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The following paragraphs provide additional details to certain parts
that are only briefly summarized in the main text. The first section
provides further details on step four of the graph augmentation
process, describing which rules are applied to add novel intron
edges. The second section formally defines the splicing events
that can be extracted from a given splicing graph and gives a
verbal summary of the algorithms detecting each event type. The
subsequent sections describe the model used for differential analysis
between groups of samples and the procedures that we followed for
test data generation and evaluation. The final section gives a brief
overview on available visualizations of splicing patterns and event
quantifications.

A SPLICING GRAPH AUGMENTATION
The augmentation of the splicing graph comprises several iterative
steps, that are described in the main text. Here, we provide
additional details on step four of the algorithm, the addition of
novel intron edges into the graph.

In the following, we formally define all cases to insert new intron
edges into the graph.

1. To handle the first case we split it into three sub-cases:

a. If the intron (gi, gj) is fully contained within an existing
node (∃v ∈ V̂ : gi > gv,start and gj < gv,end), we can
insert a new intron into the node, thus creating two new
nodes vn1 = (gv,start, gi − 1) and vn2 = (gj + 1, gv,end).
After adding vn1 and vn2 to V̂ , we update the edge set to

Ê = Ê ∪ {(vn1 , vn2)}

∪
⋃
x∈V̂

{
(x, vn1) | (x, v) ∈ Ê

}
∪

⋃
x∈V̂

{
(vn2 , x) | (v, x) ∈ Ê

}

b. If the intron (gi, gj) is fully contained within an existing
intron, we connect it to the two nodes vs and vt flanking
the containing intron, thus introducing two new nodes
vn1 = (gvs,start, gi − 1) and vn2 = (gj + 1, gvt,end) into
V̂ . Again, the new nodes inherit their edges from vs and vt.

This results in the following update rule for the edge set:

Ê = Ê ∪ {(vn1 , vn2)}

∪
⋃
x∈V̂

{
(x, vn1) | (x, vs) ∈ Ê

}
∪

⋃
x∈V̂

{
(vn2 , x) | (vt, x) ∈ Ê

}
c. If one of the intron boundaries (gi, gj) is in close proximity

(we use ≤ 40 nt as a default threshold) to a terminal
node, this node is extended to a new node vn1 and a new
terminal node vn2 is added to the graph at the other side of
the intron. The length k of the new terminal exon is pre-
defined to be 200 nt. If the nearby node v is start-terminal,
vn1 = (gj +1, gv,end) and vn2 = (gi− k− 1, gi− 1) and

Ê = Ê ∪ {(vn2 , vn1)} ∪
⋃
x∈V̂

{
(vn1 , x) | (v, x) ∈ Ê

}
.

If the nearby node v is end-terminal, vn1 = (gv,start, gi−1)
and vn2 = (gj + 1, gj + k + 1) and

Ê = Ê ∪ {(vn1 , vn2)} ∪
⋃
x∈V̂

{
(x, vn1) | (x, v) ∈ Ê

}
.

2. The second case is similar in its handling to case 1c). If the
start of intron (gi, gj) coincides with the end of an existing
node v, we distinguish two sub-cases.

a. There exists a node v′ in close proximity to intron-end gj
and we can add a new node vn = (gj + 1, gv′,end) and
update the edge set to

Ê = Ê ∪ {(v, vn)} ∪
⋃
x∈V̂

{
(vn, x) | (v′, x) ∈ Ê

}
.

b. There is no node in close proximity to intron-end gj , thus
we introduce a new end-terminal node vn = (gj + 1, gj +
k + 1) and update the edge set to Ê = Ê ∪ {(v, vn)}.

3. The third case is analogous to case 2). If the end of intron
(gi, gj) coincides with the start of an existing node v in the
graph, we again distinguish two sub-cases.

a. There exists a node v′ in close proximity to gi and we can
add a new node vn = (gv′,start, gi−1) and update the edge
set to

Ê = Ê ∪ {(vn, v)} ∪
⋃
x∈V̂

{
(x, vn) | (x, v′) ∈ Ê

}
.
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coverage

split alignments

A  New cassette exon

coverage

B  New retained intron

split alignments

C  New intron

split alignments

D  Alternative splice sites on both intron ends

split alignments

E  New start-terminal node / New end-terminal node

split alignments

F  Alternative 3’ splice site / New end-terminal node

split alignments

G  Alternative 5’ splice site / New start terminal node

split alignments

H  New exon skip

Fig. S-1: Overview of the different classes of splicing graph augmentation. Panels A–H show all possibilities of how the splicing graph can
be augmented within SplAdder, based on evidence from RNA-Seq alignment data. In cases where no coverage evidence is shown, only
junction confirmations by split alignments are used.
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b. There is no node in close proximity to intron-start gi, thus
we introduce a new start-terminal node vn = (gi − k −
1, gi − 1) and update the edge set to Ê = Ê ∪ {(vn, v)}.

