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1 Introduction

This document will brie�y describe models and algorithms used in package CLOSE and its compan-
ion R package CLOSE-R. CLOSE is a suite of tools for CNA and LOH analysis (as well as potential
CLOnality analysis) with SEquencing data. Current pipeline majorly facilitates the analysis on
paired tumor and normal samples. CLOSE includes functions for both segment-level and read-level
processing. Here we will mainly discuss segment-level models. At the segment level, the major
data input are LRR and BAF values (or mean/median values) from each pre-de�ned segments or
windows.

2 Segmental LRR and BAF models

LRR is also called Log R or Log 2 ratio. It is a term originated from array data analysis, where �R�
represents variables for probe intensity. In sequencing data, it can naturally be used to represent
Read Depth ratio, i.e. LRR = log2(RT /RN ), where RT and RN are mapped read counts of tumor
and matched normal samples. The probability of observing n reads in a segment/bin is usually
modeled through a Poisson distribution (and their ratio through a binomial). We can approximate
the distribution of segmental LRR (mean) value by a Gaussian distribution. Let rk denotes the
sLRR value of the kth segment, we have

rk|µk, σ2 ∼ N (µ
(r)
k , σ2)

, where µk re�ects copy number changes while σ is estimated globally (often set at 0.18 in array
data, see table below). To allow for more �exible dispersion control, a non-standardized Student's t
distribution (Favero et al. 2015) can also be applied: rk ∼ t(µk, ν, σ2), where the degrees of freedom
parameter ν can be estimated adaptively or set at a �xed value (e.g., ν=5 was used in Favero�at
the depth ratio scale).

Given true local copy numbers in a pair of tumor and normal tissues nT and nN in a segment,
the expected value of log2 depth ratio µk should be given by log2(nT /nN ). In reality, however, this
value is a�ected by many factors inherent to tumor genomes and sequencing data. Let φ and ρ
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denote the tumor purity and ploidy, respectively. The expected relative read ratio can be calculated
as follows:

µ
(r)
k = log2

[
2(nT /nN )φ+ 2(1− φ)

ρφ+ 2(1− φ)
× 1

λ

]
= log2

[
(nCφ+ 2(1− φ))× 1

2λ∗

]
(1)

,where 2(nT /nN )φ+2(1−φ) re�ects the average copy number in the mixed sample and ρφ+2(1−φ)
is the average ploidy. λ is a parameter that accounts for coverage di�erence between tumor and
normal samples and λ = 1 if read counts are normalized. For simplicity, in (1) we de�ned a new
parameter λ∗ (λ∗=1 when ρ = 2 and λ = 1). nC will be de�ned in the following.

BAF (B-allele frequency) is also a term adapted from array data analysis where BAF=intensity of
B/ (intensity of A+B). Given a SNP site (after variant calling) with A and B allele, there are di�erent
genotypes under di�erent copy number status {A, B, AB, AA, BB, AAB, ABB, AABB, AAAB,
· · · }. Therefore, BAF values associated with these genotypes are {0, 1, 1/2, 0, 1, 1/3, 2/3, 1/2,
1/4, · · · }, respectively. In real data analysis, it is recommended to add a small (positive/negative)
value, e.g. 0.05, to the theoretical BAFs that are exact (0/1), in order to compensate sequence
mapping bias and other global errors. The deviation of BAFs from 0.5 is thus an indicator of
loss of heterozygosity (LOH) event: AB(in the normal tissue)→other genotypes in tumor tissue.
With paired tumor-normal samples, we only consider BAFs that are the heterozygous (SNPs) in the
normal sample because homozygous will be non-informative for BAF estimation. Similarly, we can
reasonably model the distribution of segmental BAF (sBAF) values by a Gaussian distribution. Let

bk denotes the sBAF mean value of the kth segment, we have bk ∼ N (µ
(b)
k , σ2), where the expected

value of bkis given by nB
nC

(where nC=nA +nB = 2 if genotype AB). With mixed tumor and normal
cells and purity φ (allelic imbalance not a�ected by ploidy ρ), it becomes

