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1. More details on the Ribomap pipeline

1.1 Background

Quantifying ribosome occupancy correctly is the first step of analyzing the ribo-seq data. Mea-
surements of protein translation efficiencies (Guo et al., 2010), ribosome loads (Ingolia et al., 2009),
pileups and stalling (Ingolia et al., 2011) are all derived from ribosome profiles. The challenges of
generating such a profile includes deconvolving multi-mapped reads, selecting the correct codon
location that the P-site maps to, and bias correction (Ingolia, 2014). While none of these issues
has a standard protocol, we describe Ribomap, an automatic pipeline that addresses the above
challenges and outputs isoform-level ribosome profiles and other ribo-seq analyses.

Current approaches to ribo-seq analysis either discard ambiguously mapped reads (Ingolia et al.,
2009; Guo et al., 2010; Oh et al., 2011; Thoreen et al., 2012) or randomly assign them to one of the
candidate regions (Rooijers et al., 2013; McManus et al., 2014). Such approaches can result in an
inaccurate estimation of the ribosome profiles. For example, regions without estimated ribosome
footprints are indistinguishable from read-free regions caused by discarded multi-mapping reads.
Moreover, randomly assigned reads might cause some regions to have a faulty peak in the profile,
while leaving other regions footprint-free (Supplementary Figure 1). Reads are therefore generally
mapped to genes by choosing a single isoform (Guo et al., 2010), or by using the union of all
possible exons (Olshen et al., 2013; Stumpf et al., 2013; Dana and Tuller, 2014). Although there
is a pipeline built to process ribo-seq reads for identifying protein sequences (Crappe et al., 2014),
a method proposed to resolve multi-mapping problems caused by repetitive sequences (Dana and
Tuller, 2012) and software developed to align short reads to splice junctions (Michel et al., 2014),
none of these approaches so far handles multi-mapping problems caused by alternative splicing,
which, as is shown in the main text and is further shown here in Supplementary Figure 2, is the
major cause of ambiguous mappings. Without dealing with such source of multi-mappings, the
current approaches can only be used to estimate the overall ribosome abundance of a given gene,
and are incapable of estimating ribosome profile of different mRNA isoforms. These simplistic
approaches can also lead to incorrect gene-level estimates — see Supplementary Figure 3.

The better assignment mechanism described here results in a more precise estimation of the
per-mRNA ribosome profiles. And a better estimation of the ribosome profiles can also lead to a
better estimation of the total ribosome loads. Even for the case of the mouse data from Ingolia et al.
(2011), where approximately only 50% of the reads have multi-mappings, the estimated ribosome
loads correlate better to the estimated transcript abundance (Pearson r=0.56) than the näıve Star
prime approach (Pearson r=0.45). We believe a better estimation of the isoform level ribosome
profiles can lead to a better understanding of translational regulation.
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Supplementary Figure 1. An example of isoform level ribosome profiles for gene RPL37A
(ENSG00000197756.5) produced by Ribomap and Star Prime on the Hela cell data (GSM546920)
from Guo et al. (2010). The isoforms are listed in order of their relative abundance (value shown
next to the transcript ID) estimated from Sailfish (Patro et al., 2014), and the isoform diagram is
shown in between the Ribomap profile and Star prime profile. While Ribomap maps the
footprints to the more abundant transcripts, Star prime assigns footprint reads to a single
candidate location at random, leaving two of the expressed transcripts almost ribosome-free (A,
C), two of the unexpressed transcripts with the highest ribosome loads (E, F), and a surprisingly
huge pile-up at the end of transcript ENST00000491306, inconsistent with its surrounding
ribosome pile-ups (D). Profile plot is shown in UCSC Genome Browser (Kent et al., 2002).
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(a) Hela data from Guo et al. (2010)
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(b) mouse data from Ingolia et al. (2011)

Supplementary Figure 2. Histogram of the number of mappings for all mapped ribo-seq reads
in two data sets. Reads are mapped to the human and mouse transcriptome respectively. The
proportion of uniquely mapped reads are marked in red. More than 50% of the reads in both data
sets are ambiguous mapped, and ambiguous mapping are extremely common in Human reads.
Even for the mouse data, where ambiguous mappings is less prevalent, 68% of the multi-mappings
are caused by alternative splicing.
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Supplementary Figure 3. An illustration of when estimating ribosome profile on a gene level
will fail. One such case is the pileup does not happen in all isoforms, where merging the
isoform-level profile will result in multiple peaks being present simultaneously. Another case is
that the pileup in an exon location is not significant in any isoforms, but accumulating them
together might produce a faulty peak.

