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1 Other ML Methods

1.1 K-nearest neighbors (KNN)

1.1.1 Approach
Given a training set of periodic and aperiodic signals, K-nearest neighbors
(KNN) can be performed to determine the class of a signal. The output is
the percentage of its K closest neighbors that are periodic.

1.1.2 Calculating p-values
Computing p-values for periodic/aperiodic classification is similar to the
case of DNNs.

1.1.3 Period Estimation
A slightly different version of KNN is used to determine the period for
signals that are classified as periodic. In this case, the training set consists
of periodic signals only and the estimated period is the average of the
periods of the signal’s K closest neighbors.

1.1.4 Hyperparameter Selection
To determine how large the training set needs to be and the value of K
(the number of nearest neighbors being used), a grid search is done for
KNN trained on the BioCycleFunc dataset and tested on the BioCycleGauss

(48_8) dataset. The reason is that this corresponds to one of the harder
scenarios because the testing set is different from the training set and the
dimensionality of the data is on the larger side. The results are shown in
Tables 1 and 2. From the results we see that K = 100 for 1,000,000
provides the best results and these are comparable to those of the DNN.

Table 1. AUC on the BioCycleGauss (48_4) for the KNNG method.

Training Data
1000 10000 100000 1000000

K
5 0.92 0.94 0.94 0.94
10 0.93 0.95 0.95 0.95
100 0.91 0.95 0.96 0.96

Table 2. R2 for the period on the BioCycleGauss (48_4) for the KNNG method.

Training Data
1000 10000 100000 1000000

K
5 0.69 0.74 0.75 0.76
10 0.72 0.77 0.78 0.78
100 0.71 0.77 0.79 0.80

1.1.5 Memory and Time Consumption
All the information that the deep neural network (DNN) has is contained
in its training dataset. In Section 1.3, we see that KNN performs about the
same as DNN when using a training set of 1,000,000 examples. However,
there are both memory and run time issues that make deep learning more
efficient.

Figure 1 shows an analysis of how long it takes for KNN to run on the
BioCycleFunc test set of 20,000 examples for two values of the size of the
training set. With a training set of size 1,000,000, using KNN is 48 times
slower than using DNN. The actual runtime in this case is 4 hours for the
KNN method and 5 minutes for the DNN method.

The size of the DNN model consists of its parameters (weights and
biases), however, the size of the KNN model consists of the entire training
set. So, for example, if we use the BioCycleGauss (48_4) dataset, the
number of parameters in the DNN (3 hidden layers, 100 neurons) is about
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(a) With a training set of size 100,000.
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(b) With a training set size of 1,000,000.

Fig. 1: The performance of the KNN compared to the performance of the
DNN. The y axis is the time it takes to run the KNN method over the time
it takes to run the DNN method.

21,700 floating point numbers. However, for the KNN model, each time
series in the training set has 13 floating point numbers. With a training set
of size 1,000,000 this corresponds to a size of 13,000,000 floating point
numbers. Therefore, the KNN model takes 600 times more memory space.

1.2 Gaussian Processes

1.2.1 Approach
We have a model for periodic signalsMp and a model for aperiodic signals
Ma. Then, given a signal s, we want to compare the probabilities p(Mp|s)
and p(Ma|s) to determine if the signal is periodic or aperiodic.

We need both a mean and a covariance matrix. We assume that the
data has a mean of zero. The probability density function given a signal
s is defined by equation 1, where Σ is the covariance matrix and k is the
dimension of the data (i.e. how many timepoints there are in the signal).

p(s|Σ) = (2π)−
k
2 |Σ|−

1
2 exp(−

1

2
sT Σ−1s) (1)

Kernel functions are used to build these covariance matrices for the
periodic and aperiodic signals. When using a kernel function, the entries
at timepoints x and x′ are determined by a kernel function k(x, x′). We
use equation 2 for the periodic covariance matrix Σp and equation 3 for
the aperiodic covariance matrix Σa.

kp(x, x′) = exp(
−sin2(|π 1

p
(x− x′)|)

2l2p
) + σ2

pδ(x, x
′) (2)

ka(x, x′) = exp(
−(x− x′)2

2l2a
) + σ2

aδ(x, x
′) (3)

The l parameter controls how strong the covariance is between two
different points and the parameter σ2 controls how noisy the data is
believed to be. The parameter p in equation 2 is the period of the signal
being modeled by kp(x, x′). The period parameter p is set prior to
optimizing the other parameters and is determined by the range of periods
being searched for. The periodic model Mp is a mixture of models where
the covariance matrix for each model is obtained with the kernel function
in equation 2 for different values of p. The values of p start from the
beginning of the range of periods being searched for and is increased by 1
until p reaches the end of the range.

