Biophysical Journal, Volume 110

Supplemental Information

Contact Statistics Highlight Distinct Organizing Principles of Proteins and RNA

Lei Liu and Changbong Hyeon

Supporting Material : Contact statistics highlight distinct organizing principles of proteins and RNA

Lei Liu and Changbong Hyeon¹

¹School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea

EXTRACTION OF SCALING EXPONENT γ

We obtained the contact probability exponent γ by conducting linear regression on a part of P(s) data that behave as $\sim s^{-\gamma}$ in log-log scale. There are two factors that may affect in determination of γ : (i) d_c , the cut-off distance to define a contact between two residues, affects the overall shape of P(s); (ii) The range of $s, s_{\min} < s < s_{\max}$, to be fitted. Instead of manually tuning the fitting range $(s_{\min} < s < s_{\max})$, we defined a parameter φ ($0 < \varphi < 1$), such that the proportion of fitting range, $(s_{\text{max}} - s_{\text{min}})/N$ where N is the chain length, is at least greater than an allocated threshold value, φ . For instance, if φ is set to 0.3 then the fit is made on more than 30 % of the entire data points. Thus, by fitting P(s) data over all possible pairs of s_{\min} and s_{\max} values which define the range of (s_{\min}, s_{\max}) satisfying $(s_{\max} - s_{\min})/N \ge \varphi$, we determine the value of γ from the best fit which gives the smallest standard error relative to the data points.

Fig. S1A shows that the shape of P(s) for 23SrRNA calculated with different d_c remains effectively identical, giving rise to a similar value of γ : $\gamma = 1.11$ $(d_c = 4 \text{ Å})$, 1.06 $(d_c = 5 \text{ Å})$. $p(\gamma)$ s for RNA molecules obtained from different d_c are also similar as shown in Fig. S1B.

Next, to study the effect of φ on γ , we set $d_c = 4$ Å and change the value of φ in the fit. We obtain $\gamma = 1.11$ for $\varphi = 0.3$, and $\gamma = 1.01$ with $\varphi = 0.4$ (see Fig. S2A). Fig. S2B also shows that $p(\gamma)$ with different φ are comparable. Analysis applied to protein shows similar results. A series of comparisons in Figs.S1 and S2 indicate that the average value of γ is insensitive to the parameters around the value we have chosen.

In addition, the overall shapes of $p(\gamma)$ and $\langle \overline{P}(s) \rangle$ are insensitive to the two threshold values of sequence similarity (90 and 30 %), which we imposed to select a set of non-homologous proteins (Fig. S3).

We analyzed 186 RNA and 16633 individual proteins whose size satisfies $N \geq 50$, available in PDB as of September 2015. Distributions of γ obtained from the optimal linear fittings on $\log_{10} P(s)$ versus $\log_{10} s$ with a correlation coefficient greater than 0.9 are presented in Fig.1A with $\varphi = 0.3$, $d_c = 4$ Å for both RNAs and proteins. To highlight the robustness of our result presented in Fig.1A (γ vs. N plot), we specified the 95 % confidence interval of γ values using error-bar to each data point in Fig. S4.

FIG. S1: (A) The contact probability versus sequence distance of 23S rRNA (PDB entry 2O45) with a cut-off distance of contacting d_c of value 4 Å (blue) and 5 Å (red). (B) Distributions of γ in RNA monomers with d_c of 4 Å and 5 Å.

FIG. S2: (A) The contact probability versus sequence distance of 23S rRNA (PDB entry 2O45) with a minimum fraction of all data points used for fitting φ of 0.3 (blue) and 0.4 (red). The data points for $\varphi = 0.4$, as well as the fitted dashed line, are shifted downwards for visual comparison. (B) Distributions of γ in RNA monomers of φ 0.3 and 0.4.

CONTACT PROBABILITY BETWEEN TWO SITES OF A POLYMER

In general, the contact probability of two sites in polymer chain is determined by the volume available for the subchain ending with the two sites, $[R(s)]^d$,

FIG. S3: Effects of imposing different threshold value for the sequence similarity of 90 % and 30 % to the protein structure database to compute $p(\gamma)$ and $\langle \overline{P}(s) \rangle$. No qualitative difference is found in the results.

FIG. S4: Scatter plot of γ versus N for RNA (red) and proteins (cyan) with error bars (95 % confidence interval) for γ values.

with normalization condition $\int P_s(r) d^d r = 1$ [14, 29]:

$$P_{s}(r) = \frac{1}{R(s)^{d}} \varphi\left(\frac{r}{R(s)}\right)$$

$$\xrightarrow{r \ll R(s)}$$

$$P(s) = \frac{1}{R(s)^{d}} \left(\frac{r}{R(s)}\right)^{g}, \quad (S1)$$

where r is the contact distance, R(s) is the size of polymer made of s monomers, d is the dimensionality, and g is the correlation hole exponent. With $R(s) \sim s^{\nu}$ (see Fig. S5), we obtain the scaling relationship of contact probability, $P(s) \sim s^{-\nu(d+g)}$.

