
Supplementary for “Gene expression inference with deep learning”

1 Removing duplicate profiles

The original Gene Expression Omnibus (GEO) [1] data consists of 129,158 gene expression profiles from the Affymetrix
microarray platform. Some of the expression profiles are biological or technical replicates. To remove duplicated profiles,
we clustered the 129,158 profiles into 100 clusters using k-means. Within each cluster, we calculated the pair-wise
euclidean distance between each profile. We defined a pair of profiles as duplicates if their euclidean distance was less
than 1.0, and removed one of the profiles. 18,149 duplicates were removed by this criterion, leaving 111,009 profiles
remained in the GEO data.

2 Quantile normalization

We used three gene expression datasets generated by two different platforms in the study. The GEO data was generated
by the Affymetrix microarray platform, with 22,268 probes corresponding to 978 landmark genes and 21,290 target genes.
The 1000 Genomes (1000G) [2] expression data and the Genotype-Tissue Expression (GTEx) [3] data were generated
by the Illumina RNA-Seq platform and measured based on Gencode V12 annotations [2, 3]. 943 probes out of the 978
landmark genes and 15,744 probes out of the 21,290 target genes have corresponding Gencode annotations in the RNA-
Seq data. The 943 probes correspond to 943 Gencode annotations for the landmark genes. The 15,744 probes correspond
to 9,520 Gencode annotations for the target genes as one Gencode annotation may include multiple probes. The original
microarray data has been quantile normalized into a numerical range between 4 and 15 while the original RNA-Seq data
are in the format of Reads Per Kilobase per Million (RPKM). To transfer the expression values of the RNA-Seq data
into the same numerical scale as the microarray data while retaining the maximum information, we quantile normalized
the three expression datasets together. Specifically, we used the following four steps to do quantile normalization:

1. We extracted the expression values of the 943 probes of landmark genes and the 15,744 probes of target genes from
the microarray data, which have correspondence in Gencode annotations.

2. For those multiple probes in the microarray data that correspond to the same Gencode annotation in the RNA-Seq
data, we took the mean of their expression values in the microarray data, resulted in 9,520 combined target genes that
also have one-to-one correspondence between the two platforms.

3. The expression values of the 943 landmark genes and the 9,520 combined target genes from the microarray data
were re-quantile-normalized together. A quantile of 10,463 genes was also generated.

4. For each profile in the RNA-Seq data, the expression values of the 943 landmark genes and the 9,520 target genes
were ranked together and then mapped accordingly to the quantile computed in step 3.

3 Additional analysis

In the main manuscript, we used Mean Absolute Error (MAE) to measure the predictive performances of each method.
To evaluate the performance of D-GEX and the other methods with different metrics, we also used Mean Squared Error
(MSE) to evaluate the predictive performance at each target gene t,

MSE(t) =
1

N ′

N ′∑
i=1

(
yi(t) − ŷi(t)

)2
(1)

where N ′ is the number of testing samples and ŷi(t) is the predicted expression value for target gene t in sample i. The
overall error is again defined as the average MSE over all target genes.

Additionally, we used the 1000 Genomes expression data as the validation dataset to monitor the training process
for the GTEx expression data in the main manuscript. Since the 1000 Genomes expression data are all from the same
lymphoblastoid cell line, which may have similar expression profiles, we also used a subset of the GTEx data as the
validation dataset. Specifically, we randomly partitioned the GTEx data into ˜30% for validation (921 samples denoted
as GTEx-sub-va) and ˜70% for testing (2,000 samples denoted as GTEx-sub-te).

We have redone all the experiments using MSE as the evaluation metric and GTEx-sub-va as the validation dataset.
For the GEO expression data, D-GEX-10%-9000×3 achieves the best performance on both GEO-va and GEO-te. The
relative improvements of D-GEX-10%-9000×3 are 24.42% over LR and 65.34 % over KNN-GE. D-GEX-10%-9000×3 out-
performs LR in 99.98% of the target genes and outperforms KNN-GE in all the target genes. The complete performances
of D-GEX with other dropout rates on both GEO-va and GEO-te are given in Supplementary Table S6 and S7. For
the GTEx expression data, D-GEX-75%-9000×1 achieves the best performance on both GTEx-sub-va and GTEx-sub-te.
The relative improvements of D-GEX-75%-9000×1 are 9.73% over LR and 47.24% over KNN-GE. D-GEX-75%-9000×1
outperforms LR in 84.46% of the target genes and outperforms KNN-GE in 94.52% of the target genes. The complete
performances of D-GEX with other dropout rates on both GTEx-sub-va and GTEx-sub-te are given in Supplementary
Table S8 and S9.
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4 Supplementary figures

