
Appendices
Supplementary Materials for ”Structured Sparse Canonical Correlation
Analysis for Brain Imaging Genetics: An Improved GraphNet
Method” by Lei Du, Heng Huang, Jingwen Yan, Sungeun Kim,
Shannon L. Risacher, Mark Inlow, Jason H. Moore, Andrew J.
Saykin and Li Shen, for the Alzheimer’s Disease Neuroimaging
Initiative

A PROOF OF THEOREM 1
THEOREM 1. Given two datasets X and Y, and the pre-tuned

parameters (λ, β, γ). Let ũ be the solution to our SCCA problem
of Eq. (10-11). Without loss of generality, we consider the ui-th
and uj-th feature are only linked to each other on the graph, i.e.,
ei,j = 1. Let ρij is the sample correlation between them, wi,j is
their edge weight. Then the estimated canonical loading u satisfies,

|ũi − ũj | ≤
1

γ1 + 2λ1wi,j

√
2(1− ρij), if ρij ≥ 0,

|ũi + ũj | ≤
1

γ1 + 2λ1wi,j

√
2(1 + ρij), if ρij < 0,

(14)

and the estimated canonical loading v satisfies,

|ṽi − ṽj | ≤
1

(γ2 + 2λ2w′i,j)

√
2(1− ρ′ij), if ρ′ij ≥ 0,

|ṽi + ṽj | ≤
1

(γ2 + 2λ2w′i,j)

√
2(1 + ρ′ij), if ρ′ij < 0.

(15)

where w′i,j is the weight between the i-th and j-th feature of v, and
ρ′ij is their sample correlation coefficient.

PROOF. (1) We first prove the upper bound for ρij ≥ 0, i.e.,
the ui-th and uj-th features are positively correlated. Since ũ is the
solution to Eq. (10), we have,

∂L
∂ui

= (λ1D̂1,i + β1D1,i + γ1x
T
i xi)ũi = x

T
i Yv,

∂L
∂uj

= (λ1D̂1,j + β1D1,j + γ1x
T
j xj)ũj = x

T
j Yv.

Now that ui and uj are the only linked features, we have
D(i, i) = D(j, j) = A(i, j) = wi,j . We also know that sgn(ui) =
ui
|ui|

, ||xi||22 = ρii = 1 and ||xj ||22 = ρjj = 1. In addition, ρij ≥ 0

implies that sgn(ui) = sgn(uj). Then according to the definition of
D1 and D̂1, we arrive at,

λ1wi,j(|ũi| − |ũj |)sgn(ũi) + β1sgn(ũi) + γ1ũi = xTi Yv,

λ1wi,j(|ũj | − |ũi|)sgn(ũj) + β1sgn(ũj) + γ1ũj = xTj Yv.

i.e.,

λ1wi,j(ũi − ũj) + β1sgn(ũi) + γ1ũi = xTi Yv,

λ1wi,j(ũj − ũi) + β1sgn(ũi) + γ1ũj = xTj Yv.
(16)

Then we have the following equation by subtracting these two
equations,

(γ1 + 2λ1wi,j)(ũi − ũj) = (xi − xj)
TYv (17)

Taking `2-norm on both sides, and using ||(xi − xj)||22 = 2(1−
ρij) can yield,

(γ1 + 2λ1wi,j)|ũi − ũj | =
√

2(1− ρij)||Yv||2 (18)

The constraint function of our model implies ||Yv||2 ≤ 1, thus
we arrive at,

|ũi − ũj | ≤
1

(γ1 + 2λ1wi,j)

√
2(1− ρij) (19)

(2) We now investigate the upper bound for ρij < 0, i.e., the
ui-th and uj-th features are negatively correlated. This implies that
sgn(ui) = −sgn(uj). Thus the Eq. (??) becames,

λ1wi,j(ũi + ũj) + β1sgn(ũi) + γ1ũi = xTi Yv,

λ1wi,j(ũj + ũi) + β1(−sgn(ũi)) + γ1ũj = xTj Yv.
(20)

We add the two equations in Eq. (??) other than subtracting them,

(γ1 + 2λ1wi,j)(ũi + ũj) = (xi + xj)
TYv (21)

Similarly, by taking `2-norm, and using ||(xi − xj)||22 = 2(1 −
ρij) and ||Yv||2 ≤ 1, we arrive at,

|ũi + ũj | ≤
1

(γ1 + 2λ1wi,j)

√
2(1 + ρij) (22)

which completes the proof.
Since AGN-SCCA is symmetric for u and v, the proof regarding

the upper bound of v can be obtained via the same strategy.

B PROOF OF THEOREM 2
THEOREM 2. The problem Eq. (8) is lower bounded by -1.

PROOF. We can define Lagrange dual function of problem Eq.
(8),

g(Γ) = min
u,v
L(u,v,Γ) (23)

Since the dual function is the pointwise minimum of affine
functions of Γ, it is concave. Obviously, g(Γ) ≤ −uTXTYv
according to Eq. (6) and Eq. (7).

Now that g(Γ) is concave, its maximum exists and the following
equations holds when it is maximized.

∂g(Γ)

∂γ1

= ||Xu||22 − 1 = 0,
∂g(Γ)

∂γ2

= ||Yv||22 − 1 = 0 (24)

This implies that: (1) −uTXTYv ∈ [−1, 1] because the
canonical correlation lies in [-1,1]; and (2) maxΓ�0 g(Γ) =
−uTXTYv.

