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Supporting Information Text S1 

Theory for surface tension, hydrostatic pressure, and elasticity using the AFM 

1. Calculation of surface tension and hydrostatic pressure. 

Consider a tipless AFM microcantilever with known spring constant kc (N/m) is being approached and 
pushed against a spherical or hemispherical object with initial radius R (m). The sample whose 
mechanical properties are characterized by surface tension T (N/m), elastic Young’s Modulus E (Pa), and 
hydrostatic pressure P (Pa), is compressed and undergoes small deformation compared to its original 
radius <10%R. In order to derive analytical expressions to solve for the object surface tension, elastic 
modulus, and hydrostatic pressure; some assumptions are needed to be satisfied: 

1. Induced deformation is small compared to initial radius (less than 10%R). Contact area is small 
compared to initial radius.  

2. Viscoelastic contribution can be neglected.  
3. Cytoplasmic elasticity and cortex bending are negligible.  
4. In low-strain regime the mechanical and geometrical properties behave mostly linear, by 

contrast, high-strains the properties behaves highly nonlinear [1]. 
5. Weak adhesions and small deviation for sphericity have a negligible effect. 
6. Volume, internal pressure, and tension are constant during AFM ramp. 

For the sake of simplicity, we are treating the system as a spherical sample being slightly deformed by a 
flat and smooth surface. Applying conservation of volume and pressure, it follows that:  

Constant Volume:     
4
3
𝜋𝑅3 = 4

3
𝜋𝑎2𝑏 , 

                                                           𝑎 = �𝑅
3
𝑏�  ,                                                           (S1) 

Law of Laplace:                                               𝑃𝑃𝑅2 = 2𝜋𝜋𝜋 , 

                                                                𝑃 = 2𝑇
𝑅

 ,                                                              (S2) 

where R is the initial radius (m), a is the horizontal deformed shape radius (m), b is the vertical deformed 
shape radius (m), P is the hydrostatic pressure (Pa), and T is the surface tension (N/m). When the 
cantilever is pressed on the sample it causes a deformation ∆ (m) that is given by the relationship of the 
geometric parameters R and b;  ∆= 𝑅 − 𝑏. Now, performing a force balance with compressive cantilever 
force F (N): 

                                                         𝑃𝑃𝑎2 = 2𝜋𝜋𝜋 + 𝐹 .                                               (S3) 



Substituting Equations S1 and S2 into Equation S3 and rearranging terms yield: 
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In the small strain regime, we apply Taylor series expansion to Eq. S4: 
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+ ⋯� − 𝑅 �1 + 1
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∆
𝑅

+ ⋯�� = 𝐹 .                        (S5) 

In Equation S5, compressive cantilever force F applied to the sample is given by 𝐹 = 𝑘𝑐𝑑, where 𝑘𝑐 is 
the calibrated cantilever spring constant (N/m), and d is the cantilever deflection (m). Substituting F into 
Equation S5 and simplifying for only 1st order term and discarding higher order term contribution we 
get: 

                                                             𝜋𝜋∆= 𝑘𝑐𝑑 .                                                          (S6) 

The sample deformation is given by the relationship 𝑑 = 𝑍 − 𝑍0 − ∆, where 𝑍0 is the contact point (m). 
Lastly, substituting d relationship into Equation S6 and solving for T: 

                                                           𝑇 = 𝑘𝑐
𝜋
� 1
𝑍
𝑑� −1

� .                                                     (S7) 

This equation Equation S7 directly solve for surface tension by fitting the initial linear portion of a force-
distance curve. Afterwards, the hydrostatic pressure can be obtained by using Equation S2. We use 
Equations S2 and S7 in the main article to estimate the surface tension and hydrostatic pressure of 
water-in-oil microdrops and nonadherent fibroblast cells. 