1.2.2 Hyperparameter Selection
The parameters lp, σp, la, and σa are determine by a random grid search.
Every new proposed set of parameters is used to give p-values for the
training dataset. The parameters that give the highest AUC are used. A
total of 100 different sets of parameters are tried.
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1.2.3 Calculating p-values
The approach to getting p-values for this model is similar to the approach
used in the case of the DNN. The only difference is that the output is now

p(Mp|s)
p(Ma|s)+p(Mp|s)

.

1.2.4 Period Estimation
To determine what the period is, we first find the model in the mixture
of models for Mp that has the highest density given the input. The
corresponding period associated with that model is the estimated period.

1.3 Comparisons

We compare all these different machine learning methods on the BioCycle
dataset. The comparisons are carried both when the methods are trained on
the BioCycleFunc dataset and when they are trained on the BioCycleGauss

dataset. In the main case, the periodic data has periods between 20 and
28, like the experiments in the main text. The results are shown in Tables
3, 4, 5, and 6. The results show in this case that the DNN and KNN
approaches achieve the best performance and outperform the Gaussian
process approach.

Table 3. AUC performance on synthetic data.

GPF GPG KNNF KNNG DNNF DNNG

BCF (24_4) 0.90 0.90 0.92 0.91 0.92 0.91
BCF(24_6) 0.84 0.84 0.85 0.84 0.85 0.84
BCF (48_4) 0.96 0.96 0.97 0.96 0.97 0.96
BCF (48_8) 0.88 0.88 0.89 0.89 0.89 0.89
BCF (24_U) 0.88 0.88 0.89 0.88 0.89 0.88
BCF (48_U) 0.92 0.92 0.94 0.93 0.94 0.93

BCG (24_4) 0.91 0.92 0.92 0.94 0.92 0.94
BCG (24_6) 0.87 0.87 0.87 0.88 0.88 0.89
BCG (48_4) 0.96 0.96 0.96 0.97 0.97 0.97
BCG (48_8) 0.91 0.91 0.92 0.93 0.93 0.93
BCG (24_U) 0.91 0.91 0.91 0.92 0.91 0.92
BCG (48_U) 0.94 0.94 0.95 0.96 0.95 0.96

Table 4. Coefficients of determinations (R2) for the periods.

GPF GPG KNNF KNNG DNNF DNNG

BCF (24_4) 0.24 0.21 0.31 0.27 0.31 0.27
BCF(24_6) 0.18 0.18 0.22 0.19 0.22 0.19
BCF (48_4) 0.64 0.65 0.75 0.74 0.74 0.73
BCF (48_8) 0.46 0.47 0.57 0.56 0.57 0.55
BCF (24_U) 0.21 0.21 0.28 0.24 0.28 0.24
BCF (48_U) 0.52 0.53 0.63 0.60 0.62 0.60

BCG (24_4) 0.25 0.26 0.34 0.39 0.35 0.40
BCG (24_6) 0.28 0.28 0.31 0.36 0.32 0.36
BCG (48_4) 0.68 0.68 0.80 0.81 0.80 0.81
BCG (48_8) 0.51 0.52 0.66 0.69 0.67 0.69
BCG (24_U) 0.27 0.26 0.32 0.36 0.32 0.37
BCG (48_U) 0.64 0.63 0.73 0.75 0.73 0.75

2 Distribution of p-values for BIO_CYCLE
The distribution of the p-values is shown in Figure 2.

Table 5. Coefficients of determinations (R2) for the lags.