landmark genes 1~943

GPU 1

target genes 1~4,760

GPU 2

target genes 4,761~9,520

Figure S1: An example architecture of D-GEX with 3 hidden layers.
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Figure S2: The adjusted R2 of the transformed activations from D-GEX-10%-9000×3 compared to the adjusted R2 of
the raw inputs. Each dot represents 1 out of the 9,520 target genes. The x-axis is the adjusted R2 of the raw inputs,
and the y-axis is the adjusted R2 of the transformed activations. Dots above diagonal means the transformed activations
achieve larger adjusted R2 compared to the raw inputs.
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Figure S3: Visualizing the major weights of D-GEX-10%-3000×1 that was trained based on half of the target genes of
GEO-tr and GEO-va. Red indicates postive weights and blue indicates negative weights.
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Figure S4: Visualizing the major weights of D-GEX-10%-3000×1 that was trained based on random inputs and half of
the target genes of GEO-tr and GEO-va. Random inputs were sampled with the same dimension as the original inputs
from normal distribution with 0 mean and 1 standard deviation for both training and validation. The model parameters
were selected based on the performance on validation data. Red indicates postive weights and blue indicates negative
weights.
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Figure S5: Visualizing the major weights of D-GEX-10%-3000×1 that was trained based on random inputs and half of
the target genes of GEO-tr and GEO-va. Random inputs were sampled with the same dimension as the original inputs
from normal distribution with 0 mean and 1 standard deviation for both training and validation. The model parameters
were selected after 200 epochs of training. Red indicates postive weights and blue indicates negative weights.
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5 Supplementary tables

Table S1: Detailed parameter configurations of D-GEX.
Parameters
# of hidden layers [1, 2, 3]
# of hidden units in each hidden layer [3000, 6000, 9000]
Dropout rate [0%, 10%, 25%]
Momentum coefficient 0.5
Initial learning rate a 5e-4 or 3e-4
Minimum learning rate 1e-5
Learning rate decay factor 0.9
Learning scale b 3.0
Mini-batch size 200
Training epoch 200

Weights initial range c
[
−

√
6√

ni+no
,

√
6√

ni+no

]
a The initial learning rate is 5e-4 for architectures of 1 hidden layer and 3e-4 for architectures of 2 or 3 hidden layers.

b The learning rate of layers performing dropout was multiplied by a learning scale as suggested by [4].
c ni, no denote the number of fan-ins and fan-outs of each unit. For the output layer with the linear activation function,

the weights initial range is [-1e-4, 1e-4] instead.

Table S2: The MAE-based overall errors of LR, LR-L1, LR-L2, KNN-GE and D-GEX with different architectures and
different dropout rates on GEO-va. Numerics after “±” are the standard deviations of prediction errors over all target
genes. The best performance of D-GEX is underscored.

# of hidden units 3000 6000 9000

#
of
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id
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p
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t
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te

1, 25% 0.3503±0.0846 0.3425±0.0857 0.3399±0.0860
2, 25% 0.3454±0.0841 0.3341±0.0855 0.3309±0.0861
3, 25% 0.3471±0.0831 0.3323±0.0850 0.3265±0.0858
1, 10% 0.3415±0.0854 0.3331±0.0865 0.3294±0.0870
2, 10% 0.3370±0.0849 0.3273±0.0864 0.3217±0.0874
3, 10% 0.3356±0.0845 0.3246±0.0864 0.3197±0.0874
1, 0% 0.3421±0.0866 0.3336±0.0878 0.3294±0.0882
2, 0% 0.3366±0.0866 0.3285±0.0884 0.3244±0.0893
3, 0% 0.3339±0.0865 0.3265±0.0891 0.3233±0.0902
LR 0.3776±0.0847
LR-L1 0.3774±0.0840
LR-L2 0.3776±0.0847
KNN-GE 0.5863±0.0697

Table S3: The MAE-based overall errors of LR, LR-L1, LR-L2, KNN-GE and D-GEX with different architectures and
different dropout rates on GEO-te. Numerics after “±” are the standard deviations of prediction errors over all target
genes. The best performance of D-GEX is underscored.