(i) When the excluded volume interaction is fully screened, a test chain (or subchain over a certain

length) is ideal. In this case, $\varphi(x) \sim e^{-3x^2/2}$. Thus, the correlation hole exponent g = 0 [65] and $R \sim s^{\nu}$ with $\nu = 1/2$, which leads to $P(s) \sim s^{-\nu d} \sim s^{-3/2}$.

(ii) If the chain adopts an effectively homogeneous space-filling configuration, but the interaction between monomers is weak and the excluded volume interaction is still fully screened as in a concentrated melt, then g = 0, d = 3, and $\nu = 1/3$, which leads to $P(s) \sim s^{-1}$.

(iii) If the chain organization is *inhomogeneous* leading to an anisotropic arrangement because of strong monomer-monomer interactions [26], which for the case of RNA leads to formation of independently stable helices, then R(s) still satisfies $R(s) \sim s^{1/3}$ but the effective dimensionality of the sampling space (d_{eff}) would be less than 3. Thus, $P(s) \sim s^{-d_{\text{eff}}/3}$, and $\gamma = d_{\text{eff}}/3 < 1$, which accounts for the contact probability exponent smaller than 1.

(iv) Note that when the subchain interactions (repulsion and attraction) are screened (g = 0), P(s) and R(s) are related as $P(s) \sim R(s)^{-d}$. This relationship particularly holds good for intermediate range of $s: P(s) \sim s^{-3/2} \leftrightarrow R(s) \sim s^{1/2}$ (ideal chain) and $P(s) \sim s^{-1} \leftrightarrow R(s) \sim s^{1/3}$ (crumpled chain) (see Fig. S5). The scaling exponent of 3/5 at s < 10 in Fig. S5 is due to the volume exclusion interaction at short range s.

FIG. S5: Mean radius of gyration of subchain as a function of subchain length s for proteins and RNA that display contact probability exponent in a specified range of γ . The structures in the specified range of γ were collected from Fig. 1 and their R(s)s were calculated.

FIG. S6: Distribution of γ value for RNA with N > 110and N < 110. $\gamma_{N>110}^{\text{RNA}} = 1.12 \pm 0.14$ and $\gamma_{N<110}^{\text{RNA}} = 1.41 \pm 0.53$.

FIG. S7: Distribution of contact probability exponent calculated for the short range of s, s < 20. $\gamma^{\text{RNA}} = 0.38 \pm 0.13$ and $\gamma^{\text{pro}} = 1.40 \pm 0.33$.

2M58	2MIY	$1 \mathrm{FIR}$	6TNA	$1\mathrm{EHZ}$	$1 \mathrm{TRA}$	4TRA	$1 \mathrm{TN1}$
$1 \mathrm{TN2}$	3TRA	2TRA	$_{\rm 3BBV}$	$1 \mathrm{VTQ}$	4 PQV	3A3A	3CW6
2HOP	1I9V	3L0U	$2 \mathrm{K4C}$	3D2G	4NYD	2HOM	3GX6
$2 \mathrm{GIS}$	3GX2	3IQN	4B5R	2YDH	4RZD	3F2Q	3F2W
3F30	3F2X	3F2T	3F2Y	1U9S	$3 \mathrm{DHS}$	1Y0Q	4C4Q
2A2E	$3\mathrm{BWP}$	4FAX	4E8P	$4 \mathrm{E8R}$	$4 \mathrm{E8Q}$	4E8N	4DS6
4E8M	4FAQ	3J2B	3J2H	3J2D	2YKR	3J28	3J2A
2045	2O43	2044	1C2W				

TABLE I: PDB entries of RNA analyzed in Fig. 1.