µ
(b)
k =

nBφ+ (1− φ)

nCφ+ 2(1− φ)
(2)

Because BAF signal is symmetric about 0.5 and much more sparse than LRR especially with
WES data, a more desirable alternative is to calculate segmental LAF (lesser allele frequency):

sLAF =

{
sBAF ∀sBAF < 0.5

1− sBAF ∀sBAF > 0.5
(3)

This transformation makes the LOH modelling more e�cient since usually we do not need to dis-
tinguish between certain genotype pairs such as AAB and ABB. As a reference for the subsequent
parameterization of joint likelihood model, we summarize the genotype-CNA relationship (modi-
�ed from the model implemented in Illumina GenomStudio) in the following table. Note that the
standard deviations (SD) in this table are derived from the array data (but we have found it works
surprisingly well as an approximation in many sequencing data).
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Genotypes Copy number LRR mean LRR SD LAF mean LAF SD
DD 0 -5 2 NA NA

A or B 1 -0.45 0.18 0 0.03
AA or BB 2 0 0.18 0 0.03

AB 2 0 0.18 0.5 0.03
AAA or BBB 3 0.3 0.18 0 0.03
AAB or ABB 3 0.3 0.18 1/3 0.03

AAAA 4 0.75 0.18 0 0.03
AAAB or ABBB 4 0.75 0.18 0.25 0.03

BBBB 4 0.75 0.18 0 0.03

3 Joint likelihood model

The total likelihood is then the product of the likelihood (probability density) for each pre-de�ned
segment, i.e.,

L(Θ; r,b) =
∏

Ls =
∏

f(rk, bk|Θ) (4)

,where Θ = {x, φ, ρ} indicates the unknown parameter set including local copy number of the
segment and global parameters purity and ploidy. It is justi�able to assume that, conditional on
the underlying true copy number xk, sLRR and sBAF are independent. Therefore, we have

f(rk, bk|Θ) = f(rk|Θ)× f(bk|Θ) (5)

If we assume Gaussian density and ignore purity and ploidy parameter, the likelihood of genotype
AB (based on previous genotype-CNA table) is simply

L(AB) =
1

0.18
√

2π
exp− (rk − 0)2

2(0.182)
× 1

0.03
√

2π
exp− (bk − 0.5)2

2(0.03)

We may also construct composite likelihoods based on major CN status by pooling individual
genotype likelihood, e.g.,

L(0) = L(DD) Homozygous deletion
L(1) = L(A) + L(B) Hemizygous deletion

L(2) = L(AA) + L(AB) + L(BB) Dizygous normal
L(3) = L(AAA) + L(BBB) + L(AAB) + L(ABB) Trizygous gain

L(4) = L(AAAA) + L(AAAB) + L(ABBB) + L(BBBB) Tetrazygous

For each segment (with �xed φ and ρ) , CN status is determined by the largest composite likelihood
value calculated above. To consider all segments, the CNA status and global parameters should be
estimated globally by maximum the likelihood given in (4),

Θ = argmax
∏

Ls
Θ

(6)

The MLE or MAP (if priors are speci�ed) problem can be solved by EM algorithm (by treating
copy number information x as latent/missing variables). MAP method is more robust to model
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violations and can be achieved at a substantially lower computational cost compared to MCMC
estimates.

4 Global purity and ploidy

Global parameters (φ and ρ) can be estimated by solving:

argmax
∏

ρ,φ,x

f(rk, bk|φ, ρ, x̃i)p(x̃i) (7)

The solution to (7) can be found by EM algorithm or simply through a grid search over the
parameter space {(φ, ρ) : 0 < φ < 1; ρ ∈ {1, 2, 3, 4...})}. A Dirichlet prior on copy numbers:
p(xi) = 1

B(α)

∏
xαi−1
i and set hyperparameters to impose the prior knowledge such as copy number

2 is more common than others. Estimating all free parameters jointly in (6) and (7) may cause model
over�tting especially when sequencing depth is low or when there are not enough large number of
segments due to limited CNA vents. As an alternative to full likelihood model, we use a modi�ed
�canonical point� method based on the originally described method of Li et al. (2014). It includes
three major steps (1) calculate all the possible canonical LRR-LAF points values under each pair
of (φ, ρ) (2) assign each segment to the nearest canonical points; and (3) the �nal φ, ρ estimates are
determined by the smallest total distance over all grid pairs. We weight the distance metric in step
2 to re�ect segment length and to emphasize points with LAF values smaller than 0.25. Segments
with smaller LAFs are less prone to global bias such as mapping error and are often act as critical
anchor points in purity and ploidy pattern recognition. It can be shown that the canonical point
method is essentially an approximation to the likelihood method.

