Clinical features, investigation and treatment of post-traumatic syringomyelia

NORMAN SHANNON, LINDSAY SYMON, VALENTINE LOGUE, DAVID CULL, JOON KANG, AND BRIAN KENDALL

From the Gough Cooper Department of Neurological Surgery, Institute of Neurology and the National Hospital, Queen Square, London

SUMMARY Thirteen patients who sustained spinal cord trauma causing persisting disability, developed new symptoms, the chief one of which was severe pain unrelieved by analgesics. The clinical diagnosis of post traumatic syringomyelia was confirmed in each case by means of myelography, as well as endomyelography in seven patients. In every case exploration of the spinal cord syrinx was performed. Ten patients were troubled by severe pain while three patients were mainly subject to altered sensation in the upper limbs. Of the six patients who had initially sustained complete cord transections, three were treated by cord transection and three were treated by syringostomy. The seven patients who sustained incomplete cord lesions were all treated by syringostomy. The patients who initially sustained incomplete sensory motor spinal cord damage had a better symptomatic response to surgery than those who had sustained a complete spinal cord lesion. The ten patients whose main symptom was severe pain were completely relieved of their symptoms by surgery.

The development of a progressive neurological deficit extending to segments beyond the site of cord injury, months or years after the original trauma and shown subsequently to be due to the development of a syrinx cavity within the cord, is a rare but well documented occurrence.¹⁻³ ⁶⁻⁹ Barnett⁷ found clinical features suggesting syrinx formation in 1.8% of a series of 319 post-traumatic paraplegic patients. On the basis of the similarity of clinical manifestations to those seen in syringomyelia, he concluded that the lesion was a cystic degeneration of the spinal cord, although such a cyst was confirmed in only two of his eight cases, in one at operation and in another at necropsy.

Our recent experiences suggest that some of the features of post-traumatic syringomyelia are amenable to surgical intervention and the purpose of this paper is to call attention to this relatively rare complication of spinal cord trauma, and the possibility of partial relief.

Method of study

Twenty case records with the diagnosis of posttraumatic syringomyelia were examined. Seven of the patients had been judged unsuitable for further investigation and potential surgery. This paper is concerned with those in whom investigations and surgery seemed warranted. In the course of the study all patients returned to hospital for re-examination and assessment, and all neuroradiological studies were reexamined in the light of current practice.

Observations

Clinical features The details of the initial injury sustained by the 13 patients in the study are given in table 1. A summary of the clinical findings in patients with complete and incomplete lesions is given in tables 2 and 3. The term "complete cord lesion" is used to describe patients who remained paraplegic, and up until the development of new symptoms, had a cleary defined sensory level on clinical testing. An "incomplete cord lesion" was one in which the patient regained lower limb power, but remained paretic. The term "dissociate sensory loss" describes a state wherein the patient had objective sensory loss or impairment of sensation of hot and cold stimuli, but touch was preserved. The clinical features of posttraumatic syringomyelia did not differ from those of

Address for reprint requests: Professor Lindsay Symon. Institute of Neurology, Queen Square, London WC1 3BG.