2. Calculation of elastic moduli. 

With the aforementioned approach we can calculate the surface tension of the round sample and this 
value can be used to calculate the elasticity Young’s modulus E (Pa) of the actomyosin cortex of 
nonadherent fibroblasts. To do that, the sample tensile stress is given by the expression: 

                                                                  𝜎 = 𝑇
ℎ

 ,                                                              (S8) 

where h is the cortex thickness (m). Hooke’s law relates the Young’s modulus of a material to the stress 
and strain: 

                                                                  𝐸 = 𝜎
𝜖

 ,                                                              (S9) 

where 𝜖 is the localized cortex strain 𝜖 = 𝑅′−𝑅
𝑅

= 𝑅′

𝑅
− 1. Here  𝑅′ = 𝑎2

𝑏
 is the local flattened radius of 

curvature of an ellipsoid, where a is the major dimension and b is the minor dimension of the flattened 



ellipsoid. Because a small deformation is applied to the spherical specimen 𝑅′ = 𝑎2

𝑏
= 𝑅3

𝑏2
. When the 

cantilever is pressed on the object it causes a small deformation ∆ that is given by the relationship of the 
geometric parameters R and b; ∆= 𝑅 − 𝑏, as previously presented. Now, solving for the local strain we 
get 

                                               𝜖 = �∆
𝑏
�
2

+ 2 ∆
𝑏

+ 1 − 1 ≈ 2 ∆
𝑏

 ,                                    (S10) 

𝜖 ≈ 2 ∆
𝑏

 because b is much larger than the small indentation ∆. Substituting Equations S8 and S10 into 

Equation S9 the final result for the elastic Young’s modulus is: 

                                                               𝐸 = 𝜋𝜋𝑇2

2ℎ𝑘𝑐𝑑
 .                                                       (S11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supporting Information Text S2 

The bending contribution can be neglected in nonadherent cells 

The contribution of bending forces of the actin cortex has been shown to be important for in the 
lamellipod of adherent cells [2]. However, for nonadherent cells this is not well understood yet. The 
forces generated by the contractile actomyosin cortex are identified as bending and tensile forces. The 
nonadherent cell is assumed to be of spherical shape and is deformed by a tipless AFM cantilever. We 
assume that both tension and bending forces resist the cantilever-induced deformation. Thus, using the 
dimensionless equation of a shell relating bending and tension forces given in [3] and modified for 
spherical shape: 

                                                      𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑓𝑓𝑓𝑓𝑓𝑓
𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑓𝑓𝑓𝑓𝑓𝑓

~ 𝐷
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 ,                                                (S12) 

where D (N-m) is the bending modulus, T (N/m) is the actin cortex tension, and R (m) is the cell initial 
radius. Now, introducing the relation of bending modulus to elastic modulus and solving, we get: 
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where E (Pa) is the cortex elastic modulus and h (m) is the cortex thickness. This relation allows the 
comparison of bending and tensile forces using the measured parameters obtained by our method. 
Table S1 shows the data collected from live nonadherent HFF cells with and without pharmacological 
drug treatments. The values of the calculated ratio are substantially small 0.01-0.05%, meaning that the 
contribution of bending forces in nonadherent cells is basically negligible. 

 

 

 

 

 

 

 

 

 



Supporting Information Text S4 

Contact radius between AFM cantilever and nonadherent cell is insignificant for 
small deformations 

By pressing the flat cantilever on a nonadherent rounded cell it can potentially create a large contact 
area between the AFM cantilever and the cell, suggesting that we could have interfacial tension 
contribution. We have made a calculation to estimate the contact radius between the flat cantilever and 
the round cell. We can also show that the contact radius is very small for 30 nm deflection of the 
cantilever. For Hertz contact mechanics theory the contact radius a is given by 

                                                                         
𝑎
𝑅

= � 9𝑘𝑐𝑑
16𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑅2

3  .                                                 (S14) 

Taking 𝑘𝑐= 0.09 N/m, d= 30 nm, 𝐸𝑐𝑐𝑐𝑐𝑐𝑐= 42 kPa, and R= 8 µm gives a 𝑎 𝑅� =0.083. This overestimates the 

contact radius since it implies a flattening of the sphere by an amount 𝛿 = 1
2� �𝑎 𝑅� �2𝑅= 27.4 nm. 