# of hidden units 3000 6000 9000

#
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d
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p
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t
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te

1, 25% 0.3510±0.0851 0.3431±0.0861 0.3405±0.0864
2, 25% 0.3461±0.0846 0.3348±0.0860 0.3315±0.0865
3, 25% 0.3478±0.0837 0.3330±0.0855 0.3272±0.0863
1, 10% 0.3421±0.0858 0.3337±0.0869 0.3300±0.0874
2, 10% 0.3377±0.0854 0.3280±0.0869 0.3224±0.0879
3, 10% 0.3362±0.0850 0.3252±0.0868 0.3204±0.0879
1, 0% 0.3427±0.0871 0.3341±0.0882 0.3299±0.0886
2, 0% 0.3372±0.0871 0.3291±0.0888 0.3251±0.0897
3, 0% 0.3345±0.0870 0.3271±0.0895 0.3240±0.0907
LR 0.3784±0.0851
LR-L1 0.3782±0.0844
LR-L2 0.3784±0.0851
KNN-GE 0.5866±0.0698
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Table S4: The MAE-based overall errors of LR, LR-L1, LR-L2, KNN-GE and D-GEX with different architectures and
different dropout rates on 1000G-va. Numerics after “±” are the standard deviations of prediction errors over all target
genes. The best performance of D-GEX is underscored.

# of hidden units 3000 6000 9000

#
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p
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t
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1, 25% 0.7564±0.0810 0.7543±0.0861 0.7543±0.0886
2, 25% 0.7578±0.0729 0.7486±0.0779 0.7467±0.0811
3, 25% 0.7788±0.0635 0.7646±0.0740 0.7538±0.0768
1, 10% 0.7598±0.0841 0.7563±0.0882 0.7540±0.0899
2, 10% 0.7641±0.0717 0.7586±0.0824 0.7539±0.0839
3, 10% 0.7748±0.0641 0.7710±0.0743 0.7645±0.0817
1, 0% 0.7640±0.0714 0.7666±0.0761 0.7689±0.0784
2, 0% 0.7648±0.0649 0.7647±0.0691 0.7657±0.0715
3, 0% 0.7734±0.0646 0.7709±0.0686 0.7708±0.0710
LR 0.8046±0.0977
LR-L1 0.7457±0.0911
LR-L2 0.8046±0.0977
KNN-GE 0.7467±0.0514

Table S5: The MAE-based overall errors of LR, LR-L1, LR-L2, KNN-GE and D-GEX with different architectures and
different dropout rates on GTEx-te. Numerics after “±” are the standard deviations of prediction errors over all target
genes. The best performance of D-GEX is underscored.

# of hidden units 3000 6000 9000

#
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t
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1, 25% 0.4507±0.1231 0.4428±0.1246 0.4394±0.1253
2, 25% 0.4586±0.1194 0.4446±0.1226 0.4393±0.1239
3, 25% 0.5160±0.1157 0.4595±0.1186 0.4492±0.1211
1, 10% 0.4518±0.1233 0.4450±0.1247 0.4399±0.1257
2, 10% 0.4775±0.1190 0.4525±0.1221 0.4468±0.1239
3, 10% 0.5069±0.1155 0.4784±0.1194 0.4561±0.1217
1, 0% 0.4780±0.1199 0.4735±0.1213 0.4725±0.1219
2, 0% 0.4934±0.1168 0.4822±0.1183 0.4790±0.1198
3, 0% 0.5027±0.1151 0.4911±0.1173 0.4870±0.1190
LR 0.4702±0.1234
LR-L1 0.5667±0.1271
LR-L2 0.4702±0.1234
KNN-GE 0.6520±0.0982

Table S6: The MSE-based overall errors of LR, LR-L1, LR-L2, KNN-GE and D-GEX with different architectures and
different dropout rates on GEO-va. Numerics after “±” are the standard deviations of prediction errors over all target
genes. The best performance of D-GEX is underscored.

