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Supplemental Figures

GTEXx Blood eQTL Data (23,164 genes)
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Simulated Data (24,000 genes)
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Figure S1: Comparison of simulated data set with the actual GTEx
whole blood cis-eQTL data

For each gene in each data set, we find the best associated SNP based on
single-SNP association analysis and compute the heritability explained by
the best SNP using a simple linear regression model. The histograms show
the distribution of the heritability across all genes. The similarity of the two
histograms indicates that the simulated data sets closely resemble the real
observed cis-eQTL data.
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Figure S2: Comparison of individual estimates of the enrichment
parameter and their uncertainty quantification

Each panel represents a different simulation setting. We plot the point esti-
mates of a; along with their 95% confidence intervals for each method using
10 randomly selected simulated data sets. In all settings, all the methods
compared (“best case”, EM with adaptive DAP and EM with DAP-1) show
the desired coverage probability. The figure also highlights the considerable
uncertainty in enrichment analysis.
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Figure S3: Examination of the combinatorial approximation in the
simulated data sets

Each panel represents a simulated data set containing K true QTLs. The
ratio of the estimated value C# (computed using the true value of C;_;) over
the true value C is plotted on a log 10 scale for all model size partitions. The
red vertical line indicates the size of the true association model, and the blue
dotted line represents the actual stopping point at which the adaptive DAP
halts explicit exploration. As the model size s exceeds K, the estimation by
C# becomes very accurate in all settings.
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Figure S4: Additional comparisons for multi-SNP QTL mapping
with different threshold values

The additional simulation results are obtained by running the adaptive DAP
with A = 0.05, which is most similar to the DAP outcome with the default
setting (A = 0.01) and, for the most part, still outperforms the MCMC
algorithm.
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Figure S5: Traceplots of the marginal likelihood in the EM run for
analysis of the GEUVADIS data.

The DAP-1-embedded EM algorithm is used to estimate the enrichment of
genetic variants disrupting transcription factor binding sites in the eQTLs
using the GUEVADIS data. It can be observed that the EM algorithm
converges quickly after only 5 to 10 iterations.
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Figure S6: Additional output from the analysis of GEUVADIS data

(a) - (b) Traceplots of estimates of the enrichment parameters for binding
variants and footprint SNPs during the DAP-1-embedded EM iterations for
analyzing the GEUVADIS data. Both estimates are stabilized after approxi-
mately 8 iterations. (c) - (d) Comparison of multi-SNP cis-eQTL mapping
with and without incorporating functional annotations. We plot the multi-
SNP QTL mapping results of gene LY86 [MIM 605241] using the GEUVADIS
data. Panel (c) shows the results assuming that all SNPs are equally likely
to be associated a priori, i.e., no functional annotation is used. Panel (d)
shows the results using the functional annotations with enrichment param-
eters estimated by the DAP-1-embedded EM algorithm. In both cases, we
use the adaptive DAP algorithm to perform the multi-SNP QTL mapping
and plot the SNPs with PIP > 0.02 with respect to their positions relative
to the transcription start site. SNPs in high LD are plotted with the same
color, and the filled circles indicate that a SNP is annotated as disrupting TF
binding. It is clear that three independent cis-eQTLs exist because in both
panels, the sums of the PIPs from the SNPs with the same color all — 1.
When incorporating functional annotation to perform integrative QTL map-
ping, the binding variants show much greater PIP values and are prioritized
over the non-annotated SNPs in high LD.
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Figure S7: Estimates of the enrichment parameters for data simu-
lated from polygenic models

In this experiment, the simulation scheme is mostly similar to the first simu-
lation study described in the main text, except that in addition to the SNPs
sampled to have large effects, we assign a non-zero genetic effect from an
independent N(0, ¢?) distribution for all the remaining candidate SNPs. (In
this case, 7; should be interpreted as an indicator of large genetic effect.) We
select @ = 0.02,0.05 and 0.1 to represent different magnitude of polygenic
background. The point estimate of the o; + standard error (obtained from
50 simulated data sets using DAP-1-embedded EM algorithm) for each ¢
value is plotted. In all cases, the non-zero a; estimates are biased toward 0,
however when ¢ is small (¢ = 0.02), the bias seems negligible.



Supplemental Tables

MCMC (reps) DAP
15K 75K 250K 1M A =0.01
Running Time \ 4m 2.79s 10m 28.37s 28m 50.00s 107m 46.75s \ 28.44s
RMSE of PIP | 0.080 0.052 0.034 0.030 -

Table S1: Average running time and PIP comparison using MCMC
runs with varying sampling steps in the simulation study

In the first row, the actual running time reported from the UNIX “time”
command is shown for each experiment for the third simulation study. The
DAP algorithm runs with 10 parallel threads, and the average user time
(i.e., approximate running time without parallelization) is 1 minute and 8.66
seconds. The second row shows the measurement of closeness between the
MCMC and DAP output. In particular, we compute the rooted mean squared
error (RMSE) of the PIP output from each MCMC run with respect to the
adaptive DAP output. As the iteration of the MCMC algorithm increases,
the difference between the two becomes smaller.