To ensure robust estimation, we need to employ few important pre-processing steps: (1) center
LRR values around the global segmental median; (2) remove all segments with LRR < -2 ( homozy-
gous deletion regions do not contribute to purity estimation); and (3) exclude all �normal� regions
(segments with LRR close to 0 and LAF close to the global mode).

5 ASCN models

Once the global purity and ploidy are estimated, the ASCN (allele speci�c copy number ) estimates
can be obtained by solving two simultaneous equations (1) and (2). Here we derive an alternative
formula to calculate ASCN based on segmental LRR (r) and LAF (l):{

n̂C = 2r × ρ+ 2× (2r − 1)× 1−φ
φ

n̂B = 2r × ρ× l + (2r × l − 1)× 1−φ
φ or nC × l + (2× l − 1)× 1−φ

φ

(8)

Equations (8) are the key functions used recursively in CLOSE. First, with �xed ρ andφ, they can
act as a mapping function to transform the input LRR-LAF values to more convenient ASCN space;
therefore, the local (absolute) copy number calling (of each segment or each DP cluster that will be
introduced below) can be performed by searching the nearest ASCN canonical points. Second, by
relaxing φ, we can get canonical lines that enables the calculations of local aneuploid mixture ratio
for each segment or cluster, which can be used as an e�ective surrogate for sub-clonal pro�ling. The
following �gure (generated by the demo function in CLOSE-R) illustrates the parameter trajectory
of di�erent copy number status along with purity.
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Figure 1: Parameter trajectory plots (canonical lines) with ρ = 2 and varying φ. Canonical points
tend to shrink towards the normal status �1/2� with decreasing purity. The straight ASCN canonical
lines (right panel) are apparently more convenient than the curved LRR-LAF lines in calculating
distances. This �gure also illustrates the non-identi�ability problem of ploidy and purity. For
genotypes sharing the same line (such as 2/4 and 3/6), the copy number status is chosen based on
more criteria such that it is more consistent with global ploidy and purity estimates. Parameter
plots of other ploidy can be generated by the demo function in CLOSE-R, e.g.Clines.demo(la = 3 )
for triploid samples.

5



Based on lines and coordinates shown in Figure 1, we can (1) determine local copy number
status based on the line of shortest distance from the point (2) estimate the corresponding local
purity or mixture ratio indicated by the projection of the point to the line. As a complementary
approach to segment-speci�c calling, a bivariate clustering analysis can be done �rst by partitioning
all segments into clusters of di�erent copy number status. In CLOSE-R, we use a distance-based
Chinese Restaurant Process (Teh et al. 2006, Blei and Frazier 2011) to perform clustering analysis.
The original CRP algorithm is as follows: (1) start with an empty group and the �rst data point is
assigned to this group (2) When a new data point zi comes in we make a stochastic decision.

zi|z1:i−1, α =

{
zk with probability ∝ nk

new group with probability ∝ α

where nk is the number of data points in group k. α is the parameter controls dispersion. In
the distance based CRP the assignment to a previous group is proportional to the distance of
the new datapoint to each previously assigned groups, i.e., p(zi|z1:i−1, D, α) ∝ f(dij). The major
advantage of this approach over k-means clustering is that one does not need to specify a �xed
number of clusters. The copy number status of segmental clusters is then determined by comparing
the distances from the centroid of each cluster to all canonical lines as shown in this �gure. This
additional data-driven step ensures more reliable results, while providing better visualization of the
global ASCN pro�ling.
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