36 Norman Shannon, Lindsay Symon, Valentine Logue, David Cull, Joon Kang, and Brian Kendall

				-		
Cas	ses	Date of injury	Mode of injury	Spinal column injury	Neurological deficit	Initial management
1	JM 21M	November 1975	Road traffic accident	Fracture dislocation C7 on D1	Tetraplegia improved to paraparesis	No operation
2	JH 40M	January 1976	Fall	Crush fracture L1	Paraplegia improving to paraparesis	No operation
3	RP 40M	June 1962	Fall	Crush fracture L1	Paraparesis Ambulant	No operation
4	BH 47M	April 1957	Road traffic accident	Posterior dislocation C6 on C7	Paraparesis Ambulant	No operation
5	JR 22M	August 1972	Thrown from horse	Crush fracture D6	Paraplegia. No improvement	No operation
6	KT 37M	May 1972	Road traffic accident	Crush fracture D7	Paraplegia. No insprovement	No operation
7	RH 25M	July 1971	Road traffic accident	Crush fracture L1. Posterior dislocation of D12	Paraplegia. No improvement.	No operation
8	RS 46F	June 1951	Gunshot injury	D7, D1 dislocation	Paraplegia. No improvement	Exploration D7, D1 Laminectomy
9	GV 51M	June 1975	Road traffic accident	Fracture L1	Paraplegia. No improvement	No operation
10	AB 41 M	September 1975	Road traffic accident	Fracture D12	Paraparesis Ambulant	No operation
11	DK 49M	1955	Industrial accident	Crush fracture D12	Paraparesis Non-ambulant	Plate fixation of fracture
12	KA 59F	June 1966	Gunshot wound	Laminae of C8 and C7	Initially tetraplegic improved to weakness upper limbs limited hand function. Paraplegia	D1/D12 laminectomy Wound explored
13	MP 53M	September 1965	Road traffic	Fracture D7	Paraparesis improved to spastic weak left lower limbs. Ambulant	Wound explored. Extradural and intradural haematoma removed

Table 1 Details of the initial injury sustained by the patients

Table 2 Patients with complete cord lesions after trauma

	me age at e of injury	Column level	Interval to new symptoms	New symptoms	New motor and or sensory signs	Surgical treatment	Results
5	JR 22M	D7	2 years	Numbness with loss of pain and temperature sensation, L upper limb	Dissociate sensory loss C4 to D4 left side	January 1975 Laminectomy D4, D5, D6. Syringostomy Pudenz catheter	June 1979. No change
6	KT 37M	D7	5 years	Loss of sensation of pain and temperature left trunk and left arm	Weakness of left finger flexors and intrinsic muscle. Dissociate sensory loss left side D6 to C3 left	D4, D5, D6 laminect- omy. Cord sectioned through syrinx sparing anterior spinal artery	Sensory level fell to C7 left side
7	RH 25M	LI	6 years	Pain right hypochondrium R neck and chest	Dissociate loss C3 to D5 right	April 1979. C4 to D7 laminectomy Syringostomy Pudenz catheter	August 1979. Relief of pain
8	RS 46F	C7	21 years	Pain left face. Rise in numbness to C2 left C4 right. Weakness in hands	Dissociate loss C7 to D2 left. Weak intrinsic muscles in hands	October 1978. Re-exploration of C7 and D1 region. Cyst found and syringostomy performed	June 1979. Developed headaches. No change.
9	GV 45M	LI	5 years	Pain on coughing side of neck R hand and R chest wall	Right C3 to D10. Dissociate loss	June 1975. D11, D12, L1 laminectomy. Cord transected through cyst at D10 sparing the anterior spinal artery	May 1979. Pain relieved 18 months and returned
12	KA 59F	DI	8 years	Pain left neck, shoulders, arm increasing weakness left hands	Dissociate loss left L2 to C8. Wasted triceps and hand intrinsic numbers	D3, D4 laminectomy. Cord incised in two places sparing anterior spinal artery	Improvement in power left arm 12 months post-surgery