2MGW	2JY5	2CR 8	2RRU	2KAK	2DAH	2 EPS	1 J J R
1KMX	2KQB	$1 \mathrm{YSM}$	2ECM	$2 \mathrm{KMU}$	$1 \mathrm{KFT}$	2KPI	2M8E
2K2T	2REL	2YSD	2L4E	2MWR	2YRG	3GOH	1Z60
2KKJ	1A7I	1VYX	2M2F	2JXD	2DAL	3WIT	2M9W
2YSJ	1UEO	1AA3	4A3N	1 WG2	2D8U	1 WFH	$1 \mathrm{HYI}$
1BW5	2DZL	1X4P	1 VFY	1X4W	1HTA	1SF 0	1 H0Z
2EA6	2MFK	2DI0	2 EWT	2RMR	3H33	1RIY	4TXA
2DA7	2LGW	2JVG	1X61	1WEE	1X4K	2DJB	4P3V
2CT5	2LEK	2HI3	1G33	2 EP4	1NEQ	1APJ	1WFP
2JXW	2KW9	1SIG	2M4G	2LT1	1WYS	1X68	2ENN
2E6S	2D9H	2ECT	$1\mathrm{E4U}$	1JQ0	1J3C	1MJ4	4U12
2MLB	$1 \mathrm{UHC}$	2CR7	1KDU	1QRY	1X3H	2CSY	$2\mathrm{ECL}$
1RWJ	2LDR	4CIK	3J0R	1UHA	$4 \mathrm{EIF}$	1X63	2DOE
2LQL	1CC5	1XFE	2L0S	3CP1	3ZJ1	3BT4	2LRQ
1IPG	2Q18	4IYL	2ECW	2LV2	1 LMJ	1ABA	1C9F
1F1F	2CT2	1C6R	1FP 0	2KW1	4GPS	$1 \mathrm{CTJ}$	2M5W
1Y02	2D8Y	2E6R	1WEO	2CS3	1FBR	2LGX	2LGP
2MIQ	1SJ6	1WIA	2JSN	2DMD	2VTK	3PO8	10PC
2YRE	2 LGV	1T1D	3H6N	1 JHG	$4 \mathrm{BGC}$	2OA4	2CQK
$2 \mathrm{CTK}$	3GCE	2K4J	3DQY	1X0T	2JVL	1HKF	2CS8
308V	3DVI	$2 \mathrm{CTW}$	4EEU	2MLK	1ZOX	2XXC	2EO3
$4 \mathrm{TVM}$	2IVW	2LW4	4HWM	2KQR	2JXN	2HC5	1T6A
4ZBH	1 U J X	2 MMZ	2LHT	1JUG	2RA9	2XWS	1G3P
2QYZ	2FYG	3O5E	2 ES0	4NAZ	3E2I	$1 \mathrm{DQG}$	1VSR
1KQW	1E29	2 FVV	3W9K	1NL1	1 WK0	1 X N 5	2IN0
2NWF	2L5Q	2P0B	2MO5	3ZUI	2HNA	2JY9	4MYN
3N9D	2N48	4M4Z	3FME	1ENV	2D37	2XB3	1ZND
4GNY	4LD1	3 UF4	1D7P	1 EW3	30UQ	1E88	2 LFU
2KIG	$2 \mathrm{KFU}$	1KLO	3NZM	2M47	4JHG	1RL6	3TXO
2LZM	2NN5	3W9R	2CP6	4F47	$1 \mathrm{EH6}$	$1\mathrm{CDY}$	2R6V
3K21	3WJT	1WV3	4M6T	2D5M	3KBG	1J3G	$1 \mathrm{EJE}$
1 JM1	$3 \mathrm{TFM}$	4QA8	1HXN	4E1B	4IT3	4JZC	1EMA
2K18	3HBK	3NO3	4PQ0	2PNN	1LVA	3LTI	4JS8
4DWO	2A1L	4NW4	3V75	5BN7	$1 \mathrm{DUW}$	3JRP	2 QLU
2LQW	4X36	2HES	4GGC	4GGA	4V16	4AA8	2FGQ
4AF8	1VPR	2 PMN	2 X E 1	2ASI	2ZYL	1T6E	3BA0
1J6Z	4QDC	4GQ1	1FEP	3GRE	4UQE	4MSX	3R1K
3ACP	$2\mathrm{DH2}$	4COT	3DWO	$1 \mathrm{QCF}$	$1 \mathrm{FMK}$	1W52	1DQ3
1G0D	3K5W	20BD	4NOX	4FWW	2E84	1Z1N	4AW7
1XEZ	$4 \mathrm{TLW}$	1PI6	$4 \mathrm{UMW}$	4BBJ	30KT	$1 \rm QFG$	4MHC
2OAJ	4UP5	1HN0	3KLK				

TABLE II: PDB entries of proteins analyzed in Fig. 1.

2JX9	1ISR	2LNL	2RH1	2YDV	2ZIY	3C9L	3EHS
3EML	3N94	30E6	3RZE	3UON	3V2Y	3VW7	$4\mathrm{DKL}$
$4 \mathrm{EJ4}$	4F11	4IB4	$1 \mathrm{QJQ}$				

TABLE III: PDB entries of GPCRs analyzed in Fig. 1.