4. The last case is the most straightforward to handle. If intron
(gi, gj) coincides with the end of node v and the start of node
v′, we augment the edge set Ê = Ê ∪ {(v, v′)}, if the edge is
not already present in Ê.

B EVENT EXTRACTION AND FILTERING
Here we provide further details on how the respective event types are
defined in the context of a splicing graph, how they can be extracted
and what filters exist to generate a high confidence set of events.

B.1 Extraction of Alternative Spicing Events
This section formally defines all alternative splicing events as sub-
graphs of the splicing graph. For each event type we also briefly
describe the algorithm to identify such sub-graphs.

Starting with the augmented splicing graph Ĝ = (V̂ , Ê), we can
extract the AS event sub-graphs as follows:

Exon Skips are all sub-graphs

(V ′, E′) = ({vi, vj , vk}, {(vi, vj), (vj , vk), (vi, vk)})

with V ′ ⊆ V̂ and E′ ⊆ Ê.
For extraction, we iterate over the list of all sorted nodes and
check for each subset of size three, whether all three edges are
preset in the edge set. When all conditions are met, the exon set
is added to the exon skip event list.

Intron Retentions are all sub-graphs

(V ′, E′) = ({vi, vj , vk}, {(vi, vj)})

with V ′ ⊆ V̂ and E′ ⊆ Ê and gvi,start = gvk,start and gvj ,end =
gvk,end.
To extract intron retention events, we iterate over all edges of the
graph and check whether any node fully overlaps that edge. Only
the first overlapping node is stored.

Alternative 3’ Splice Sites are all sub-graphs

(V ′, E′) = ({vi, vj , vk}, {(vi, vj), (vi, vk)})

with V ′ ⊆ V̂ and E′ ⊆ Ê and gvj ,end = gvk,end. This
definition assumes the direction of transcription to be positive. For
transcripts from the negative strand, the definitions for alternative
3’ splice site and alternative 5’ splice site (below) need to be
switched.

To identify alternative 3’ splice site usage, we iterate through
all nodes of the graph of a gene on the plus (minus) strand and
check whether it is connected to two overlapping nodes that are
downstream (upstream) to it. Both nodes have to overlap by a
minimum number of positions. The current default is 11. When a
node is connected to more than two nodes, we will iterate over all
pairs of overlapping nodes and extract them as individual events.

Alternative 5’ Splice Sites are all sub-graphs

(V ′, E′) = ({vi, vj , vk}, {(vi, vk), (vj , vk)})

with V ′ ⊆ V̂ and E′ ⊆ Ê and gvi,start = gvj ,start. The different
strands are handled analogously to alternative 3’-splice sites.
Also the procedure to identify alternative 5’ splice site usage
is analog to the alternative 3’ case. The only difference is that
for genes on the plus (minus) strand the upstream (downstream)
nodes are considered as alternatives.

Multiple Exon Skips are all sub-graphs

(V ′, E′) =({vi, vj1 , . . . , vjs , vk}, {(vi, vj1), (vjs , vk), (vi, vk)}

∪
s−1⋃
l=1

{(vjl , vjl+1)})

with V ′ ⊆ V̂ and E′ ⊆ Ê.
To identify multiple exon skips, we use the upper triangular
matrix of the adjacency matrix of the splicing graph. (The
adjacency matrix for the splicing graph is a square binary matrix
A with one row/column per node. An entry Ai,j is 1 when there
is an edge between nodes vi and vj and 0 otherwise). Through
iteratively multiplying this matrix to itself, we iterate through all
paths of increasing length. When we find a path where first and
last node are connected by an edge, we have found a multiple
exon skip. For all such pairs, we use the shortest path as inclusion
splice form.