	ne age at e of injury	Column level	Interval to new symptoms	New symptoms	New motor and or sensory signs	Surgical treatment	Results
1	JM 21M	C7	3 years	Pain left upper limb and left chest wall. No sweating in these parts	Dissociate sensory loss C2 to D3 left. Weak extension elbow left MRC Grade 3. Anhidrosis C2 to D3 left	November 1978 C7 to D4 laminectomy. Syringostomy and Pudenz catheter	March 1979. Pain relieved. Power improved Sensory signs unchanged
2	JH 40M	LI	2 years	Pain right upper limb. Numbness right side of face	Dissociate Déjerine loss R trigeminal plus R C2 to L1 and left C3 to L1. Weak hand, intrinsic muscles	D12, L1. Laminectomies	June 1979. Pain relieved completely apart from occasional twinges of facial pain. Sensory signs unchanged
3	RP 59M	LI	12 years	Bilateral mid dorsal girdle pain. Deterioration of power in lower limbs to MRC Grade 3	Sensory loss dissociate D5 to D8. Able to elevate lower limbs off couch 1 minute only	January 1976. D10 to L2 laminectomy. Pudenz catheter. Syringostomy	April 1976. Pain relieved. Power in lower limbs unimproved
4	BH 47M	C6	12 years	Pain both arms L face weakness increasing lower limbs	Déjerine L face. Dissociate loss down to D7. Grade 4 weakness upper limbs	June 1978. C7, D1. Laminectomy. Syringostomy	July 1979. Pain relieved. Power deteriorated lower limbs for 2 months then returned to pre-operative state
10	AB 42M	D12	19 years	Right upper limb pain pain on coughing. Loss of pain, temperature, right hand	C4 to D10 dissociate loss. Weak R hand intrinsic muscles	October 1978. D8 to D11 laminectomies	August 1979 pain relieved
11	DK 49M	D12	14 years	Paraesthesia right hand weakness numbness right hand	Impaired light touch L2, L3 right. Dissociate sensory loss RV to D8. Weakness of extensors	D10, D11, D12 laminectomy Syringostomy D10	Improvement in power right upper limb, 1978
13	MP 53M	D7	7 years	Severe pain. Numbness left arm and upper trunk. Weakness left upper limb	Global weakness left upper limb especially shoulder girdle muscles. Dissociate loss left C2 to D11	C6 to T3 laminectomy Syringostomy through Pudenz catheter draining into subarachnoid space	Improved gait. Pain relief. Improved power left upper limb, 12 months post-operatively

Table 3 Patients with incomplete cord lesions after trauma

patients who have syringomyelia from other causes. The presenting symptoms occurred in varving combinations of pain, weakness, hypaesthesia and dysaesthesia, involving usually one or both upper limbs and the trunk. The period between developing symptoms and investigation ranged from six months to six years, but in five of the cases was less than 18 months. Pain in many cases began in the neck and radiated into the arms. It was often initiated or made worse by coughing, sneezing or straining, and the distribution of the pain corresponded to the areas affected by dysaesthesia and sensory impairment. Two patients had impairment of trigeminal sensation and one had a unilateral partial Horner's syndrome. In none of the cases in whom the initial paraplegia was incomplete, was there worsening of the lower limb sensory or motor loss, when superadded symptoms of syrinx occurred. The dermatome symbols used are those of the MRC handbook¹⁰ on peripheral nerve injury and the muscle power grades are on the MRC scale 0-5.

In table 2 details of new clinical symptoms and signs occurring in patients who sustained complete cord lesions are set out, while table 3 gives the same kind of information on patients who sustained incomplete lesions.

Radiology Plain radiographs were obtained and myelography was performed in all cases. The contrast medium used was Myodil (7) or metrizamide (6). Endomyelograms^{11 12} were performed in six cases, usually through midline punctures, near the lower end of a cord swelling in order to penetrate as few functioning fibres as possible (fig 1). One case was punctured laterally at C2 level. If no cord swelling was present, a puncture would be made near the site of the trauma. Cranial Computed Tomography (CT) was performed on two cases, before and after intravenous contrast medium. Spinal CT using the EMI 5005 machine was performed after combined water soluble myelogram and endomyelogram in two cases (fig 2).

The results of the radiological studies are tabulated in table 4.