1.2 Rationale of the Ribomap footprint assignment scheme

For a ribosome footprint read to come from a transcript location two conditions must hold: first,
the transcript has to be present in the cell; second, a ribosome has to be translating the current
codon. Therefore, in order to quantify the observed ribosome pileup, we make the following two
assumptions: First, identical transcripts have identical translation dynamics; second, each codon
location shares a unique pileup behavior due to how fast the current codon can be elongated and the
surrounding codon pileups. This means the final observation of the number of ribosome footprints
cmi from transcript m at location i is proportional to both the chances of observing the specific
transcript codon fragment in the cell αm (transcript abundance per base) and the chances of a
ribosome occupying such a codon location pmi given that the ribosome is from this transcript:
cmi ∝ αm × pmi.

The transcript abundance can be estimated from the RNA-seq reads. However, there is no prior
knowledge of the per-codon-location specific pileup. We therefore assume the per-codon ribosome
abundance is uniformly unbiased. This leads to the assumption that the final ribosome abundance
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(a) read set with error rate = 1% (b) read set with error rate = 2%

Supplementary Figure 4. Histogram of the Pearson correlation between the footprint
assignments and the ground truth ribosome profiles on read sets with different error rates.
Ribomap has a significantly higher Pearson correlation than Star prime (Mann-Whitney-U
p< 3× 10308 for both cases). For synthetic set with error rate 1%, the median Pearson correlation
is 0.81 for Ribomap and 0.30 for Star prime; for synthetic set with error rate 2%, the median
Pearson correlation is 0.78 for Ribomap and 0.31 for Star prime.

of a transcript location is determined by the transcript abundance: cmi ∝ αm.
Intuitively, the transcript abundance is like the outline of the profile, and the location-specific

ribosome abundance is like the detail of the profile. Our method tries to grasp the outline of the
profile first and then let the read sequences themselves take care of the profile details.

1.3 Performance under various sequencing error rates

Supplementary Figure 4 gives the analog to Figure 1 in the manuscript, showing the distribution
of Pearson correlations under various rates of sequencing error. See Section 3.4 for how these errors
were introduced. Under reasonable error rates, the distributions are qualitatively the same.

1.4 Additional steps in Ribomap

The raw ribosome profiling reads and the RNA-seq reads are fed into the Ribomap analysis
pipeline. Reads are first preprocessed by discarding contaminated reads and trimming the 3’
adapter portion of the reads. The remaining reads are then aligned to the transcriptome to find all
possible candidate mapping locations for all reads. The transcript abundances are also estimated
from the RNA-seq reads. The last step of ribomap takes in the transcript abundance estimation
and the read mappings, and produces a vector of read count per codon position for each transcript.
The P-site location for each ribo-seq read are decided dynamically based on the read length. The
sequencing bias in the ribosome profiles are corrected by normalizing a transcript’s ribosome profile
with its mRNA profile (as done in Artieri and Fraser (2014) and Zupanic et al. (2014)). A full
description about Ribomap’s output can be found in Section 2. The command to run Ribomap is:

run ribomap.sh --rnaseq fq rnaseq.fq.gz --riboseq fq riboseq.fq.gz --contaminant fa

contaminant.fa --transcript fa transcript.fa --cds range cds range.txt
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Ribomap uses state-of-the-art read-processing tools for several of its steps. We below list in
detail each step of the Ribomap pipeline and the command for executing them, in case the user
wants to skip some intermediate steps or make adjustments on individual steps.

1.4.1 Using STAR aligner to filter out contaminating reads

Reads that can be mapped to rRNA, tRNA, snoRNA, may not be representative of ribosome
protection per se and, in fact, may be contaminants merely associated with the ribosome. As such,
they can be filtered out by mapping the reads to the ribosome RNA sequences and transfer RNA
sequences of your organism and keeping only unmapped reads for downstream analysis. This is
done via the STAR aligner (Dobin et al., 2013).

