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Figure S 1: The link between AGXT Loss-of-Function and the histidine degra-
dation pathway according to the in silico metabolic model. Related to Figures
1, 2, and 3 and Table 1. Dashed lines represent pathways, while black ones repre-
sent transport reactions. Grey lines indicate Loss-of-Function (LoF), while green/red
ones indicate a reduction/increase in the average metabolic flux across the 442 simu-
lated metabolic objectives in each of the following conditions: (A) AGXT LoF versus
Wild-Type: the metabolic fluxes through GPT and AGXT2 are increased, while the
histidine degradation pathway towards glutamate is decreased. (B) AGXT LoF ver-
sus Wild-Type when forcing the flux of histidine to histamine reaction to be zero: the
metabolic fluxes through GPT and AGXT2 are increased, but differently to (A), the
histidine degradation pathway towards glutamate is increased.
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Figure S 2: Metabolic alterations in PH1 mice. Related to Figures 1 and 3. (A)
α−ketoglutarate reduction in Agxt−/− mice serum compared to control mice.∗p <
0.05. (B) N-methyl-histamine resulting from histamine degradation via histamine
N-methyltransferase (HMT) was increased in Agxt−/− mice compared to wild-type
(wt) mice and was normalized by the injections of either HDAd-AGT or HDAd-GPT.
∗p < 0.05. (C) Short-term alanine administration has no effect on histamine levels
24hrs after administration. Intraperitoneal injections of alanine did not reduce his-
tamine levels at 24 hours after the injections (T24h) compared to baseline levels (T0)
in WT mice and PH1 mice (n=5 per group). On the contrary it strongly reduced his-
tamine levels in WT mice at 2h after the injection as shown in Figure 3A of the main
text. Indeed, alanine should be completely normalised in mice at 24hrs after the injec-
tion due to the high demand for alanine caused by the glucose-alanine cycle involving
liver and muscles.
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Figure S 3: AGT protein levels in PH1 mice and Huh-7 cells. Related to Figure
1. (A) Western blot of livers of Agxt−/− mice showed undetectable AGT protein that
was increased after intravenous injection of HDAd-AGT vector expressing the human
AGXT gene (protein amount loaded on gel was 1/5 in HDAd-AGT injected mice).
(B) Western blot for AGT in AGT knock-down Huh-7 cells showed undetectable AGT
protein levels.
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2 Supplemental Tables
Peroxisomal reactions Ref.
Alanine(p) + Glyoxylate(p)→ Glycine(p) + Pyruvate(p) [1, 3, 4]
Serine(p) + Pyruvate(p)→ Hydroxypyruvate(p) + Alanine(p) [3]
Glyoxylate(p) + O2(p)→ H2O2(p) + Oxalate(p) [1, 3]
Glycolate(p) + O2(p)→ Glyoxylate(p) + H2O2(p) [3, 6]
Glycine(p) + H2O(p) + O2(p)→ Glyoxylate(p) + H2O2(p) + NH3(p) [3, 4]
Chenodeoxycholoyl-CoA(p) + Glycine(p)→ CoA(p) + Glycochenodeoxycholate(p) [8]
Choloyl-CoA(p) + Glycine(p)→ CoA(p) + Glycocholate(p) [8]
H2O(p) + O2(p) + Sarcosine(p)→ Formaldehyde(p) + Glycine(p) + H2O2(p) [8]
H2O2(p) 
 O2(p) + H2O(p) [3]
Serine(p) + Glyoxylate(p)→ Hydroxypyruvate(p) + Glycine(p) [3]
Cytoplasmic reactions Ref.
H2O2(c) 
 O2(c) + H2O(c) [3]
Glyoxylate(c) + NAD+ (c)→ NADH(c) + Oxalate(c) [3, 4]
Glyoxylate(c) + NADPH(c)→ Glycolate(c) + NADP+(c) [1, 3]
Glyoxylate(c) + NADH(c)→ Glycolate(c) + NAD+(c) [3]
3htmelys(c) + H+(PG)(c)→ 4tmeabut(c) + Glycine(c) [8]
Gcald(c) + H2O(c) + NAD+(c)→ Glycolate(c)+ 2 H+(PG)(c) + NADH(c) [8]
Glyoxylate(c) + Alanine(c)→ Glycine(c) + Pyruvate(c) [7]
Serine(c) 
 Glycine(c) + H2O(c) [3]
Glycolaldehyde(c) + NAD+(c)→ Glycolate(c) + NADH(c) [3]
Hydroxypyruvate(c)→ Glycolaldehyde(c) + CO2(c) [3]
Hydroxypyruvate(c) + NADH(c)→ Glycerate(c) + NAD+(c) [1, 3]
Mitochondrial reactions Ref.
Alanine(m) + Glyoxylate(m)→ Glycine(m) + Pyruvate(m) [2, 4]
Glyoxylate(m) + H+(PG)(m) + NADPH(m)→ Glycolate(m) + NADP+(m) [2]
Glycine(m) + H+(PG)(m) + Lipoamide(m) 
 Alpam(m) + CO2(m) [8]
Glycine(m) + H+(PG)(m) + Lpro(m) 
 ALpro(m) + CO2(m) [8]
FAD(m) + Sarcosine(m) + THF(m)→ FADH2(m) + Glycine(m) + 5,10-Methylene-THF(m) [8]
Transport reactions Ref.
H2O2(c) 
 H2O2(p) [∗]
NH3(p) 
 NH3(c) [∗]
H+(PG)(p) 
 H+(PG)(c) [∗]
Alanine(c) 
 Alanine(p) [∗]
Pyruvate(p) 
 Pyruvate(c) [∗]
Serine(p) 
 Serine(c) [∗]
Glycochenodeoxycholate(p) 
 Glycochenodeoxycholate(c) [∗]
Glycocholate(p) 
 Glycocholate(c) [∗]
Sarcosine(p) 
 Sarcosine(c) [∗]
Formaldehyde(p) 
 Formaldehyde(c) [∗]
NH4+(p) 
 NH4+(c) [∗]
Glycine(c) 
 Glycine(p) [2, 6]
Glycine(c) 
 Glycine(m) [2, 6]
Glycolate(c) 
 Glycolate(p) [1, 4–6]
Glycolate(c) 
 Glycolate(m) [∗]
Glyoxylate(c) 
 Glyoxylate(m) [4]
Glyoxylate(c) 
 Glyoxylate(p) [1, 4, 5]
Oxalate(p) 
 Oxalate(c) [5]
Hydroxypyruvate(p) 
 Hydroxypyruvate(c) [12]
Consuming reactions Ref.
Glycerate(c)→ [5]
Oxalate(c)→ [4]
Glycolate(c)→ [4]
Glycolaldehyde(c)→ [5]
Histamine(s)→ [∗]