Taking into account that the cantilever is bent upwards by 30 nm gives an actual flattening of 𝛿′=2.6 nm. 

From  𝛿′ = 1
2� �𝑎

′
𝑅� �

2
𝑅, we obtain 𝑎′=204 nm as the actual contact radius. This result implies that the 

contact radius is less than 3% the cell radius.  

 

 

 

 

 

 

 

 

 

 

 



Supporting Information Text S3 

Cytoplasmic viscoelastic and purely elastic contributions are negligible in 
nonadherent cells  

By velocity-dependent compression force curves performed on the same nonadherent HFF cell (Figure 
3D and Fig. S3), we showed that viscoelastic contributions are negligible for small deformations less than 
or equal to ≤400 nm. However, cytoplasm elastic response may potentially contribute. We perform 
calculations that show that cytoplasmic elastic response is ≤7% of the cortical elastic response. To justify 
the assumption that there is a negligible elastic response from the cytoplasm we can show that the 
elastic energy to deform the cytoplasm is a small fraction of the elastic energy to deform the cortex. 

Consider first the cytoplasm. The elastic energy per unit volume (N-m/m3 is 1 2� 𝐸𝑐𝑐𝑐𝑐�𝜀𝑥𝑥2 + 𝜀𝑦𝑦2 + 𝜀𝑧𝑧2 � 

where the strains can be related to the deformation ∆ of the sphere: 𝜀𝑧𝑧 = ∆
(2𝑅)� ; and 𝜀𝑥𝑥 = 𝜀𝑦𝑦 =

�𝑅 (𝑅 − ∆)� �
1
2� − 1. Hence, the total energy to deform the cytoplasm is 
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� ≈ 1
2� 𝐸𝑐𝑐𝑐𝑐𝑅∆2.Now consider the 

elastic energy 𝑈𝑐𝑐𝑐𝑐𝑐𝑐 to deform the membrane-cortex under a pre-stress tension T. By analogy with a 
string under tension, we have for the spherical cortex: 

                              𝑈𝑐𝑐𝑐𝑐𝑐𝑐 = 1
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𝑑𝑑
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where w is the radial displacement and θ is a meridian angle. For simplicity, we can approximate 

𝑑𝑑
𝑑𝑑� ≈ 2∆ 𝜋� , hence 𝑈𝑐𝑐𝑐𝑐𝑐𝑐 ≈ 8𝑇∆2 𝜋� . The ratio of energies is 

𝑈𝑐𝑐𝑐𝑐
𝑈𝑐𝑐𝑐𝑐𝑐𝑐
� ≈ 𝜋2𝐸𝑐𝑐𝑐𝑐𝑅

(16𝑇)� . 

Taking R= 8 µm, T=700 pN/µm from our AFM data, and 𝐸𝑐𝑐𝑐𝑐=1-10 Pa (cytoplasm elastic modulus 

obtained from references; [4, 5]) gives 
𝑈𝑐𝑐𝑐𝑐

𝑈𝑐𝑐𝑐𝑐𝑐𝑐
� ≈0.007-0.07. These results taken together make us 

feel confident that neglecting the elastic response of the cytoplasm is also a good assumption for these 
cells. 

 

 

 

 

 



Supporting Information Text S5 

The model can fit nonlinear data up to approximately 400 nm Z distance 

Additionally, we have made calculations to further show that the model can fit nonlinear data up to 
approximately 400 nm Z range for force curve obtained on nonadherent HFF cells. The issue raised 
concerns to the shape of the force-distance curve, which is clearly nonlinear and thus limits the use of 
the model, which cannot fit the entire curve. The exact force balance equation (Eq. S4) can only fit the 
data up to 400 nm Z distance as shown in the supporting information figure S6 (Fig. S6). So the model 
should not be pushed beyond 400 nm, beyond that the model its unreliable. Linearization of the slope is 
shown by the dotted line, which is all that is required to determine the tension, which makes our 
method very simple to use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supporting Figure S1 

 

Fig. S1. Water-in-oil microdrops radii distributions for non-tilting and tilting conditions. Measured 
microdrops radii for the two cases. Cases were found to be statistically significantly different from each 
other (p<0.05). This is because of the inability of generating homogeneous populations by using our 
microdrops generation method. 