The first step, which must be done only once per organism, is to create a STAR index for the
contaminant RNA sequences with the following command, assuming the sequences of the unwanted
molecules are in the file contamination.fa:

STAR --runThreadN nproc --runMode genomeGenerate

--genomeDir rrna idx --genomeFastaFiles contamination.fa
--genomeSAindexNbases 5 --genomeChrBinNbits 11

nproc specifies the number of threads to run STAR. Since STAR treats every sequence entry in
the reference FASTA as a ‘genome’, the option --genomeSAindexNbases 5 forces STAR to build
the index properly for small molecule sequences. We include both tRNA and rRNA sequences as
contaminants in our analysis.

Once this index is created, it can be used to filter the contaminated reads as follows, assuming
the zipped FASTQ file of raw sequencing reads is in riboseq.fq.gz :

STAR --runThreadN nproc --genomeDir rrna idx --readFilesIn riboseq.fq.gz
--readFilesCommand zcat --outFileNamePrefix riboaligned
--outStd SAM --outReadsUnmapped Fastx --outSAMmode NoQS

--clip3pAdapterSeq adapter --seedSearchLmax 10

--outFilterMultimapScoreRange 0 --outFilterMultimapNmax 255

--outFilterMismatchNmax nmismatch
--outFilterIntronMotifs RemoveNoncanonical > /dev/null

where adpater is the adapter sequence (TCGTATGCCGTCTTCTGCTTG for the Hela data set, and CTGTAGG

CACCATCAATTCGTATGCCGTCTTCTGCTTGAA for the mouse data set), and nmismatch = 1 is the num-
ber of allowed mismatches for the alignment. The option --outReadsUnmapped Fastx causes
STAR to output the unmapped reads to a FASTA file called riboalignedUnmapped.out.mate1;
--seedSearchLmax 10 increases the sensitivity of STAR for aligning short reads; --outFilter-
MultimapScoreRange 0 guarantees that only the alignments with the best scores are reported;
--outFilterMultimapNmax 255 filters out reads that can be mapped to more than 255 locations.
STAR by default clips off read ends if a better local alignment score can be achieved. Such a
procedure, called ‘soft clipping’, is very useful for handling ribo-seq reads since the first couple of
bases in the 5’ end are likely to be contaminated, and an adapter sequence is usually attached to
the 3’ end.

1.4.2 Map the remaining reads to the transcriptome

After removing reads that may have been the result of contamination we are now ready to align
the remaining reads to the transcriptome. This step is also accomplished by STAR. Assuming the
transcriptome sequences are in transcript.fa, the command to generate the transcriptome index is:
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STAR --runThreadN nproc --runMode genomeGenerate

--genomeDir transcript idx --genomeFastaFiles transcript.fa
--genomeSAindexNbases 11 --genomeChrBinNbits 12

Again, --genomeSAindexNbases 11 insures that the index is built properly for shorter molecules
(compared to chromosomes), and --genomeChrBinNbits 12 reduces the memory consumption
when many reference sequences are provided.

The command to align the reads to the transcriptome is:

STAR --runThreadN nproc --genomeDir transcript idx

--readFilesIn riboalignedUnmapped.out.mate1
--outFileNamePrefix riboaligned transcript
--clip3pAdapterSeq adapter --seedSearchLmax 10

--outFilterMultimapScoreRange 0 --outFilterMultimapNmax 255

--outFilterMismatchNmax nmismatch
--outFilterIntronMotifs RemoveNoncanonical

--outSAMtype BAM Unsorted --outSAMmode NoQS

--outSAMattributes NH NM

The aligned reads will be stored in riboaligned transcriptAligned.out.bam. It includes two SAM
attributes for each alignment record: NH is the number of reported alignments for the read, and NM

is the number of mismatches in the current alignment.