Table S 1: The set of enzymatic, transport and consuming reactions that extends
the genome-scale model developed in [9]. Related to Figure 2. (c), (m), (b) rep-
resent metabolite compartment abbreviations: (c): cytosol; (m): mitochondrial ma-
trix; (p): peroxisome. 3htmelys: 3-Hydroxy-N6,N6,N6-trimethyl-L-lysine, 4tmeabut:
4-Trimethylammoniobutanal, Alpam: S-aminomethyldihydrolipoamide, Alpro: S-
Aminomethyldihydrolipoylprotein, Lpro: Lipoylprotein. The metabolite in bold font
have been introduced in order to extend HepatoNet1. Ref. = references.
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Table S 2 can be found in Supplemental File 1. The 442 metabolic objectives
used for the in silico simulations, together with the compounds, small metabo-
lites and co-factor excluded from the in silico analysis and the demographics and
AGXT mutations of PH1 patients. Related to Table 1 and Figure 2. (Sheet1):
the 442 metabolic objectives used for the in silico simulations. The metabolic objec-
tives were adapted to our formulation of the linear optimisation problem (Subsection
3.1). Column 1: the unique name for the simulation, as in [9]; column 2: the target
reactions; column 3: boundary reactions. MIMES, MIPES, PIPES, MES, DES, HES,
WES define different sets of metabolites that can be taken up or released by the in silico
network model. Further details about these sets can be found in [9]. (Sheet2): Com-
pounds, small metabolites and co-factor excluded from the in silico analysis. (Sheet3):
demographics and AGXT mutations of PH1 patients. ∗= this patient received kidney
transplantation at 28 years.