Surgical treatment

In 1892 Abbe¹³ demonstrated at necropsy how syringostomy could be performed. The subject

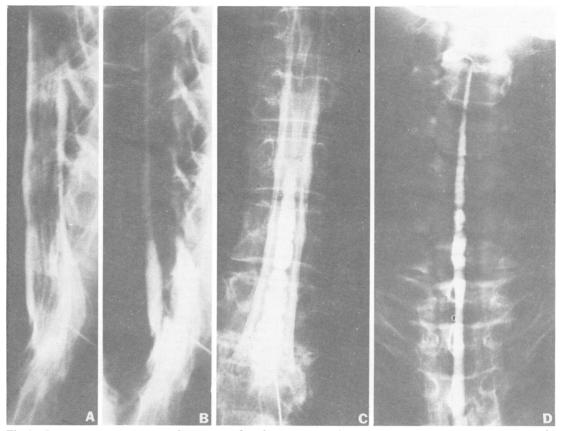


Fig 1 Post-traumatic syringomyelia associated with compression fracture of D12. Combined myelogram and endomyelogram. (a) Lateral projection. Puncture at D11/12. Contrast medium injected into subarachnoid space showing the expansion of the lower dorsal cord with obstruction at D12 level. (b) Needle advanced to puncture syrinx into which a small amount of contrast medium has been injected. (c) and (d) There is expansion of the lower segment of the spinal cord with syrinx extending to second cervical level. The lobulations are typical of a post-traumatic syrinx widest adjacent to level of trauma.

had syringomyelia not associated with trauma. Elsberg¹⁴ gave the first description of syringostomy on "one case of hydromyelia and intramedullary cyst formation and one case of syringomyelia with marked glial formation." Further reports of syringostomy were given by Pusepp¹⁵ and Frazier¹⁶. However, Freeman^{4 5} must be given credit for rationalising surgical treatment after performing experimental cord concussive injuries on cat and dog spinal cords. He showed that syrinx formation frequently followed experimental trauma to the spinal cord of cats and dogs and, after a series of controlled experiments, demonstrated that blunt myelotomy allowed the egress of necrotic material from the cord and reduced the likelihood of syrinx formation. By 1959 he had extended his experimental findings and used syringostomy to treat a patient with post-traumatic syringomyelia. Love and Olofsen¹⁷ elaborated the operation by inserting tantalum wire into the syrinx.

In the present series the two forms of surgical treatment employed were cord transaction and syringostomy. In the cases where cord transection was performed particular care was taken to spare the anterior spinal artery and emergent roots immediately above the level of transection. This dissection in the presence of arachnoiditis at the level of injury may be difficult and where there is residual cord function clearly is inappropriate. In the cases treated by tube syringostomy, dissection was performed through the thinned posterior columns under the microscope to expose the glial cavity, and a small Pudenz ventricular catheter, led into this cavity cephaled for a distance of four to five cm, was then anchored to the arachnoid or to the dura by an encircling stitch. The multiperforate end of the catheter was then carefully

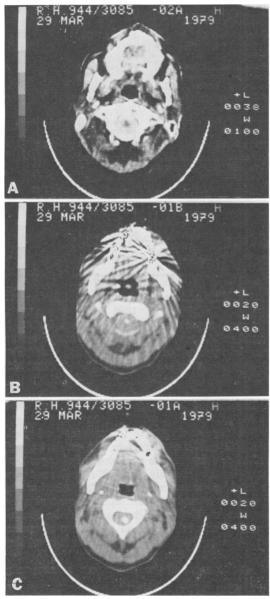


Fig 2 Computed tomogram after myelogram and cndomyelogram. (a) At the level of the upper part of C1 the cord is small and the syrinx is absent. (b) and (c) At lower border of C1 and (c) at C2 the syrinx is present and expands the cord.

