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Comparison with non-negative Tucker-2 decomposition 

Here we offer a formal comparison between our method and Tucker-2 decomposition. To 

implement the Tucker-2 decomposition, we used the N-way Matlab toolbox (Andersson and 

Bro, 2000) and imposed non-negativity constraints to the spatial and temporal components 

and no constraints to the core tensor. 

First, we applied the Tucker-2 decomposition to the data of our example subject and compared 

the extracted components with the ones identified by our approach. We illustrate the results 

in Supp. Figure 2A-B. The temporal and spatial components extracted by the two methods 

have considerable differences. In particular, Tucker-2 merges the first two temporal 

components into a single one and the other two components overlap highly. A high overlap is 

also observed for the two spatial components. Instead, scNM3F yields succinct non-

overlapping temporal and spatial components, which as we showed in the paper encode 

different cognitive functions.  

ssNM3F algorithm. These differences could be due to the clustering feature of our method 

that is not included in Tucker decompositions or the difference in the optimization algorithm 

(multiplicative update rules for our method versus alternating least squares for Tucker 

decompositions). To investigate these two alternatives, we also compared our results with 

another NMF-based algorithm that does not impose clustering constraints. We built this 

algorithm by extending semi-NMF (Ding et al., 2010) to a 3-factor decomposition and named 

it sample-based semi-nonnegative matrix tri-factorization (ssNM3F). For 
temW and spaW  the 

update rules of semi-sNM3F are:  
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Where temG is the reshaped version of tem spaH W  with dimension ( P SN ) and spaG is the 

reshaped version of tem spaW H  with dimension (TN L ). temH  and spaH  are reshaped versions 

of the coefficient matrix H with dimensions ( PN L ) and ( P LN )  respectively. Each nH is 

iteratively updated for all {1,..., }n N  using the same rule as in scNM3F: 
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Importantly, ssNM3F is devised in order to be applied to signed data but does not have the 

clustering feature of scNM3F.  

Importance of clustering feature. By applying ssNM3F to the EEG data of the example subject, 

we found that, similarly to the Tucker decomposition, it identifies highly-overlapping temporal 

and spatial components (Supp. Figure 2C). This observation suggests that the observed 

differences in the extracted components are mainly due to the clustering feature of the 

scNM3F algorithm. We also compared the discrimination performance of the three methods 

on the same data. We found that for both face versus car classification and phase coherence 

level classification, scNM3F performed better than Tucker-2 and ssNM3F (Supp. Figure 3).  

Importance of optimization algorithm. We then examined whether the use of different 

optimization algorithms may also affect the decomposition outputs. An important difference in 

this respect is that the update rules used by the two NMF-based algorithms (Eq.4-5 for 

scNM3F and Supp. Eq. 1-2 for ssNM3F) make use of both the positive and the negative entries 

of the input data matrix in order to identify components, whereas the alternating least squares 

algorithm used in the Tucker decomposition relies on a half-wave rectification of the input data, 

i.e. it ignores the negative entries.  

To investigate how this affects the decomposition outputs, we applied ssNM3F and Tucker-2 

to simulated data with known ground-truth components. We generated three temporal 

components as sums of three Gaussian bursts and two spatial components that were gamma 

distributed and combined those using normal random coefficients (Supp.  Figure 4A). We 

applied the Tucker-2 decomposition and the ssNM3F algorithm to the simulated data and 

extracted the spatial and temporal components shown in Supp. Figure 4B-C. ssNM3F 

extracted temporal and spatial components that were more similar to the original ones than 

Tucker-2. To quantify this, we computed the mean squared error between the original and 

extracted modules of the two methods over 100 repetitions of data generation and module 

extraction. We found that the temporal modules identified by ssNM3F were significantly more 

similar to the original ones (p<0.001, t-test) than Tucker-2 and also the spatial modules were 

slightly but not significantly more similar (Supp. Figure 5). This result suggests that, besides 

the clustering feature, also the use of multiplicative update rules that take into account the 

negative entries of the data gives a data reconstruction advantage to the space-by-time 

decomposition when compared to Tucker-2. 

Decoding performance comparison. Finally, we compared the decoding performance of 

scNM3F and non-negative Tucker-2 on the real data of all 10 subjects (Supp. Figure 6). We 

found that our method performed significantly better than the Tucker-2 decomposition at the 
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population level for both face versus car classification and phase coherence level classification 

(p<0.01, t-tests). 
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Supplementary Figures 

 

Supp. Figure 1: Dependence of face versus car classification performance (for the highest 

phase coherence level) on the number of spatial and temporal components. Classification 

peaks at 2 spatial, 3 temporal components (indicated by a star) and shows no further increase 

for larger numbers of components.  Hence, we selected this set of components for all further 

analyses. 

 

Supp. Figure 2: Comparison of the output of the proposed scNM3F algorithm (A) with the non-

negative Tucker-2 decomposition (B) and the ssNM3F algorithm (an NMF-based algorithm 

that does not have the clustering feature) (C) on the EEG data of the example subject. 
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Supp. Figure 3: Comparison of scNM3F (blue) with the non-negative Tucker-2 decomposition 

(green) and ssNM3F (red) in terms of their performance on face versus car classification (left) 

and phase coherence classification (right) for all significant phase coherence levels.  

 

Supp. Figure 4: Comparison of the components extracted by ssNM3F and non-negative 

Tucker-2 decomposition on simulated data. A) The simulated temporal and spatial 

components. B) The temporal and spatial components identified by ssNM3F. C) The temporal 

and spatial components identified by non-negative Tucker-2. 
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Supp. Figure 5: Comparison of ssNM3F and non-negative Tucker-2 decomposition in terms 

of component reconstruction on simulated data. Colored bars indicate mean squared errors 

between the original components and the ones identified by ssNM3F (blue) and Tucker-2 

(red). Data generation and component extraction were repeated 100 times. Error bars 

represent standard error means.  

 

 

Supp. Figure 6: Decoding performance comparison across subjects between the space-by-

time decomposition and the Tucker-2 decomposition. A) Face versus car decoding. Reported 

values are averages across the three significant coherence levels for all subjects. Rightmost 

bars are the grand averages (±sem) across subjects for the two methods.  A) Phase 

coherence decoding. Reported values are averages across the four significant coherence 

levels for all subjects. Rightmost bars are the grand averages (±sem) across subjects for the 

two methods.  
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