Mutually Exclusive Exons are all sub-graphs

(V ′, E′) = ({vi, vj , vk, vl}, {(vi, vj), (vi, vk), (vj , vl), (vk, vl)})

with V ′ ⊆ V̂ and E′ ⊆ Ê and (vj , vk) /∈ Ê and vj 6= vk.
For the identification of mutually exclusive exons, we iterate
through all nodes and check for each node, whether it has edges
to two downstream nodes that again themselves have edges to
a common downstream node. All such sets of 4 nodes will be
extracted as mutually exclusive exon events.

The same extraction rules would apply to extract alternative splicing
events from the not augmented graph G. A schematic overview of
the extraction process is provided in Figure S-3.

B.2 Event Filtering and Quantification
Alternative splicing events extracted from the graph are filtered at
several levels. To remove redundant events, all events are made
unique based on their inner event coordinates. The inner event
coordinates are defined as the start and end positions of all introns
of the event. If two events share the same inner coordinates, they
are replaced by a new event with the same inner coordinates but
adapted outer coordinates, minimizing the total length of the event.
An example for this is shown in Figure S-4. Events in Panel A
can be merged, whereas events in Panel B disagree in their inner
coordinates and remain separate.

Next, we use the RNA-Seq data to quantify each of the extracted
events. That is, for each intron we count the number of alignments
supporting it and compute the mean coverage c for each exon. For
reasons of computational efficiency, the quantification is performed
on the segment graph. As defined in the main text, each segment can
be uniquely identified by its genomic coordinates. Thus, we extract
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Fig. S-2: Example case for the construction of a splicing graph. A: Set of five different transcripts of a gene. Exons are depicted as gray boxes
and introns as solid lines. Labels TiEj denote exon j in transcript i. B: Splicing graph representation of the same five transcripts. Exons
occurring in multiple transcripts are collapsed into a single exon in the graph (e.g., exons T1E3, T2E2, and T4E2 are collapsed into node
E4).
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Fig. S-3: Six different types of alternative splicing events are currently extracted from the splicing graph. The graph structure is given with
nodes as gray boxes and edges as solid/dashed lines. Solid/dark parts show the event of interest and light/dashed parts the remainder of
the graph structure. A: Exon skip, B: Multiple exon skip, C: Alternative 5’ splice site, D: Intron retention, E: Alternative 3’ splice site,
F: Mutually exclusive exons.

for each node its mean coverage and for each edge the number of
spliced alignments in the sample confirming this edge. As each exon
vi can be formed through a concatenation of segments sq ◦ sr , we
can use the segment-lengths and their average coverage to compute

the average coverage of the exon:

cvi =

∑r
j=q(gsj ,end − gsj ,start + 1) · csj∑r

j=q(gsj ,end − gsj ,start + 1)
,

where sq ◦ sr is the sequence of segments contained in node vi.
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In many applications, the splicing graphs can grow very complex,
containing alternative events that are only poorly supported by input
data. Thus, we use the quantifications to further filter the event set
and to only retain the most confident events. Each event type has
a different set of criteria it has to fulfill in order to become a valid
event. Complete listings of the respective criteria are provided in
Table D. To determine whether an event is valid, the algorithm
checks in which of the provided RNA-Seq samples which criteria
are met. An event is valid, if all criteria are met in at least one
sample. To create more stringently filtered sets of events, this
threshold can be increased. In general, most of the SplAdder
thresholds can be adapted, allowing for fine tuning towards a
respective task.

C DIFFERENTIAL TESTING OF AS-EVENTS
When multiple groups of samples are present, SplAdder can test for
significant differences in event expression between samples. Here,
we provide further details on our model used for testing.

We use a negative binomial distribution to approximate the
expression or splicing read count y for each splicing event i:

yi ∼ NB(µi, κi),

where µi is the expected count and κi is the estimated dispersion
across samples. We formulate the problem as a generalized linear
model (GLM) to estimate the µi given the observed counts yi.
In the GLM, the expected counts are decomposed into several
representative latent quantities βi. Under the null hypothesis, the
expected count µi is given as

log(µi) = βi
0 + βi

expr + βi
∆ expr,

where βi
0 is the coefficient denoting the intercept; βi

expr is the
contribution of the observed count to the µi due to gene expression;
βi

∆ expr represents the distinction between two conditions at the
expression level. An additional term βi

∆ spl representing the splicing
difference (alternative splicing) is included in the alternative
hypothesis model as

log(µi) = βi
0 + βi

expr + βi
∆ expr + βi

∆ spl.

