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1 METHOD
1.1 Learning to rank in DrugE-Rank
Learning to rank (LTR) (Liu, 2009; LI, 2011) refers to a set of machine learning models for ranking objects. It has been widely
used in document retrieval, web searching, collaborative filtering, expert finding, bioinformatics and many other applications. For
example, with respect to users queries, LTR model has been employed to rank more relevant web pages higher. These methods
can be divided into 3 types: (a) point-wise approaches, such as McRank (Li et al., 2007) and Prank (Crammer et al., 2001), where
the ranking problem is approximately by a classical classification or ordinal regression problem; In this case, given a single query-
document pair, the LTR model tries to predict its score. (b) pair-wise approaches, which transforms the ranking problem to a
pairwise classification problem, such as LambdaMART (Burges, 2010) and RankingSVM (Herbrich et al., 1999); Given a pairs of
documents, the LTR model tries to tell which document is better with respect to a specific query. (c) list-wise approaches, which
takes ranked lists as instances in both training and prediction, such as ListNet (Cao et al., 2007) and ListMLE (Xia et al., 2008). In
this case, although the group structure of ranking is fully utilized in learning, the optimization of evaluation measure is difficult and
approximations or bounds have to be used.

We develop DrugE-Rank to address the problem of predicting drug-target interactions for new drugs or new targets, which is
especially challenging (Ding et al., 2014). Identifying drug-target interactions can be considered as a multi-label classification
problem, in the sense that drugs can be interacted (labeled) by multiple targets. The basic idea of DrugE-Rank is to solve the
identification of drug-target interactions by learning to rank, where both feature-based and similarity-based methods are effectively
integrated to improve the prediction performance. Taking the problem of predicting drug-target interactions for new targets as an
example, we can view the targets as queries, drugs as documents and the problem then becomes to rank the most promising drugs
with respect to the given targets. That is to say, to identify the interacting drugs of a given target is analogous to find relevant web
pages with respect to a given query, which can be nicely solved by LTR.

LambdaMART (Burges, 2010) has been successfully applied to solve a number of real-world problems, such as Yahoo Learning
to Rank competition (Chapelle and Chang, 2011) and BioASQ challenge (Liu et al., 2015), and so we also utilize it for training
LTR model in DrugE-Rank. In web searching, the power of LTR comes from the features used to characterize the relevance of web
pages. Similarly, DrugE-Rank considers three types of important features, target features, drug features and pair features generated
from component methods (see details in the Section 3.4 of the main text). These features are concatenated into a 189-dimension
vector. Here we illustrate the workflow of DrugE-Rank using the prediction of interacting drugs of new targets. Given a new target
tnew, each candidate drug then corresponds to a 189-dimension vector, and the feature vectors of candidate drugs are given to
LambdaMart as input. Finally, a ranking list of drugs is returned as the prediction result. Note that when training the ranking model
(function), we do not use all possible drug target pairs, and instead for each target, we use only top K drugs highly predicted to
be interacting with the target by each component method. The drug-target interaction is highly sparse, in which false positives can
occur easily. This manner of using only top K drugs is highly effective to avoid this type of false positives and eventually reduces
the computational cost in training LTR. In fact, similar approaches are used to train LTR models in web searching since there are
huge number of web pages.

We made use of RankLib1 for the implementation of LambdaMART. To train the LambdaMART, the number of trees and the
number of leaves for each tree were selected from {8,16,32,64,128} and {4,8,16}, respectively.

1.2 Component methods
Many computational methods have been proposed to tackle the problem of drug target interaction prediction (Ding et al., 2014). The
success of DrugE-Rank relies on the effective and efficient integration of the component methods. Considering this, the component
method should be developed by using different principles and achieve reasonable and diverse results. In addition, the computational
cost should be low. Finally, we select six well-known, cutting-edge similarity-based methods as component methods: k-Nearest
Neighbor (k-NN), Bipartite Local Model with support vector classification (BLM-svc) (Bleakley and Yamanishi, 2009), Bipar-
tite Local Model with support vector regression (BLM-svr) (Bleakley and Yamanishi, 2009), Laplacian regularized least squares
(LapRLS) (Xia et al., 2010), Network-based Laplacian regularized least squares (NetLapRLS) (Xia et al., 2010), Weighted Nearest
Neighbor based Gaussian Interaction Profile classifier (WNN-GIP) (van Laarhoven et al., 2011; van Laarhoven and Marchiori,
2013). In DrugE-Rank, these component methods are used to learn pair features for drug-target pairs. Each method generates a
feature for DrugE-Rank.