1.4.3 Transcript abundance calculation using Sailfish (Patro et al., 2014)

The transcript abundance estimation is used to guide the isoform-level ribosome profile esti-
mation. We are currently using the latest version of Sailfish (called Salmon) that supports the
read alignment results as the input. Assuming that the read alignments of the RNA-seq data are
in rnaaligned transcriptAligned.out.bam, the command to perform the transcript abundance
estimation is:

salmon quant -t transcript.fa -l SF -a rnaaligned transcriptAligned.out.bam

-o sm quant -p nproc --bias correct

The flag --bias correct allows Salmon to correct for sequencing biases in the RNA-seq reads.
The transcript abundance estimation is in sm quant/quant bias corrected.sf.

1.4.4 Isoform-level ribosome profile estimation

This is the last step of the Ribomap analysis pipeline, and it is automatically handled by an
executable (developed by us) called riboprof. It takes in the transcriptome fasta file, a CDS range
file, the ribo-seq and RNA-seq alignment bam files (produced above), the transcript abundance
estimation file (produced as above; or it also supports abundance estimations from eXpress (Roberts
and Pachter, 2013) or Cufflinks (Trapnell et al., 2010) if those estimates are preferred and available).
The CDS range file (assume its name is cds range.txt) gives the coding region for each transcript.
The command to perform an isoform-level ribosome profile estimation is:

riboprof --fasta transcript.fa --cds range cds range.txt

--mrnabam rnaaligned transcriptAligned.out.bam

--ribobam riboaligned transcriptAligned.out.bam



7

--min fplen min fplen --max fplen max fplen --offset offset.txt
--sf sm quant/quant bias corrected.sf --tabd cutoff tabd cutoff
--out ribomap out

Only reads with size (after ‘soft clipping’) between min fplen=25 and max fplen=36 are kept
for estimating the ribosome profiles. Alignments with RC flag set (reads are reverse complemented
and then aligned to the transcriptome) are discarded due to the single strandedness of the ribosome
profile protocol. offset.txt provides the P-site offset of a read given the read length. Following Ingolia
et al. (2011), we assign the P-site of reads with length < 30 to be 12, with length between 31 and
33 to be 13, and with length > 33 to be 14. Only transcripts with abundance greater than
tabd cutoff =0 are considered to be expressed and are included for ribosome profile estimation.

There are three iterations in the footprint assignment procedure: First, only candidate locations
with a frame-0 P-site mapping are considered; second, the remaining reads are assigned to frame
1 and 2 locations; third, the rest of the mapped reads – reads that cannot be mapped to any
CDS regions, are mapped to UTR regions. For all three iterations, reads are mapped to candidate
locations proportional to the transcript abundance if multiple locations are presented for one read.

The estimated ribosome profiles and other analysis will be written to the directory ribomap out.
More information about the options and input file formats for Ribomap can be found in the

README file in Ribomap’s Github page (https://github.com/Kingsford-Group/ribomap/blob/
master/README.md).

1.5 Settings of Star prime

By default, STAR only marks one alignment for multi-mapping reads as primary (FLAG 0x100
unset), such an alignment “is randomly selected from the alignments of equal quality.” And this
primary alignment is used to estimate ribosome profiles in Star prime. In addition, no prior tran-
script abundance knowledge is used in Star prime, and therefore all transcripts in the transcriptome
are taken into account. All other settings (i.e. contaminated read filtering, adapter clipping, read
size selection, dynamic P-site assignment) are kept the same as the Ribomap pipeline described
above.

1.6 Running time and memory usage of Ribomap

Ribomap runs for about 15 minutes on the ribo-seq data GSM546920 with 18 million reads on
15 threads. The running time includes the time to build the STAR index for both the contaminated
sequences and the transcriptome, filtering the contaminated reads and aligning the remaining reads
to the transcriptome for both RNA-seq and ribo-seq data, transcript abundance estimation, and
estimating isoform level ribosome profiles. Memory usage is about 8.6G.

2. Output file format

In addition to estimated footprint count per codon position for each transcript isoforms, Ri-
bomap also outputs sub-codon resolution, nucleotide-level ribosome profiles including the UTR
regions. Furthermore, Ribomap reports ribosome loads, translation efficiency, and the relative
abundance for each transcript. Lastly, Ribomap reports transcripts in order of the rank differ-
ence between the relative transcript abundance and ribosome load, to help identify isoforms with
different translation efficiency.