In the GLM model, we test the existence of an alternative splicing
effect, taking into account expression as a confounding factor.
Firstly, the GLM system is used to obtain the µi from the estimated
βi. The κi is estimated by maximizing the negative binomial
likelihood function given µi. Then, to reduce the uncertainty of κi

estimated from the limited number of replicates, all κi are regressed
to obtain a function f(µ) = λ1/µ+ λ0 to build a mean-dispersion
relationship (Reyes et al., 2012), where λ1 and λ0 are the two
parameters estimated during the regression. Thirdly, to finalize the
κ for each event with µi, we adjust the κ towards the f(µ) using
an empirical Bayes shrinkage strategy (Love et al., 2014), thereby
reducing the large variance of κi. Lastly, the count data are fitted
into H0 and H1 separately and a χ2-test is performed based on the
difference of deviances of the two GLM fits. We use the Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995) to correct for
multiple testing.

D EVALUATION AND TESTING
The SplAdder software has been developed in the context of
application and has been successfully applied in numerous projects
on Arabidopsis thaliana (Rühl et al., 2012; Drechsel et al., 2013;
Gan et al., 2011) as well as in large scale sequencing projects on
human RNA-Seq samples taken from cancer patients (Weinstein
et al., 2013). However, to allow for an accurate measure of
performance, we have used simulated data in this work to assess
the SplAdder results.

As described in the main text, we used the FluxSimulator (version
1.1.1-20121103021450) (Griebel et al., 2012) to simulate RNA-Seq
reads. For all three sample set sizes, we used the software with
its recommended settings. As previously described, the reads were
sampled from an annotation file containing 1,000 genes randomly
selected from a pre-filtered version of the Genocde (v19) annotation,
that only contained genes with multiple transcripts annotated. The
read simulations produced 100 nt paired-end reads when using the
following parameters:

EXPRESSION_X0 9500
EXPRESSION_K -0.6
TSS_MEAN 50
POLYA_SCALE 300
POLYA_SHAPE 2
FRAG_SUBSTRATE DNA
FRAG_METHOD NB
FRAG_NB_LAMBDA 500
FILTERING YES
SIZE_DISTRIBUTION N-300-50.txt
SIZE_SAMPLING AC
RTRANSCRIPTION YES
PCR_PROBABILITY 0.7
RT_PRIMER PDT
RT_LOSSLESS YES
RT_MIN 500
RT_MAX 5500
PAIRED_END YES
FASTA YES

Where N-300-50.txt contains a random sample, drawn from a
normal distribution with mean 300 and standard deviation 50. We
used the above settings for all three sample set sizes, only adapting
the total number of reads sampled.

These reads were aligned back to the hg19 reference genome
sequence using the TopHat2 (Kim et al., 2013) and STAR (Dobin
et al., 2013) aligners. STAR was run in default mode as well as a
2-pass alignment mode that detects novel splice junctions in a first
run and uses this information in a second alignment run.

TopHat2 was run with the following set of parameters (settings
not mentioned were left at their default):

--GTF <annotation_file>
--num-threads 8
--read-gap-length 3
--read-edit-dist 5
-o <out_directory>
-r 200
--min-intron-length 40
--max-intron-length 500000
--no-discordant
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A B

Fig. S-4: Example cases describing whether overlapping events can be merged or not. A: All inner event coordinates agree and the events can
be successfully merged. B: Both events have only one intron in common, whereas the other introns disagree. The events cannot be merged
and remain separate.

E5

E1 E3 E4 E7

E2 E6

S5

S1 S3 S4 S7

S2 S6

Fig. S-5: Transformation of a splicing graph into a segment graph representation. Gray boxes represent nodes, black lines intron edges and
red lines non-intron edges that encode the relationship between segments and splicing graph nodes.

--microexon-search

STAR in its default mode was run with the following set of
parameters (settings not mentioned were left at their default):

--runThreadN 4
--genomeDir <genome_dir>
--genomeLoad NoSharedMemory
--readFilesIn <fastq_files>
--readFilesCommand zcat
--limitBAMsortRAM 70000000000
--outSAMtype BAM Unsorted
--outSAMstrandField intronMotif
--outSAMattributes NH HI NM MD AS XS
--outSAMheaderHD @HD VN:1.4
--outFilterMultimapNmax 50
--outFilterMultimapScoreRange 3
--outFilterScoreMinOverLread 0.7
--outFilterMatchNminOverLread 0.7

--outFilterMismatchNmax 10
--alignIntronMax 500000
--alignMatesGapMax 1000000
--sjdbScore 2

For STAR in 2-pass mode, we used the parameters as above and
added the following setting:

--twopassMode Basic

For sorting and indexing alignment files in BAM format we used
Samtools (Li et al., 2009) (version 0.1.20).