# of hidden units 3000 6000 9000
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1, 25% 0.2614±0.1246 0.2519±0.1238 0.2487±0.1236
2, 25% 0.2566±0.1230 0.2425±0.1219 0.2381±0.1218
3, 25% 0.2593±0.1222 0.2408±0.1211 0.2336±0.1208
1, 10% 0.2501±0.1236 0.2401±0.1230 0.2364±0.1229
2, 10% 0.2443±0.1220 0.2336±0.1219 0.2280±0.1220
3, 10% 0.2438±0.1212 0.2308±0.1212 0.2255±0.1217
1, 0% 0.2508±0.1264 0.2416±0.1264 0.2372±0.1255
2, 0% 0.2443±0.1252 0.2357±0.1262 0.2316±0.1261
3, 0% 0.2412±0.1246 0.2342±0.1268 0.2307±0.1275
LR 0.2984±0.1320
LR-L1 0.2980±0.1308
LR-L2 0.2984±0.1320
KNN-GE 0.6565±0.1542
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Table S7: The MSE-based overall errors of LR, LR-L1, LR-L2, KNN-GE and D-GEX with different architectures and
different dropout rates on GEO-te. Numerics after “±” are the standard deviations of prediction errors over all target
genes. The best performance of D-GEX is underscored.

# of hidden units 3000 6000 9000

#
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p
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1, 25% 0.2645±0.1270 0.2545±0.1259 0.2511±0.1255
2, 25% 0.2599±0.1257 0.2452±0.1241 0.2407±0.1238
3, 25% 0.2627±0.1252 0.2438±0.1235 0.2363±0.1229
1, 10% 0.2529±0.1258 0.2425±0.1249 0.2388±0.1247
2, 10% 0.2471±0.1243 0.2362±0.1240 0.2305±0.1239
3, 10% 0.2468±0.1236 0.2334±0.1233 0.2281±0.1237
1, 0% 0.2534±0.1284 0.2440±0.1283 0.2394±0.1272
2, 0% 0.2467±0.1272 0.2382±0.1281 0.2340±0.1279
3, 0% 0.2437±0.1266 0.2366±0.1286 0.2332±0.1294
LR 0.3018±0.1341
LR-L1 0.3014±0.1331
LR-L2 0.3018±0.1341
KNN-GE 0.6582±0.1558

Table S8: The MSE-based overall errors of LR, LR-L1, LR-L2, KNN-GE and D-GEX with different architectures and
different dropout rates on GTEx-sub-va. Numerics after “±” are the standard deviations of prediction errors over all
target genes. The best performance of D-GEX is underscored.

# of hidden units 3000 6000 9000
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1, 25% 0.4035±0.2500 0.3924±0.2527 0.3874±0.2542
2, 25% 0.4193±0.2440 0.3982±0.2476 0.3892±0.2494
3, 25% 0.4488±0.2407 0.4196±0.2441 0.4041±0.2468
1, 10% 0.4049±0.2524 0.3953±0.2546 0.3884±0.2561
2, 10% 0.4189±0.2450 0.4069±0.2492 0.3987±0.2524
3, 10% 0.4356±0.2430 0.4214±0.2482 0.4115±0.2501
1, 0% 0.4393±0.2531 0.4276±0.2547 0.4187±0.2565
2, 0% 0.4449±0.2477 0.4364±0.2518 0.4300±0.2540
3, 0% 0.4526±0.2461 0.4456±0.2522 0.4407±0.2542
LR 0.4291±0.2549
LR-L1 0.4231±0.2518
LR-L2 0.4291±0.2549
KNN-GE 0.7430±0.2631

Table S9: The MSE-based overall errors of LR, LR-L1, LR-L2, KNN-GE and D-GEX with different architectures and
different dropout rates on GTEx-sub-te. Numerics after “±” are the standard deviations of prediction errors over all
target genes. The best performance of D-GEX is underscored.

# of hidden units 3000 6000 9000
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1, 25% 0.3952±0.2316 0.3843±0.2331 0.3793±0.2340
2, 25% 0.4103±0.2258 0.3895±0.2288 0.3807±0.2306
3, 25% 0.4395±0.2233 0.4107±0.2259 0.3954±0.2286
1, 10% 0.3964±0.2334 0.3869±0.2347 0.3799±0.2358
2, 10% 0.4100±0.2264 0.3982±0.2305 0.3898±0.2334
3, 10% 0.4264±0.2249 0.4119±0.2295 0.4023±0.2317
1, 0% 0.4299±0.2343 0.4185±0.2355 0.4096±0.2361
2, 0% 0.4364±0.2302 0.4275±0.2337 0.4204±0.2353
3, 0% 0.4442±0.2286 0.4373±0.2347 0.4329±0.2370
LR 0.4202±0.2366
LR-L1 0.4141±0.2338
LR-L2 0.4202±0.2366
KNN-GE 0.7189±0.2418
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