Table S 3 can be found in Supplemental File 2. Metabolites and reactions whose
concentrations are affected by the AGT LoF according to in silico analysis and
Metabolic Set Enrichment Analysis (MSEA). Related to Table 1 and Figure 2.
(Sheet1): reactions ranked according to DFA analysis. Reactions are ranked according
to predicted mean absolute change of the flux in the 442 objective functions. Column
1: reactions; column 2: enzymes and transporters; column 3: the average flux value
accross the 442 metabolic objective according to DFA; column 4: the absolute value of
column 3 used to rank the reactions; columns 5 and 6 indicate the reactions direction
in WT and PH1 conditions, respectively. In particular, if 0 the reaction is not active,
if 1 the reaction direction goes from left to right, and if −1 the reaction direction
goes from right to left. (Sheet2): compounds ranked considering model compartments.
Metabolites are ranked according to the predicted absolute change, as computed by
DFA using Eq. (7). (Sheet3): compounds ranked as in sheet 2 without considering
and removing small molecules and cofactors listed in Table S2. (Sheet4): results from
Metabolite Set Enrichment Analysis (diseases). Only diseases for which the MSEA p-
value < 0.05 are reported. The top 50 metabolites predicted to change the most by the
in silico model of PH1 (Table S3, Sheet3) have were used to run the analysis. Column
Total indicates the number of metabolites in the set, while the column Hits reports
the number of set compounds in the input list. (Sheet5): results from Metabolite Set
Enrichment Analysis (pathways). Only pathways for which MSEA p-value < 0.05 are
reported. The top 20 metabolites predicted to change the most by the in silico model
of PH1 (Table 1) were used to run the analysis. Column Total indicates the number of
metabolites in the set while, the column Hits reports the number of that compounds in
the input list.
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Table S 4 can be found in Supplemental File 3. Metabolites and reactions whose
concentrations are affected by simulated GPT GoF in silico in the context of AGT
LoF. Related to Figure 3 and Experimental Procedure. (Sheet1): reactions ranked
according to DFA analysis. Reactions are ranked according to predicted mean absolute
change of flux in the 442 objective functions. In particular. Column 1: reactions; col-
umn 2: enzymes and transporters associated with each reaction; column 3: the average
value of flux across the 442 metabolic objective according to DFA; column 4: the abso-
lute value of column 3 (the value used to rank the reactions); columns 5 and 6: reactions
direction in WT and PH1 conditions, respectively. In particular, if 0 the reaction is not
active, if 1 the reaction direction goes from left to right, and if−1 the reaction direction
goes from right to left. (Sheet2): compounds ranked considering model compartments.
Metabolites are ranked according to the predicted absolute change, as computed by
DFA using Eq. (7). (Sheet3): compounds ranked as in sheet 2 without considering and
removing small molecules and cofactors listed in Table S2.

Table S 5 can be found in Supplemental File 4. Metabolites and reactions whose
concentrations are affected by the AGT LoF according to in silico and forcing the
flux of histidine to histamine to be zero. Related to Figure 2 and Experimen-
tal Procedure. (Sheet1): reactions ranked according to DFA analysis. Reactions are
ranked according to predicted mean absolute change of the flux in the 442 objective
functions. Column 1: reactions; column 2: enzymes and transporters; column 3: the
average flux value accross the 442 metabolic objective according to DFA; column 4:
the absolute value of column 3 used to rank the reactions; columns 5 and 6 indicate
the reactions direction in WT and PH1 conditions, respectively. In particular, if 0 the
reaction is not active, if 1 the reaction direction goes from left to right, and if −1
the reaction direction goes from right to left. (Sheet2): compounds ranked consider-
ing model compartments. Metabolites are ranked according to the predicted absolute
change, as computed by DFA using Eq. (7). (Sheet3): compounds ranked as in sheet 2
without considering and removing small molecules and cofactors listed in Table S2.
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3 Supplemental Experimental Procedures