As described in the main text, to focus on the prediction of novel
splicing events, we removed all but the first transcript from each
gene and stored this as a backbone annotation, which was then
provided to SplAdder as well as the other tools along with the
simulated read sets.
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To assess how much complexity could be restored by the
various tools, we generated a ground truth dataset from the
unrestricted annotation file that was used for data simulation using
the Astalavista toolbox (Foissac and Sammeth, 2007).

We converted the output of all tools into the format described
in (Guigó Serra et al., 2008) using custom scripts. Based on the
overlap of the predicted events and the ground truth events, we
were able to identify true positives and false positives and thus
compute precision, recall and F-Score metrics. An overview of the
F-Score for all tools and data sets is presented in the main text. The
same overview for precision and recall is shown in supplemental
Figures S-6 and S-7, respectively.

SplAdder was run with the following set of parameters for all
analyses shown:

spladder.py
-b <bam_files>
-o <out_directory>
-a <annotation_gff>
-v y
-c 3
-M merge_graphs
-T y
-V n
-n 100
-P y
-p n
-t exon_skip,intron_retention,alt_3prime,

alt_5prime,mutex_exons,mult_exon_skip
--output_struc y

rMATS was run with the following set of parameters:

rmats.py
-b1 <bam_files>
-b2 <bam_files>
-gtf <annotation_gff>
-o <out_directory>
-t single
-len 100

The multiple steps of the JuncBase pipeline were run according
to the tutorial that is described in the MANUAL.pdf in the source
code of version 0.6. Parameters were chosen as suggested there.

The samfilter.py part ofSpliceGrapher was run with the
following parameters:

sam_filter.py
<bam_files>
<classif>
-f <genome.fasta>
-m <annotation.gff>
-v
-o <sam_filtered>

Where <classif> is the classifier for Homo Sapiens provided by
the developers of SpliceGrapher. Then the prediction step was run
with

predict_graphs.py
<sam_filtered>

-m <annotation_gff>
-v
-d <out_directory>

The running times of all tools shown in Supplementary Table E
were measured on compute nodes in a high performance computing
environment consisting of several multi-core machines, using 24
Intel R© Xeon R© CPU E5-2665 2.40GHz processors, each. All tools
were run on a dedicated processor in single-thread mode.

E VISUALIZATIONS
Being able to transform the large amount of splicing information
available for a gene locus into an easy to comprehend overview is
an important step towards a better understanding of altered splicing
mechanisms or to identify impaired RNA regulation. To aid with
this, SplAdder is able to produce a variety of diagnose and overview-
plots to summarize information at a specific locus or to given
an overview on the distributions of certain characteristics of all
identified events.

An illustrative example is the gene-locus overview plot that can
summarize the splicing graph of a gene and align it to the coverage
in a set of given samples, thereby highlighting coverage differences
(cf. Supplemental Figure S-8).

The list of available plotting routines is constantly extended.
Please refer to the user documentation and the SplAdder wiki for
a more comprehensive overview.

REFERENCES
Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical

and powerful approach to multiple testing. Journal of the Royal Statistical Society.
Series B (Methodological), 51(1), 289 – 300.

Dobin, A., Davis, C. a., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P.,
Chaisson, M., and Gingeras, T. R. (2013). STAR: ultrafast universal RNA-seq
aligner. Bioinformatics, 29(1), 15–21.