placed in the subarachnoid space distal to the site of syringostomy. These operations were performed some segments proximal to the level of trauma, and usually in the upper to mid dorsal region. The cord is easily accessible here and disturbance of hand segments is avoided. The usual operation finding was of a considerably dilated cord which often collapsed with respiration. Occasionally where the cord appeared only a little expanded, knowledge of a central cavity shown by endomyelography was of considerable help in justifying dissection in the approximate midline. The advantage of a choice of a middorsal position for syringostomy is that joint position sense in the legs is, in our experience, not usually at risk. The cysts encountered in this series were usually lined by grey gliotic tissue though occasionally there was a more diffluent gelatinous appearance. The aspirate from the cyst material was in 10 of the 13 cases clear and indistinguishable from CSF. Where chemical examination was performed the protein level of the cyst fluid was that of the accompanying CSF; in two cases the cyst contained yellow fluid with a high protein content. The position of the syringostomy tube in the distal theca was arranged under the microscope to ensure close relationship to the denticulate ligament, and in one case two tubes were placed in a large syrinx,

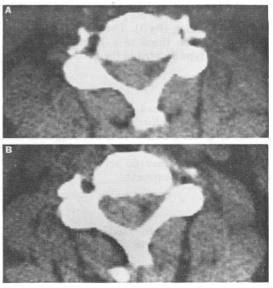


Fig 3 Post-traumatic syringomyelia following fracture of body D5. CT of spine at C4 and C5 levels shows syrinx extending through the right side of the cord.

Ca	ses	Plain x-ray	Contrast	Abnormalities	Endomyelogram	
1	ЈМ	Fracture C7 Dislocation C7/T1	Metrizamide	Obstruction C7 Expansion lower cervical and upper dorsal cord	Syrinx C1-D3	
2	JH	Crush fracture L1	Metrizamide	Partial obstruction of L1 Expansion of cord D10–D12/L1	Syrinx D11-L1	
3	RP	Crush fracture L1	Myodil	Obstruction L1 Expansion of whole cord	Not performed	
4	вн	Posterior dislocation C6 on C7	Metrizamide	Cord compression C6 Expansion of cord C3–D2 Arachnoiditis	Syrinx C3–D5	
5	JR	Crush fracture D6	Myodil	Partial obstruction D6. Cord compression D6. Expansion cervical and thoracic cord to D8	Not performed	
6	кт	Fracture D7	Myodil	Partial obstruction D7. Cord dilated to upper cervical region	Not performed	
7	RH	Crush fracture L1. Posterior discoloration D12	Metrizamide	Expansion of whole cord. Partial obstruction D12	Syrinx C2-D12 widest D11-12. CT shows syrinx up to C1	
8	RS	C7/D1 dislocation	Metrizamide	Atrophy cervical cord	Syrinx C1-D11 widest C7	
9	GV	Fracture L1	Myodil	Expansion cervical and dorsal cord, varied slightly with posture. Arachnoiditis.	Not performed	
10	AB	Fracture D12	Metrizamide	Expansion of cord D10–12. Partial Partial obstruction D12.	Syrinx C2-D10 widest D12	
11	DK	D12	Myodil	Partial obstruction D12. Marked increase in width of cervical cord	Not performed	
12	KA	D8	Myodil	Complete obstruction C7. Cord wide C3 to C7	Not performed	
13	MP	Collapse body of D7	Myodil	Expanded cord C3 to C8. Local arachnoiditis at D8	Not performed	

Table 4

40

directed proximally and distally. In two more recent cases (not included in the present series, because of the presence of extensive arachnoiditis in the theca), the syrinx was demonstrated by plain CT scanning (fig 3). The syringostomy tube was led from the theca to a Raimondi valve of low pressure type secured in the peritoneal cavity.

Chinical assessment

Patients were reassessed after varying periods of follow up and this information is given in the last column of tables 2 and 3. It is not suggested that these objective assessments represent the final clinical state, but they do serve to indicate the value of surgical treatment.