Ribomap outputs five files:
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File 1: XXX.base gives the sub-codon resolution, nucleotide-level ribosome profiles including the
UTR regions. Only transcripts with a non-zero total ribosome count are reported. Each entry of a
specific transcript looks like this:

refID: 0

tid: YAL001C

ribo profile: 0 0 0 74 68 ...

mRNA profile: 31 35 50 73 87 96 104 ...

normalized ribo profile: 0 0 0 1.0137 0.781609 0.0208333 0.125 ...

where:

refID is the transcript fai index in transcript.fa.

tid is the transcript header name in transcript.fa.

ribo profile nucleotide level ribosome profile including the UTR regions.

mRNA profile RNA-seq read coverage profile.

normalized ribo profile is the ribosome profile after bias correction. Each number in the vector
is the ratio between the ribo profile count and the mRNA profile count.

File 2: XXX.codon gives the in-frame ribosome profiles for each transcript within the CDS region.
The file format is the same as the XXX.base file.

File 3: XXX.stats is the summarized statistics for each transcript. Each entry of a specific transcript
looks like this:

refID: 0

tid: YAL001C

rabd: 3959

tabd: 0.000209384

te: 1.89078e+07

where:

rabd is the total ribosome loads, which is the sum of the ribo profile vector in XXX.base.

tabd is the relative transcript abundance from Sailfish’s result.

te is the relative translational efficiency, which is the ratio between rabd and tabd.

File 4: XXX abundant.list gives a list of transcripts whose total ribosome abundance is more than
expected given the transcript abundance. Such a list explores the difference between the ribosome
abundance ranking and the transcript abundance ranking. A higher rank of total ribosome footprint
count compared to the transcript abundance might indicate that the transcript is more highly
packed with ribosomes and this might suggest that there is a translational amplification regulation
for this transcript. Each line in the file looks like this:

ENST00000340756.2 2.81302e-09 1046.59 0 96 -96
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It is the transcript header name followed by several statistics, in order:

1. relative transcript abundance,

2. total ribosome footprint count,

3. the percentile ranking of the transcript abundance,

4. the percentile ranking of the total ribosome loads (transcripts with zero total ribosome loads
are excluded from the analysis),

5. difference between the transcript abundance rank and the total ribosome footprint count
rank.

The list of entries in this file is ordered by the ranking difference between the transcript abundance
and the ribosome abundance. Only transcripts with ranking differences greater than 10 are listed.

File 5: XXX scarce.list gives a list of transcripts whose total ribosome abundance is less than
expected given the transcript abundance. Analogous to the abundant list, this list include tran-
scripts that might have a translational buffering regulation. The file format is the same as
XXX_abundant.list.

3. Generating synthetic footprints

To evaluate the performance of the ribosome footprint read assignment, we generated synthetic
footprint data with known ribosome profiles. Let N be the total number of transcripts, αm be the
per-base relative abundance of a transcript m, and pmi be the ribosome occupancy probability of
a location i on transcript m. The number of synthetic footprints from location i on transcript m
is set to be N ×αm× pmi, where N is set so that a total of 20,000,000 footprints from all locations
of all transcripts are generated. How αm and pmi are set is described below.

3.1 Transcript abundance

The transcript abundance is estimated from the RNA-seq data paired with the ribosome profil-
ing experiments (GSM546921) via Sailfish (Patro et al., 2014). Only transcripts with TPM value
(transcripts per million) greater than 1 are included, which results in a total of 39,414 transcripts.
The relative transcript abundance per base αm is computed as follows: Let tm be the transcript
abundance estimated from Sailfish for transcript m, let lm be the transcript length, let T be the
transcriptome, αm = tm/

∑
m′∈T tm′ × lm′ .