Drechsel, G., Kahles, A., Kesarwani, A. K., Stauffer, E., Behr, J., Drewe, P., Rätsch,
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Fig. S-6: Results of the precision evaluation based on simulated read data. All bar plots represent the measured precision values of the various
methods compared (rMATS (red), SpliceGrapher (light green), JuncBase (light blue) and SplAdder (purple)). Each row represent a different
AS event type (from top to bottom: intron retention, exon skip, alternative 3’ splice site and alternative 5’ splice site) and each column
represents a different sample size (from left to right: 5×106, 10×106, 20×106). The groups of bars in the single charts show the different
aligners used: (from left to right: STAR 1-pass, STAR 2-pass, TopHat, and the ground truth alignments).
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Fig. S-7: Results of the recall evaluation based on simulated read data. All bar plots represent the measured recall values of the various
methods compared (rMATS (red), SpliceGrapher (light green), JuncBase (light blue) and SplAdder (purple)). Each row represent a different
AS event type (from top to bottom: intron retention, exon skip, alternative 3’ splice site and alternative 5’ splice site) and each column
represents a different sample size (from left to right: 5×106, 10×106, 20×106). The groups of bars in the single charts show the different
aligners used: (from left to right: STAR 1-pass, STAR 2-pass, TopHat, and the ground truth alignments).
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Fig. S-8: Visualization of the splicing pattern occurring at a certain gene locus. The example shows real data taken from experiments on
Arabidopsis thaliana NMD impaired mutants published in (Drechsel et al., 2013). The upper track shows the splicing graph for the gene
AT1G21690 generated by SplAdder. The second track shows the annotated transcripts forms available in the TAIR10 annotation. Note, that
none of the annotated transcripts contains an additional exon identified by SplAdder. When looking at the coverage overview in the WT
(Sample 1, track 3) and double-knockdown (Sample 2, track 4) samples, a clear differential usage of that novel exon is apparent. Lastly, track
5 shows both samples in a comparative manner.

Criterion Value

min exon coverage 5
min fraction of covered positions in exon 0.9
min relative coverage difference to flanking exons 2.05

Table A. Settings for accepted cassette exons
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Fig. S-9: Scatter plots of predicted vs. actual PSI values for the SplAdder quantifications. Different panels show respective event types (from
left to right: alternative 5’ splice site, alternative 3’ splice site, intron retention and exon skip).

Criterion confidence level
0 1 2 3

min intron cov. 1 2 5 10
min fraction of cov. positions in intron 0.75 0.75 0.9 0.9
min intron cov. rel. to flanking exons 0.1 0.1 0.2 0.2
max intron cov. rel. to flanking exons 2 1.2 1.2 1.2

Table B. Settings for accepted intron retentions

Criterion Confidence Level
0 1 2 3

min segment length d0.1 · re d0.15 · re d0.2 · re d0.25 · re
max mismatches max{2, b0.03 · rc} max{1, b0.02 · rc} max{1, b0.01 · rc} 0
max intron length 350,000 350,000 350,000 350,000
min junction count 1 2 2 2

Table C. Settings for accepted introns, where r stands for the given read length.
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Exon Skips
Criterion Value

min relative coverage difference to flanking exons 0.05
min intron count confirming the skip 3
min intron count confirming the inclusion 3

Multiple Exon Skips
Criterion Value

min relative coverage difference to flanking exons (avg. on skipped) 0.05
min intron count confirming the skip 3
min average intron count confirming the inclusion 3

Intron Retentions
Criterion Value

min intron coverage 3
min intron coverage relative to flanking exons 0.05
min fraction of covered positions in the intron 0.75
min intron count confirming the intron 3

Alternative Splice Site Choice
Criterion Value

min intron count confirming the intron 3
min relative difference of differential exon part to flanking exon 0.05

Mutually Exclusive Exons
Criterion Value

min relative coverage difference to flanking exons (for exon 1) 0.05
min relative coverage difference to flanking exons (for exon 2) 0.05
min intron count confirming the inclusion (for exon 1) 2
min intron count confirming the inclusion (for exon 2) 2

Table D. Criteria to confirm the different alternative splicing events based on the evidence available in RNA-Seq alignments. Shown are the default values,
that can be adapted for fine tuning the confirmation process.

Sample Size SplAdder SpliceGrapher

STAR STAR-2P TopHat orig STAR STAR-2P TopHat orig
5M 481 497 415 512 4008 4115 2580 2478
10M 1237 825 700 904 5787 5804 2911 2895
20M 2399 1511 1253 1644 11396 12262 5908 4921

Sample Size JuncBase rMATS

STAR STAR-2P TopHat orig STAR STAR-2P TopHat orig
5 M 1182 1168 865 1082 344 344 252 270
10 M 2191 2205 1642 1945 529 521 470 502
20 M 4172 4243 2921 3570 1282 1328 916 954

Table E. Running times for all tools tested on simulated data sets.
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Sample Size 5000000