Discussion

The term syringomyelia was introduced in 1827 by Oliver d'Angers¹⁸ to describe a glial lined cavity in the spinal cord which may communicate with the central canal or the subarachnoid space. In 1871 Hallopeau¹⁹ described the necropsy appearances of unconnected cystic lesions in the spinal cord following trauma while only six years later the first description of spinal

arachnoiditis and syringomyelia after trauma was given by Joffroy.²⁰ In 1904 Minor²¹ described degenerative vascular changes in the spinal cord following trauma and postulated that a syrinx after injury resulted from incomplete resorption of degenerate spinal cord tissue. Holmes³ described, for the first time, an unspecified number of cases of gunshot wounds damaging the spinal cord and noted intramedullary cysts arising from the primary spinal injury and ascending up four or five segments. Strong²² first described posttraumatic syrinx occurring in the cervical spinal cord after trauma. The pathological changes that occur in the severely injured spinal cord immediately after trauma are identical whether the trauma is caused by transection, contusion or compression. Kao²³ has demonstrated the formation of myelin microcysts at a distance of one to two mm from the experimentally transected dog spinal cord. He has postulated that the rupture and coalescence of the microcvsts subsequently leads to syrinx formation. Syrinx formation seems to be associated with an abortive attempt at regeneration. It is likely that this process of microcyst formation occurs in contused, compressed and transected spinal cords resulting in the egress of fluid from the damaged axons.

Microcyst formation with coalescence of microcysts may occur in the damaged human spinal cord shortly after the time of injury, even though some years will elapse before the syrinx produces symptoms. However, not everyone agrees that Kao's observations in spinal cord injuries in dogs can be used entirely to explain cyst formation in the human subject. It has been postulated that the rise in central venous pressure which occurs during straining, sneezing and coughing is transmitted to the epidural veins so as to alter intracystic tension, resulting in extension of a cyst. While it is well known that deterioration in the neurological status of syringomyelia sufferers can occur after sneezing and coughing there was no evidence of this in any of the cases in this series, although pain was exacerbated by such neurones.

In none of our cases was myelographic abnormality of the posterior fossa and cervicomedullary junction discovered. No communication between the syrinx and fourth ventricle was demonstrable radiologically and at operation there was no sign of communication between the syrinx and the subarachnoid space. Our findings accord with the detailed necropsy description of two cases of post-traumatic syringomyelia by Jensen and Reske-Nielsen.²⁷ However, there are other possible causes of syringomyelia.^{24 25}

There have been many reports in the literature describing the results of syringostomy in small series of post-traumatic syringomyelia.^{5 6 9} Laha et al²⁶ described in three cases. In 1977 Jensen and Reske-Nielsen²⁷ reviewed 32 published cases of post-traumatic syringomyelia and noted that eight of 13 operated cases were improved. However, in the same year Lacert et al28 reviewed 35 cases described in the literature including seven cases of their own. Although only two cases were subjected to operation they concluded that neurosurgical treatment did not modify the spontaneous evolution of the condition. It is very difficult from the published literature to form any clear idea as to the benefits to be gained by performing syringostomy on patients suffering from posttraumatic syringomyelia and it is certainly not possible to make any statement as to the effect of syringostomy on the natural history of the condition. From our relatively large series of cases we have drawn the conclusions that follow.

Conclusions

Post-traumatic syringomyelia is a rare sequela of spinal cord trauma of unknown incidence. However, it is important for the affected individual that the diagnosis be made. This series of cases shows that accurate delineation and the extent of the syrinx can be made by myelography and CT scanning. Syringostomy seems to be a predictable and simple method of relieving pain and carries a low morbidity. Sensory symptoms do not seem to be altered by syringostomy. Further examination of the cases described here will indicate whether the natural history of the condition is significantly altered by surgery.