3.1 Constraint-based modelling of primary hyperoxaluria type I
The hepatocyte-specific metabolic network is described by a stoichiometric matrix

S ∈ Rn×2m, where n is the number of metabolites and m the number of reactions.
We considered 2m reactions because a metabolic flux can be, in principle, positive or
negative depending on its direction (forward or reverse). To deal with non-negative
variables, each reaction was thus represented by two irreversible ones (the forward and
the backward reaction) [10].

The Flux Balance Analysis (FBA) problem can be stated as the solution for the
vector variable V of the following equation:

S× V = 0 (1)

where
V = (v

(+)
1 , v

(+)
2 , . . . , v(+)

m , v
(−)
1 , v

(−)
2 , . . . , v(−)m ) ∈ R2m

is the vector of fluxes associated with the forward and reverse reactions of the network.
Since in Eq. (1) usually n < 2m the solution is not unique, hence a set of physio-

logical meaningful constraints is added to the possible values that the metabolic fluxes
V can achieve. Moreover, it is necessary to define input and output metabolites, i.e.
the set of boundary reactions (Rbound) specifying which metabolites are provided to
the network (inputs) and which ones have to be produced (outputs). These boundary
reactions are needed to obtain physiological meaningful solutions. For a physiological
function with k boundary reactions, we can rewrite Eq. (1) as an extended stoichio-
metric matrix S̃ ∈ Rn×(2m+k) and an extended vector of fluxes Ṽ ∈ R2m+k. Finally,
in order to simulate a specific physiological function (i.e. breakdown of an amino acid
to produce glucose) a set of target reactions (Rtar) with a fixed flux value has to be
specified.

The FBA problem can thus be formally stated as the solution to the following linear
optimisation problem [10]:

min
V ∈R2m

 m∑
j=1

(wj × v(+)
j + wj ×Kequ

j × v(−)j )

 (2)

subject to the following constraints:

S̃ × Ṽ = 0

l
(+)
j ≤ v(+)

j ≤ u(+)
j if rj /∈ Rtar (3)

l
(−)
j ≤ v(−)j ≤ u(−)j if rj /∈ Rtar

vj = kj if rj ∈ Rtar

where u(+)
j , u

(−)
j ∈ R+ represent the upper bounds of v(+)

j and v(−)j , respectively,

and l(+)
j = l

(−)
j the lower bounds (we set l(+)

j = l
(−)
j = 0 in our simulations); wj

is the weight associated with the flux vj ; the equilibrium constants Kequ
j have been
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introduced to constraint fluxes according to Gibbs free energy calculations as listed
in supplementary data of [9]. Weighting the backward flux with the thermodynamic
equilibrium constants takes into account the thermodynamic effort connected with re-
versing the natural direction of the reaction [10].

Specifically, we expressed the equilibrium constant for a reaction rj through the
change of Gibbs free energy under the standard conditions, denoted as ∆G0

rj , by ap-
plying the following rule:

Kequ
j = e−

∆G0
rj

R·T (4)

where R is the universal gas constant and T is the absolute temperature, that we set to
37◦C in order to model the normothermia. All the values for the constants in Eq. (2)
and (3) were chosen as in [9].

In order to validate the extended HepatoNet1 metabolic network model (i.e. in-
cluding glyoxylate related reactions), we first performed flux-balance analyses, as de-
scribed above, to establish a flux distribution for each of the different metabolic ob-
jectives listed in Table S2. We then applied a producibility analysis to test that the
model was indeed able to produce all the compounds in glyoxylate metabolism. We
define a metabolite xi as producible if the network can sustain its synthesis under the
steady state and thermodynamic constraints. To test the producibility of xi, we added
a reaction rj in the cytoplasmic compartment which consumes xi, and then solved the
flux-balance problem to check if the network was able to produce a strictly positive
flux through rj .