 

 

 

 

 

 

 



Supporting Figure S2 

 

Fig. S2. Calculated hydrostatic pressure of water-in-oil microdrops for non-tilting and tilting 
conditions. Distribution of calculated hydrostatic pressure for non-tilting and 10° tilting conditions. 
The differences in measured hydrostatic pressure are due to the inhomogeneity of the generated 
microdrops radii (Fig. S1). 

 

 

 

 

 

 

 



Supporting Figure S3 

 

Fig. S3. Velocity-dependent compression force curves performed on the same location for two 
individual nonadherent HFF cells. (A and B) In both HFF cells successive curves show negligible viscous 
losses with negligible deviation from each other. 

 

 

 

 



Supporting Figure S4 

 

Fig. S4. Cell radii distribution after pharmacological treatments. Measured cell radii of HFF cells after 
treatments. All cases were found to have not statistical significantly differences (p>0.05), except for CA 
treatment (p<0.05). 

 

 

 

 

 



Supporting Figure S5 

Fig. S5: Determination of nonadherent monocyte cells cortical actomyosin tension. (A) Cortical 
actomyosin tension for monocytes plated on dishes precoated with low concentrations of polyHEMA 
and poly-L-lysine. No statistical significant difference was found (p>0.05), meaning that low 
concentrations of poly-L-lysine are safe for measuring the cellular mechanics of passive monocytes. (B) 
Comparison of extracted cortical tension for HFFs and monocytes. Statistical significant difference was 
found (p<0.05). (C) Monocytes cortical tension after the addition of pharmacological drug 20 µM 
blebbistatin showing a dramatic decrease compared to untreated cells and with statistical significant 
difference (p<0.05). 

 

 

 

 

 

 

 

 

 

 

 

 



Supporting Figure S6 

 

Fig. S6. The model can fit nonlinear data reliable up to 400 nm Z distance range. The data points where 
taken from Figure 3E and were fit using the supporting equation S4 (Eq. S4) with T= 716 pN/µm and 
R=6.5 µm. Solid line is the fit using Eq. S4 and dashed line is using Eq. S7 with linearization. 

 

 

 

 

 

 

 

 

 



Supporting Figure S7 

 

Fig. S7. Myosin II localization in the actin cortex after addition of the pharmacological drugs. (A-C) A 
representative fixed nonadherent HFF cell labeled for myosin II regulatory light chain with anti-myosin II 
antibody and for f-actin with Alexa Fluor 564 conjugated-phalloidin were imaged by confocal 
microscopy. (D) Normalized cortex density of MLC and f-actin measured for untreated and 
pharmacological treated cells. *p<0.05, NS: p>0.05. 

 

 

 

 

 



Supporting Table S1 

Table S1. Summary of the bending-to-tensile force ratio. 

Parameters Untreated 
HFF 

20 µM 
Blebbistatin 

25 nM 
Latrunculin-A 

100 nM 
Latrunculin-A 

100 nM 
Calyculin-A 

50 µM 
CK-666 

Cortex tension 
T (pN/µm) 

679 379 540 439 1208 1132 

Cortex elastic 
modulus E 

(kPa) 

42 22 47 42 67 63 

Cell radius R 
(µm) 

8 8.7 8.5 8.3 6.9 7.4 

Cortex 
thickness h 

(nm) 

146 159 109 93 153 156 

Force ratio 
(Equation S13) 

0.0003 0.0003 0.0002 0.0001 0.0005 0.0004 

Cortex tension, elastic modulus, thickness, and cell radius are the average value measured and 
presented in the main text. The bending-to-tensile forces ration was calculated from supporting 
equation S13 (Eq. S13). 
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