blue) plexcitons emerging from the coupling of modes in Supple-
mentary Figure (9) in the absence of the MO effect. Notice that Dirac points emerge in panels (c) and (d), corresponding to the different
wavevectors where the coupling between the modes vanishes.



30

E
n

e
rg

y[
e

V
]

0
2

4
(a) ky= 5.8  10

7
 m

1
(b) ky= 2.1  10

7
 m

1
(c) ky= 1.2  10

7
 m

1

kx [107 m 1]

5 0 5

E
n

e
rg

y[
e

V
]

0

2

4
(d) ky=1.1  10

7
 m

1

kx [107 m 1]

5 0 5

(e) ky=2  10
7
 m

1

kx [107 m 1]

5 0 5

(f) ky=4.4  10
7
 m

1

Supplementary Figure 11. Cross-sections of the bulk plexciton dispersion curves for fixed values of ky and g=0.3. The rest of the param-
eters remains as in Supplementary Figure (9). The upper (red) and lower (blue) plexcitons emerging from the coupling of modes in
Supplementary Figure (9) in the presence of the MO effect. Notice that Dirac points in panels (c) and (d) of Supplementary Figure (10)
do not survive in this setup due to an O(g ) perturbation. For a calculation with open-boundary conditions, this gap is populated with
topologically protected edge states (see main text, Supplementary Figure 3).
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