GPF GPG KNNF KNNG DNNF DNNG

BCF (24_4) 0.46 0.41 0.49 0.48 0.49 0.49
BCF(24_6) 0.40 0.40 0.45 0.44 0.45 0.43
BCF (48_4) 0.50 0.50 0.53 0.51 0.52 0.51
BCF (48_8) 0.40 0.40 0.42 0.41 0.42 0.41
BCF (24_U) 0.44 0.44 0.47 0.47 0.47 0.47
BCF (48_U) 0.44 0.44 0.49 0.48 0.49 0.48

Table 6. Coefficients of determinations (R2) for the amplitudes.

GPF GPG KNNF KNNG DNNF DNNG

BCF (24_4) 0.80 0.80 0.81 0.81 0.81 0.81
BCF(24_6) 0.79 0.79 0.80 0.80 0.80 0.80
BCF (48_4) 0.75 0.75 0.75 0.75 0.75 0.75
BCF (48_8) 0.75 0.75 0.75 0.75 0.75 0.75
BCF (24_U) 0.79 0.79 0.80 0.80 0.80 0.80
BCF (48_U) 0.77 0.77 0.77 0.77 0.77 0.77
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Fig. 2: Histograms of p-values.

3 Detecting Periods of 8 and 12 Hours
BioCycleForm and BioCycleGauss datasets can be generated for different
period ranges. In the main text, this range is 20-28, focusing on detecting
signals with periods of 24 hours. Since there have also been genes
discovered with periods of 12 and 8 hours, we generate BioCycleForm

and BioCycleGauss datasets with period ranges from 10-14 and from 7-9
to focus on the 12 and 8 hour periods, respectively, corresponding to the
second and third harmonics. The results for detecting periods of 12 hours
are shown in Ttables 7, 8, 9, and 10. The results for detecting periods of 8
hours are shown in tables 11, 12, 13, and 14.

The JTK and ARSER methods did not run on these datasets, so we
only compare to LS and MetaCycle. We also note that the meta predictor
MetaCycle, which uses JTK, ARSER, and LS, only chose to use LS for
these datasets.

The results show that BIO_CYCLE is the best choice in almost all
cases.
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Table 7. AUC performance on synthetic data. Periodic data has periods between
10 and 14.

LS MC DNNF DNNG

BCF (24_4) 0.89 0.89 0.87 0.90
BCF(24_6) 0.83 0.83 0.86 0.86
BCF (48_4) 0.94 0.94 0.96 0.95
BCF (48_8) 0.81 0.81 0.85 0.83
BCF (24_U) 0.86 0.86 0.87 0.87
BCF (48_U) 0.90 0.90 0.92 0.91

BCG (24_4) 0.93 0.93 0.92 0.94
BCG (24_6) 0.88 0.88 0.91 0.91
BCG (48_4) 0.95 0.95 0.96 0.97
BCG (48_8) 0.88 0.88 0.89 0.90
BCG (24_U) 0.91 0.91 0.92 0.92
BCG (48_U) 0.93 0.93 0.94 0.94

Table 8. Coefficients of determinations (R2) for the periods. Periodic data has
periods between 10 and 14.

LS MC DNNF DNNG

BCF (24_4) 0.50 0.50 0.57 0.57
BCF(24_6) 0.00 0.00 0.01 0.01
BCF (48_4) 0.79 0.79 0.85 0.84
BCF (48_8) 0.60 0.60 0.70 0.69
BCF (24_U) 0.29 0.29 0.47 0.45
BCF (48_U) 0.52 0.52 0.66 0.64

BCG (24_4) 0.57 0.57 0.66 0.68
BCG (24_6) 0.00 0.00 0.01 0.01
BCG (48_4) 0.79 0.79 0.86 0.87
BCG (48_8) 0.66 0.66 0.77 0.78
BCG (24_U) 0.43 0.43 0.57 0.60
BCG (48_U) 0.60 0.60 0.72 0.74

Table 9. Coefficients of determinations (R2) for the lags. Periodic data has
periods between 10 and 14.

LS MC DNNF DNNG

BCF (24_4) 0.13 0.24 0.39 0.39
BCF(24_6) 0.00 0.00
BCF (48_4) 0.00 0.00 0.47 0.44
BCF (48_8) 0.03 0.06 0.33 0.30
BCF (24_U) 0.13 0.30 0.34 0.32
BCF (48_U) 0.00 0.00 0.34 0.33

Table 10. Coefficients of determinations (R2) for the amplitudes. Periodic data
has periods between 10 and 14.