References

- 1 Bastian HC. On a case of concussion—lesion with extensive secondary degeneration of the spinal cord. *Proc R Med Chirurg Soc* 1867; **50**:499.
- 2 Strumpell A. Beitrage zur pathologie des ruckenmarks. Arch Psychiatr Nervenkrank 1880; 10:676.
- 3 Holmes G. The Goulstonian lecture on spinal injuries of warfare. Br Med J 1915; 2:769-74.
- 4 Freeman LW, Wright TW. Experimental observations of concussion and contusion of the spinal cord. Ann Surg 1953; 137:433-443.
- 5 Freeman G. Ascending spinal paralysis. J Neurosurg 1959; 16:120-2.
- 6 Finckel JR. Lesions ascending from spinal cord injuries. Proc Ninth Ann Clin Sp Cord Inj Conf 1960; 45–48.
- 7 Barnett HJM, Bottrell EH, Jouse AT, Wynn Jones M. Progressive myelopathy as a sequal to traumatic paraplegia. *Brain* 1966; **89:**159–74.
- 8 Nurick S, Russell JA, Deck DF. Cystic degeneration of the spinal cord following spinal cord injury. Brain 1970; 93:211-22.
- 9 Gardner WJ. Hydrodynamic mechanism of syringomyelia: its relation to myeocele. J Neurol Neuro urg Psychiatry 1965; 28:247-59.
- 10 Medical Research Council. War memorandum No 7 1943; (Revised edition 1943. Aids to the investigation of peripheral nerve injuries).
- 11 Westberg G. Gas myelography and percutaneous puncture in the diagnosis of spinal cord cysts. *Acta Radiol Suppl* 1966; **252:1**–67.
- 12 Kendall B, Symon L. Cyst puncture and endomyelography in cystic tumours of the spinal cord. Br J Radiol 1973; 46:198-204.
- 13 Abbe R, Coley WB. Syringomyelia: Operation exploration of cord withdrawal of fluid. Exhibition of patient. J Neur Dis 1892; 19:572.
- 14 Elsberg GA. The surgical treatment of intramedullary affections of the spinal cord. Proc 17th Int Cong Med (London) 1913; Section XI.
- 15 Pusepp L. Revue Neurologique 1926; 6:1171-9.
- 16 Frazier CH, Rowe SN. The surgical treatment of syringomyelia. Ann Surg 1936; 103:471-7.
- 17 Love JG, Olofson RA. Syringomyelia a look at surgical therapy. J Neuros 1966; 24:714-8.
- 18 Oliver d'Angers. Traite a la moelle épinière et de ses maladies. Paris: Chez Crevot 1837; 178.

- 19 Hallopeau FM. Sur une faite de sclerose diffuse de la substance grise et strophie musculaire. Gaz Med de Paris 1871; 25:183.
- 20 Joffroy A, Archard C. De la myelite cavitaire. (Observations reflexion pathogenic des cavities.) Arch Physio Norm Pathol 1887; 10:432-72.
- 21 Minor L. Traumatische Erkrankungen des Ruchenmarkes. Ruchenmarkes—Zerquetschung, Hamatomyelie, Nakrose etc). In: Flateau E, Jackobsen L, Minor L (eds). Handbuch der pathologischen Anatomie der Nervensystems, Vol 2. Berlin: Karger 1904; 1008-58.
- 22 Strong OS. Neurol Bull 1919; 2:277.
- 23 Kao CC, Chang LW, Bloodworth JR. The mechanism of spinal cord cavitation following spinal cord transection. J Neuro.urg 1977; 46:

745-55.

- 24 Conway LW. Hydrodynamic studies in syringomyelia. J Neurosurg 1967; 27:501-14.
- 25 Williams B. The distending force in production of "Communicating Syringomyelia." Lancet 1969; 2:189-93.
- 26 Laha RK, Malik HG, Langille RA. Posttraumatic syringomyelia. Surg Neurol 1975; 4: 519-23.
- 27 Jensen F, Reske-Nielsen E. Post-traumatic syringomyelia. Scand J Rehabil Med 1977; 9: 35-43.
- 28 Lacert PM, Trottiers, Durand J, Panniers S, Crossiord A. Syndromes Syringomyeliques tardifs chez les paraplegiques. *Rev Neurol (Paris)* 1977; 133: 5:325-38.