3.2 Simulation of the loss- or gain-of-function of an enzyme with
the metabolic network model

In order to simulate the effect of a loss-of-function (LoF) of an enzyme ej cat-
alyzing the reaction rj , we first solved l = 442 optimization problems of type (2)
to compute the wild-type flux distributions across 442 different metabolic conditions
(a list of the metabolic objectives is reported in Table S2) forcing the fluxes through
enzyme ej to be greater than a threshold. Secondly, we computed the LoF flux distri-
butions by solving the same 442 flux-balance problems but this time constraining the
fluxes through enzyme ej to zero, that is, v(+)

j = v
(−)
j = 0. The results of the simu-

lations were stored in two matrices that contain the values of the fluxes for each of the
m internal reactions computed either in the wild-type simulations (Vwt ∈ Rm×l,) or
in the loss of function simulations (Vko ∈ Rm×l). Namely, vwt

i,j ∈ Vwt ( vkoi,j ∈ Vko)

represents the flux of reaction ri in the j-th metabolic functions, with vi,j = v
(+)
i if

v
(+)
i > 0 and vi,j = −v(−)i if v(−)i > 0. We followed this rule to store the value of a

metabolic flux vi and to take the direction of ri into account.
In order to simulate the effect of a gain-of-function (GoF) of an enzyme ej cat-

alyzing the reaction rj we adopted the following rule: if ∆G0
rj ≤ 0 then uGoF (+)

j =

u
(+)
j + k and l

GoF (+)
j = k, otherwise uGoF (−)

j = u
(−)
j + k, lGoF (−)

j = k, with
k = 1000. Effectively these constrains force the flux through enzyme ej in the GoF
simulation to be increased of k compared to the wild-type model. As for the LoF, the
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results of the simulations were stored in a matrix VGoF .

3.3 Differential Flux-balance Analysis (DFA)
We first applied a computational approach we previously described in [13]. Specif-

ically, for each reaction ri we computed the difference (δi,j) between the flux in the
wild-type model and the flux in the LoF (or GoF) model for the j − th metabolic
objectives (Table S2):

∆ = Vwt − Vko ∈ Rm×l (5)

where δi,j is the element of ∆ having indexes i and j. Next, we computed for each
reaction ri the average flux difference across the l metabolic objectives :

δi =
1

l

l∑
j=1

δi,j (6)

for i = 1, 2, . . .m. These values are used to rank each reaction, arranged in descending
order. In this way, reactions at the top of the list are those predicted to have a reduced
metabolic flux because of the enzyme loss-of-function (or gain-of-function), vice-versa
those at the bottom of the list, will be the reactions whose flux is predicted to increase
as consequence of the enzyme loss-of-function (or gain-of-function).

In order to rank metabolites, we also took into account the stoichiometry of the
metabolic network to estimate the impact of the enzyme LoF (or GoF) on a metabolite
concentration xi by means of the following index:

ψxi =

m∑
j=1

ŝi,j |δi| (7)

where ŝi,j is the element of matrix Ŝ, the binary form of S̃ [14], of index (i, j). The
ψx1

, ψx2
, . . . , ψxn

values are used to obtain a ranked list of metabolites (Xord, Table 1
and Table S3). This list reports, at the top, the metabolites most affected by a loss-of-
function (or gain-of-function). Small molecules (e.g., water, carbon dioxide), cofactors
(e.g., NADP, ATP), and a set of compounds were removed, because they are involved
in a large number of reactions (Table S2).

3.4 Flux Variability Analysis (FVA)
DFA estimates how much the fluxes involving a specific metabolite change in re-

sponse to a LoF (or GoF) of a specific enzyme. We thus take this quantity (i.e. the
value computed as in Eq. (eq:metrank)) as a proxy for the potential change in metabo-
lite concentration as result of the enzyme LoF (or GoF). However DFA canno predict
the sign of the change (i.e. whether the metabolite is elevated or reduced). This hap-
pens because FBA assumes that no metabolites’ accumulation or depletion can occur.