The rationale of using transcript abundance per base for assigning the reads is that each tran-
script codon location can be seen as a type of ball with a unique color, and the probability of
observing such a transcript codon fragment in the cell can be compared as randomly picking a ball
of a specific color from a pool of balls. We assume codon locations on the same transcript have
equal visibilities. For the extreme case where there is only one type of transcript in the cell with
lm bases, the probability of seeing any codons is 1/lm. For the case where there are more than
one type of transcript, if there are tm transcripts with type m, then there will be tm copies of each
codon positions, and the probability of seeing a specific codon position on transcript m over all
possible codon positions is: tm/

∑
m′∈T tm′ × lm′ .
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3.2 Ribosome occupancy probability

We model the movement of ribosomes on a given transcript with a ribosome flow model based
on a total asymmetric exclusion process (TASEP) (Reuveni et al., 2011). In this process, each
mRNA is modeled as a sequence of codons, with ribosomes moving along it with codon-specific
elongation rates. The model is “asymmetric” because the ribosome can only move from the 5′ end
to the 3′ end of the mRNA. The model has “exclusion” because a location can only be occupied
by one ribosome at a time; a ribosome can only move from location i to the next one when it is
currently at location i and the next location is not occupied by another ribosome.

For a mRNA m of length n, the entire translation process is modeled in three steps: First, the
ribosome binds to the the start codon of the mRNA with initiation rate λm0. Second, the ribosome
moves along the mRNA from codon ci to ci+1 with a elongation rate λmi (i = 1 . . . n − 1). Third,
the ribosome terminates when it reaches the the stop codon cn with a termination rate λmn, and
the whole peptide chain of the protein will be formed. The λ vector thus describes the transition
rates of the ribosome moving from one location to another.

The model states, when given a transcript m, that the change of the probability of observing
a ribosome on location i (pmi) is the difference between the incoming and the outgoing flow of the
ribosome, modeled using the differential equations:

dpm1(t)

dt
= λm0[1− pm1(t)]− λm1pm1[1− pm2(t)] (1)

dpmi(t)

dt
= λm,i−1pm,i−1(t)[1− pmi(t)]− λmipmi(t)[1− pm,i+1(t)] 1 < i < n, (2)

dpmn(t)

dt
= λm,n−1pm,n−1(t)[1− pm,n(t)]− λmnpmn(t) (3)

Equation (1) and (3) describe the boundary case of the process, and equation (2) describes the
intermediate case.

The ribosome profile under this model is the ribosome occupancy probability distribution when
the steady state of the model is reached, during which the probability of observing a ribosome at
any location will not change over time. This stationary distribution probability can be solved by
setting the left hand side of the equations above to zero.

To generate synthetic profiles, we solve the above equations to find the steady state for all
39,414 transcripts. This profiles the probabilities pmi that a read is drawn from location i on one
copy of transcript m. Selection of the elongation rates (λmi) and initiation rates (λm0) is described
below.

3.2.1 Elongation rate

Following Reuveni et al. (2011), we assume the elongation rate is codon-specific and is pro-
portional to the tRNA abundance of a given codon. We use tRNA gene copy number as an ap-
proximation to the tRNA abundance in the cell, and we set the elongation rate to be the absolute
adaptiveness value (Wi) of a given codon i:

Wi =

ni∑
j=1

(1− Sij)tCGNij . (4)

Here ni is the number of tRNA isoacceptors recognizing codon i. tCGNij is the gene copy number
of the jth tRNA that recognizes the ith codon, and Sij is the selective constraint on the efficiency
of the codon-anticodon coupling by considering the wobble paring (dos Reis et al., 2004). The
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absolute adaptiveness of a given codon gives an estimate for the total amount of tRNAs that can
match to a specific codon. The larger the adaptiveness value is, the more efficient a codon can be
translated, and thus the faster the elongation rate will be. The elongation rates range between 3.5
and 33 time steps from this calculation.

3.2.2 Initiation rate

The initiation rate is thought to be the rate limiting step during the translation process (Ingolia
et al., 2009). We set the initiation rate range to be approximately 100 times smaller than the
elongation rate as in Shah et al. (2013), and the rates are uniformly sampled for each transcript
between 0.03 and 0.3 timesteps.

3.3 Ribosome footprint generation

We calculate αm and pmi for every transcript as described above and then sample reads by
selecting a random transcript with probability proportional to its αm and then selecting ribosome
position i proportional to pmi. We then extract a 30-bp read with the 12th position set to the
ribosome P-site.