Now we define the dual problem regarding our primal problem,

d
∗

= max
Γ�0

g(Γ) = max
Γ�0

min
u,v
L(u,v,Γ) = −u

T
X

T
Yv (25)

This means d∗ ∈ [−1, 1]. According the Lagrange duality, the
weak duality always holds for our problem, i.e.,

p
∗ ≥ d∗ ≥ −1 (26)

Therefore, the problem Eq. (8) is lower bounded by -1.
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C PROOF OF THEOREM 3
To prove the convergence of AGN-SCCA algorithm, we introduce
the following lemma from (?).

LEMMA 1. Any two nonzero vectors ũ, u with the same length
satisfies,

||ũ||2 −
||ũ||22
2||u||2

≤ ||u||2 −
||u||22
2||u||2

. (27)

PROOF. See (?).

Then we have the following lemma.

LEMMA 2. Any two nonzero numbers u and ũ satisfy,

||ũ||1 −
||ũ||21
2||u||1

≤ ||u||1 −
||u||21
2||u||1

. (28)

PROOF. Obviously, for any nonzero real numbers u and ũ, given
Lemma ??, we have ||u||1 = ||u||2, and ||ũ||1 = ||ũ||2. This
completes the proof.

THEOREM 3. In each iteration, the AGN-SCCA algorithm
monotonously decreases the objective value till it converges.

PROOF. Now we prove Theorem 3 in two stages.
(1) Stage 1: From Steps 3-6 in Algorithm 1, we fix v to solve for

u. The objective function Eq. (7) is equivalent to,

L(u,v) = −uTXTYv +
1

2
||u||AGN +

γ1

2
||Xu||22

We denote the updated value as ũ. Then from the Step 5 we have

−ũ
T

X
T

Yv + λ1ũ
T

D̂1ũ + β1ũ
T

D1ũ + γ1ũ
T

X
T

Xũ

≤ −u
T

X
T

Yv + λ1u
T

D̂1u + β1u
T

D1u + γ1u
T

X
T

Xu

According to the definition of D̂1 and D1, we arrive at,

−ũ
T

X
T

Yv + λ1

∑
k1

2L
k1
1 |u|

||ũk1 ||21
2||uk1 ||1

+β1

∑
k1

||ũk1 ||21
2||uk1 ||1

+ γ1ũ
T

X
T

Xũ

≤ −u
T

X
T

Yv + λ1

∑
k1

2L
k1
1 |u|

||uk1 ||21
2||uk1 ||1

+β1

∑
k1

||uk1 ||21
2||uk1 ||1

+ γ1u
T

X
T

Xu

(29)

We first multiply 2λ1L
k1
1 |ũ| on both sides of Eq. (??) for each

k1 ∈ [1, p], and multiply β1 on both sides of Eq. (??). Finally we

sum them with Eq. (??) on both sides,

−ũ
T

X
T

Yv + 2λ1|ũ|TL1|ũ|+ β1||ũ||1 + γ1||Xũ||22

≤ −u
T

X
T

Yv + 2λ1|u|TL1|ũ|+ β1||u||1 + γ1||Xu||22

Again, we first multiply 2λ1L
k1
1 |u| for each k1 ∈ [1, p] on both

sides of Eq. (??), and multiply β2 on both sides of Eq. (??). By
summing them together with Eq. (??), we arrive at,

−ũ
T

X
T

Yv + 2λ1|u|TL1|ũ|+ β1||ũ||1 + γ1||Xũ||22

≤ −u
T

X
T

Yv + 2λ1|u|TL1|u|+ β1||u||1 + γ1||Xu||22

Obviously, according to the transitive property of inequalities, the
following inequality holds,

−ũ
T

X
T

Yv + 2λ1|ũ|TL1|ũ|+ β1||ũ||1 + γ1||Xũ||22

≤ −u
T

X
T

Yv + 2λ1|u|TL1|u|+ β1||u||1 + γ1||Xu||22

i.e.,

−ũ
T

X
T

Yv +
1

2
||ũ||AGN +

γ∗1
2
||Xũ||22

≤ −u
T

X
T

Yv +
1

2
||u||AGN +

γ∗1
2
||Xu||22

(30)

where λ∗1 = 4λ1, γ∗1 = 2γ1,β∗1 = 2β1.
Therefore, our algorithm will decrease in each iteration during the

this phase, i.e., L(ũ,v) ≤ L(u,v).
(2) Phase 2: From the Step 7 to Step 10, we fix u to solve for v.

Applying the same steps above, we can arrive at,

−ũ
T

X
T

Yṽ +
1

2
||ṽ||AGN +

γ∗2
2
||Yṽ||22

≤ −ũ
T

X
T

Yv +
1

2
||v||AGN +

γ∗2
2
||Yv||22

(31)

Thus our algorithm also decreases in each iteration during the
second phase, i.e., L(ũ, ṽ) ≤ L(ũ,v).

Now that L(ũ, ṽ) ≤ L(ũ,v) and L(ũ,v) ≤ L(u,v), it is
obvious to have L(ũ, ṽ) ≤ L(u,v). Therefore, Algorithm 1
monotonically decreases the objective function in each iteration.
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