In order to overcome this limitation, we applied Flux Variability Analysis (FVA)
as described in [11, 15, 16]. The idea is to compute an exchange interval I for each
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metabolite x both in the WT model and in the LoF (or GoF) model. This interval de-
notes the minimal (vmin ) and maximal (vmax) output flux of a metabolite x which can
be supported by the metabolic model. For each metabolite, we compared the exchange
interval computed for the WT model to the one computed for the LoF (GoF) model. If
the two intervals coincide, then no sign can be assigned to the metabolite. Otherwise it
is said to increase or decrease depending on the values of the two intervals.

In order to compute the exchange interval Icond = [vmin, vmax] for a metabolite
x in condition cond ∈ {WT,LOF} we proceeded as follows: we first introduced,
if not yet in the model, a consuming reaction r in the cytoplasm associated to a flux
v consuming the metabolite x; an exchange interval Ikcond = [vkmin, v

k
max] for x in

each of the k = 1 . . . 442 metabolic objectives is then computed by determining the
minimal and maximal values of vk by solving the following two linear programming
optimization problems, subject to the constrains in Eqs. (3), for the appropirate model
(e.g. WT or LOF):

min
V ∈R2m

1

2

 m∑
j=1

(wj × v(+)
j + wj ×Kequ

j × v(−)j )

+
1

2
vkmin

 (8)

in order to obtain vkmin and

min
V ∈R2m

1

2

 m∑
j=1

(wj × v(+)
j + wj ×Kequ

j × v(−)j )

− 1

2
vkmax

 (9)

in order to obtain vkmax.
The exchange interval of the metabolite x is then defined as

Icond =

[
max

k∈[1,442]
(vkmin), max

k∈[1,442]
(vkmax)

]
.

The results of DFA and FVA to the PH1 model are reported in the main manuscript
(Table 1) and in the Supplemental information (Table S3).

3.5 In silico analysis of AGT Loss of Function
We applied DFA to the extended Hepatonet1 model in order to rank all of the

metabolites (≈ 800) and reactions in the model (≈ 2600) according to their average
magnitude of change in the AGT LoF versus wild-type model across the 442 physi-
ological objectives. The reactions are reported in Table S3, ranked according to the
absolute change, and metabolites are reported in Table S3 and Table 1 of the main
manuscript.

As summarised in Figure 2, Figure S1A, and Table S3, the GPT reaction increases
its flux because of an excess of alanine, which is no longer consumed by the AGT reac-
tion in the peroxisome and it is thus redirected to GPT in the cytoplasm. The increase
in flux through GPT, which produces pyruvate and glutamate, is thus counterbalanced
by a decrease in the histidine degradation flux towards glutamate (Figure S1A). To
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achieve this reduction, the model forces the flux from histidine to histamine to increase
(Figure S1A). This scenario however is not physiological for several reasons: (1) the
physiological concentrations of histamine (nanomolar range) and histidine (micromo-
lar range) are very different; (2) amino-acid degradation in the liver mainly occurs to
produce energy in the form of glucose and not to produce histamine.

Therefore, we performed additional simulations for each of the 442 metabolic ob-
jectives listed in Table S2, this time forcing the flux of histidine to histamine to be zero
(Table S5). As before, the PH1 model predicts an increased flux through GPT caused
by an excess of alanine because of AGT loss of function. However, this time the histi-
dine degradation flux to glutamate cannot be reduced (since histidine has nowhere else
to go). Therefore, as depicted in (Figure S1B) and reported in Table S5, the model
finds another solution to balance glutamate excess, i.e. it increases the flux from histi-
dine to glutamate, and at the same time, increases glutamate metabolism and the urea
cycle, so that glutamate levels are kept in check. In this case, the reduction of histi-
dine/histamine levels is explained by the in silico model by an increased degradation
of histidine in hepatocytes.

We believe the latter solution to be the most physiological plausible, and in agree-
ment with our experimental observation of reduced histidine levels systemically in PH1
mice and patients, and of reduced histamine levels in wild-type mice following acute
alanine administration.

Regardless of which solution is the most physiologically relevant, both solutions
suggests a central role of alanine and the GPT enzyme in mediating the effects of the
AGT LoF on histidine metabolism.
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