LS MC DNNF DNNG

BCF (24_4) 0.61 0.88 0.86 0.86
BCF(24_6) 0.59 0.58
BCF (48_4) 0.42 0.58 0.83 0.84
BCF (48_8) 0.57 0.56 0.77 0.77
BCF (24_U) 0.60 0.75 0.82 0.82
BCF (48_U) 0.44 0.63 0.81 0.81

Table 11. AUC performance on synthetic data. Periodic data has periods
between 7 and 9.

LS MC DNNF DNNG

BCF (24_4) 0.90 0.90 0.92 0.92
BCF(24_6) 0.61 0.61 0.80 0.79
BCF (48_4) 0.95 0.95 0.95 0.96
BCF (48_8) 0.59 0.59 0.85 0.81
BCF (24_U) 0.85 0.85 0.88 0.87
BCF (48_U) 0.90 0.90 0.92 0.92

BCG (24_4) 0.93 0.93 0.94 0.94
BCG (24_6) 0.69 0.69 0.81 0.85
BCG (48_4) 0.95 0.95 0.94 0.97
BCG (48_8) 0.66 0.66 0.66 0.73
BCG (24_U) 0.90 0.90 0.91 0.92
BCG (48_U) 0.92 0.92 0.93 0.94

Table 12. Coefficients of determinations (R2) for the periods. Periodic data has
periods between 7 and 9.

LS MC DNNF DNNG

BCF (24_4) 0.01 0.01 0.03 0.01
BCF(24_6) 0.36 0.36 0.44 0.42
BCF (48_4) 0.02 0.02 0.14 0.10
BCF (48_8) 0.00 0.00 0.02 0.01
BCF (24_U) 0.40 0.40 0.50 0.48
BCF (48_U) 0.50 0.50 0.65 0.63

BCG (24_4) 0.00 0.00 0.01 0.02
BCG (24_6) 0.46 0.46 0.54 0.56
BCG (48_4) 0.04 0.04 0.14 0.16
BCG (48_8) 0.01 0.01 0.02 0.04
BCG (24_U) 0.48 0.48 0.59 0.62
BCG (48_U) 0.59 0.59 0.74 0.76

Table 13. Coefficients of determinations (R2) for the lags. Periodic data has
periods between 7 and 9.

LS MC DNNF DNNG

BCF (24_4) 0.00 0.00 0.00 0.01
BCF(24_6) 0.45 0.44
BCF (48_4) 0.00 0.00 0.00 0.00
BCF (48_8) 0.00 0.00 0.00 0.00
BCF (24_U) 0.07 0.12 0.26 0.25
BCF (48_U) 0.01 0.02 0.17 0.17

Table 14. Coefficients of determinations (R2) for the amplitudes. Periodic data
has periods between 7 and 9.

LS MC DNNF DNNG

BCF (24_4) 0.52 0.49 0.69 0.66
BCF(24_6) 0.80 0.80
BCF (48_4) 0.42 0.10 0.57 0.59
BCF (48_8) 0.47 0.01 0.03 0.02
BCF (24_U) 0.59 0.61 0.74 0.74
BCF (48_U) 0.46 0.62 0.77 0.77
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Fig. 3: A visualization of an autoencoder with a cosine and sine unit as the
bottleneck.

4 Autoencoders and Manifold Learning
We also investigated an alternative unsupervised manifold learning
approach for automatically extracting the time associated with a high-
throughput transcriptomic measurement taken at a single timepoint. The
basic idea is to use a compressive autoencoder with a bottleneck consisting
of two special units (Figure 3). The autoencoder can be applied to the full
sets of measurements, or to a subset (e.g. the core clock genes). In trying
to reconstruct the input data in the final output layer, the autoencoder must
compress the data through these two units optimally in a way that hopefully
correspond to the cosine and sine of the phase angle, up to a circular shift. If
the activations of these two units are S1 and S2, then their two outputs are

given by: S1/
√
S2
1 + S2

2 and S2/
√
S2
1 + S2

2 . The autoencoder can be
trained using large amounts of unlabeled data, for instance taken in GEO.
While this approach generates interesting results, the supervised approach
used to train BIO_CLOCK so far yields better results.