3.4 Introducing sequencing errors in the read set

We estimate the frequency of sequencing errors from ribosome profiling data (GSM546920 Guo
et al. (2010)) to be the total number of mismatches of read assignments in the data over the total
number of aligned bases (total number of aligned reads × read length). The error rate estimated
on the ribosome profiling data GSM546920 is 0.5%.

To add simulated sequencing errors to our simulated reads, we apply a Poisson process to choose
the bases to mutate in the synthetic footprint read set with the rate parameter set to the error
rate. We also tried different error rates (0.5%, 1%, 2%), which all produce similar results in the
footprint assignments (Supplementary Figure 4). The histogram in the paper is generated from the
data with error rate 0.5%.

3.5 RNA-seq data generation

We synthetically generated RNA-seq reads with the following procedure: The transcript abun-
dance estimation from Section 3.1 is used as a prior to generate 20,000,000 synthetic RNA-seq
fragments with default parameters using rlsim (Sipos et al., 2013). Consistent with the ribosome
footprint generation settings, only transcripts with TPM value (transcripts per million) greater
than 1 are included. We then truncate the fragments into 36bp-long single-end reads.

When applying Ribomap, we re-estimate the transcript abundance as usual from the synthetic
RNA-seq reads via Sailfish (Patro et al., 2014) without looking at the original estimates from the
true data.

The analysis shown in Figure 2 in the main text and in Supplementary Figure 4 only uses
transcripts with non-zero total ribosome counts, which results in 26,297 transcripts included.

4. Data used in the experiments reported here

• Hela ribosome footprint data: Human Hela cell ribo-seq mock 32hr runs1-2 in Guo et al.
(2010) (GSM546920).
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• Hela RNA-seq data: Human Hela cell RNA-seq mock 32hr runs1-3 in Guo et al. (2010)
(GSM546921).

• Human Transcriptome reference fasta file: The human protein-coding transcriptome
fasta file is downloaded from the Gencode website: (ftp://ftp.sanger.ac.uk/pub/gencode/
Gencode human/release 18/gencode.v18.pc transcripts.fa.gz). The CDS region information
used in our analysis is obtained from the headers of the fasta sequence entries.

• Human Transcriptome gene annotation gtf file: The human gene annotation gtf is
also downloaded from the Gencode website: (ftp://ftp.sanger.ac.uk/pub/gencode/Gencode
human/release 18/gencode.v18.annotation.gtf.gz). This file is used to obtain the frame infor-
mation of the CDS regions of the transcripts.

• Mouse Ribosome footprint data: ES cell feeder-free, w/ LIF 60 s CYH (100 ug/ml)
ribo mesc yeslif Illumina GAII in Ingolia et al. (2011) (GSM765301).

• Mouse RNA-seq data: ES cell feeder-free, w/ LIF 60 s CYH (100 ug/ml) mrna mesc yeslif
Illumina GAII in Ingolia et al. (2011) (GSM765289).

• Mouse Transcriptome reference fasta file: The mouse protein-coding transcriptome
fasta file is downloaded from the Gencode website: (ftp://ftp.sanger.ac.uk/pub/gencode/
Gencode mouse/release M4/gencode.vM4.pc transcripts.fa.gz). The CDS region information
used in our analysis is obtained from the headers of the fasta sequence entries.

• Mouse Transcriptome gene annotation gtf file: The mouse gene annotation gtf is
also downloaded from the Gencode website: (ftp://ftp.sanger.ac.uk/pub/gencode/Gencode
mouse/release M4/gencode.vM4.annotation.gtf.gz). This file is used to obtain the frame in-
formation of the CDS regions of the transcripts.

• Human tRNA gene copy number: Downloaded from the gtrna database (Chan and
Lowe, 2009): (http://gtrnadb.ucsc.edu/Hsapi/Hsapi-summary-codon.html).

• Contaminated sequences: Both ribosomal sequences and tRNA sequences are included in
the contaminated sequences. Ribosomal sequences are downloaded from Ensemble’s (Flicek,
Paul and Ahmed et al., 2013) ncRNA database with gene biotype as rRNA; tRNA sequences
are downloaded from the gtrna database (Chan and Lowe, 2009) (http://gtrnadb.ucsc.edu/
download/tRNAs/eukaryotic-tRNAs.fa.gz).
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