Method Aligner Exon skip Intron retention Alternative 3’ Alternative 5’
rMATS STAR 1-pass 0.693 (495) 0.000 (0) 0.000 (0) 0.000 (0)
rMATS STAR 2-pass 0.686 (474) 0.000 (0) 0.000 (0) 0.000 (0)
rMATS TopHat2 0.688 (497) 0.000 (0) 0.000 (0) 0.000 (0)
rMATS Original 0.699 (513) 0.000 (0) 0.000 (0) 0.000 (0)

JuncBase STAR 1-pass 0.700 (882) 0.663 (191) 0.877 (303) 0.851 (179)
JuncBase STAR 2-pass 0.700 (883) 0.663 (191) 0.875 (302) 0.851 (179)
JuncBase TopHat2 0.757 (952) 0.677 (210) 0.870 (294) 0.894 (165)
JuncBase Original 0.763 (1021) 0.678 (215) 0.885 (294) 0.878 (184)

SplAdder STAR 1-pass 0.792 (1145) 0.573 (70) 0.846 (300) 0.844 (204)
SplAdder STAR 2-pass 0.791 (1131) 0.598 (68) 0.841 (290) 0.829 (204)
SplAdder TopHat2 0.792 (1163) 0.624 (74) 0.850 (307) 0.862 (207)
SplAdder Original 0.793 (1197) 0.586 (79) 0.849 (310) 0.860 (215)

Sample Size 10000000

Method Aligner Exon skip Intron retention Alternative 3’ Alternative 5’
rMATS STAR 1-pass 0.687 (505) 0.000 (0) 0.000 (0) 0.000 (0)
rMATS STAR 2-pass 0.676 (483) 0.000 (0) 0.000 (0) 0.000 (0)
rMATS TopHat2 0.685 (506) 0.000 (0) 0.000 (0) 0.000 (0)
rMATS Original 0.696 (518) 0.000 (0) 0.000 (0) 0.000 (0)

JuncBase STAR 1-pass 0.717 (952) 0.661 (203) 0.856 (292) 0.867 (192)
JuncBase STAR 2-pass 0.718 (952) 0.661 (203) 0.856 (292) 0.867 (191)
JuncBase TopHat2 0.724 (1015) 0.697 (217) 0.854 (311) 0.867 (173)
JuncBase Original 0.738 (1142) 0.682 (224) 0.852 (295) 0.875 (187)

SplAdder STAR 1-pass 0.784 (1237) 0.566 (84) 0.829 (329) 0.839 (226)
SplAdder STAR 2-pass 0.785 (1225) 0.613 (85) 0.823 (320) 0.829 (224)
SplAdder TopHat2 0.781 (1248) 0.549 (86) 0.823 (328) 0.840 (226)
SplAdder Original 0.781 (1249) 0.580 (91) 0.826 (329) 0.839 (229)

Sample Size 20000000

Method Aligner Exon skip Intron retention Alternative 3’ Alternative 5’
rMATS STAR 1-pass 0.685 (506) 0.000 (0) 0.000 (0) 0.000 (0)
rMATS STAR 2-pass 0.677 (481) 0.000 (0) 0.000 (0) 0.000 (0)
rMATS TopHat2 0.688 (509) 0.000 (0) 0.000 (0) 0.000 (0)
rMATS Original 0.695 (518) 0.000 (0) 0.000 (0) 0.000 (0)

JuncBase STAR 1-pass 0.710 (964) 0.630 (212) 0.876 (310) 0.869 (202)
JuncBase STAR 2-pass 0.710 (965) 0.630 (212) 0.876 (310) 0.869 (202)
JuncBase TopHat2 0.745 (1048) 0.665 (223) 0.871 (298) 0.830 (182)
JuncBase Original 0.758 (1109) 0.665 (229) 0.879 (302) 0.865 (195)

SplAdder STAR 1-pass 0.780 (1256) 0.530 (84) 0.857 (329) 0.821 (225)
SplAdder STAR 2-pass 0.779 (1248) 0.547 (81) 0.855 (323) 0.832 (224)
SplAdder TopHat2 0.780 (1269) 0.521 (85) 0.842 (331) 0.823 (225)
SplAdder Original 0.779 (1261) 0.555 (90) 0.843 (332) 0.831 (225)

Table F. Pearson correlation coefficients for predicted vs. true PSI values for different event types and aligners. Values in parentheses are number of events
used for correlation. Only events predicted correctly by the respective approach were included for comparison of PSI values. rMATS only predicted exon skip
events, resulting in values of 0 for the other event types.

13