1 http://sourceforge.net/p/lemur/wiki/RankLib/
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Table 1. AUC for 10 × 5-fold cross-validation over Data-1 (p-values
of paired t-test against DrugE-Rank with all features)

Method drug-based interactions target-based interactions

k-NN 0.6974 (5.07× 10−43) 0.7659 (3.77× 10−18)
BLM-svc 0.7620 (6.29× 10−37) 0.8381 (1.58× 10−15)

BLM-svr 0.8109 (2.35× 10−32) 0.8504 (7.39× 10−09)

LapRLS 0.7826 (7.28× 10−36) 0.8209 (9.04× 10−11)
NetLapRLS 0.7693 (3.19× 10−31) 0.8011 (3.51× 10−11)

WNN-GIP 0.7512 (8.54× 10−33) 0.8149 (1.92× 10−13)

RF 0.7185 (2.57× 10−37) 0.7811 (5.79× 10−17)

GBDT 0.7013 (1.15× 10−37) 0.7972 (9.38× 10−14)

DrugE-Rank
0.7725 (9.35× 10−23) 0.8446 (5.50× 10−08)

DFV and TFV)
DrugE-Rank

0.8597 (9.17× 10−04) 0.9021 (1.37× 10−03)
(PFV only)
DrugE-Rank

0.8775 0.9142
(all features)

Table 2. AUC for independent testing data (FDA appro-
ved, new drugs and Experimental drugs)

Methods
Data-2 Data-3 Data-5

new drugs new targets new drugs

k-NN 0.5534 0.6493 0.5469

BLM-svc 0.6073 0.6932 0.5635

BLM-svr 0.6395 0.7392 0.5820
LapRLS 0.6016 0.7128 0.5527

NetLapRLS 0.5958 0.6912 0.5619

WNN-GIP 0.6119 0.6709 0.5677

RF 0.5762 0.6021 0.5514
GBDT 0.6074 0.6370 0.5697

DrugE-Rank
0.6814 0.6877 0.5731

(DFV and TFV)
DrugE-Rank 0.6880 0.7704 0.6157

(PFV only) (0.0254) (0.0289) (0.0074)

DrugE-Rank 0.7011 0.7937 0.6319
(all features) (0.0317) (0.0274) (0.0188)

2 EXPERIMENT RESULTS
2.1 AUC for cross-validation and independent testing data prediction

Table 1 shows the AUC performance of different methods by 10 five-fold cross validation over Data-1. Table 2 presents the AUC
results of these models over Data-2, Data-3 and Data-5. These results are consistent with those in AUPR, which again demonstrates
the performance advantage of DrugE-Rank.

2.2 Comparison with Shi and KBMF2K
We compared the performance of DrugE-Rank with two sate-of-the-art methods, Shi and KBMF2K. The default parameters in their
original paper were used to run these methods. The 10 five-fold cross validation results on Data-1 in terms of AUPR and AUC
are shown in Table 3 and 4, respectively. The performance of random prediction is also given as a baseline. Paired t-test was used
to evaluate the statistical significance of result. From these results, we can see that DrugE-Rank significantly outperformed both
Shi and KBMF2K. For example, DrugE-Rank achieved an AUPR of 0.4917, which is followed by Shi (0.3833) and KBMF2K
(0.3698). Additionally, DrugE-Rank achieved an AUPR of 0.8775, which was followed by Shi (0.8067) and KBMF2K (0.7644).
Furthermore, we compared their performance by using the independent test data of Data-2, Data-3 and Data-5, which is presented
in Table 5 (AUPR) and 6 (AUC). These results also demonstrated the advantageous performance of DrugE-Rank. For example,
DrugE-Rank achieved the highest AUC of 0.7937 on Data-3, which was followed by Shi (0.7104) and KBMF2K (0.6926).
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Table 3. AUPR for 10 × 5-fold cross-validation over Data-1 com-
paring with state-of-the-art methods (p-values of paired t-test against
DrugE-Rank with all features)

Method drug-based interactions target-based interactions

Random 0.0036 (7.79× 10−53) 0.0182 (7.33× 10−45)

KBMF2K 0.3698 (4.63× 10−31) 0.5039 (5.08× 10−10)

Shi 0.3833 (4.57× 10−28) 0.5497 (1.21× 10−03)
DrugE-Rank

0.4917 0.5906
(all features)

Table 4. AUC for 10 × 5-fold cross-validation over Data-1 compa-
ring with state-of-the-art methods (p-values of paired t-test against
DrugE-Rank with all features)

Method drug-based interactions target-based interactions

Random 0.5007 (2.97× 10−72) 0.5116 (9.23× 10−53)
KBMF2K 0.7644 (7.54× 10−43) 0.8057 (1.94× 10−16)

Shi 0.8067 (8.01× 10−29) 0.8332 (7.43× 10−09)

DrugE-Rank
0.8775 0.9142

(all features)

Table 5. AUPR for independent testing data (FDA approved, new
drugs and Experimental drugs) comparing with state-of-the-art
methods

Methods
Data-2 Data-3 Data-5

new drugs new targets new drugs

Random
0.0021 0.0010 0.0009

(0.0002) (8.72× 10−05) (7.75× 10−05)
KBMF2K 0.1220 0.1561 0.0310

Shi 0.1241 0.1614 0.0371

DrugE-Rank 0.2031 0.2831 0.0997
(all features) (0.0127) (0.0078) (0.0205)

Table 6. AUC for independent testing data (FDA
approved, new drugs and Experimental drugs) compa-
ring with state-of-the-art methods

Methods
Data-2 Data-3 Data-5

new drugs new targets new drugs

Random
0.4929 0.4902 0.5007
(0.0291) (0.0189) (0.0067)

KBMF2K 0.5891 0.6926 0.5676

Shi 0.6174 0.7104 0.5660
DrugE-Rank 0.7011 0.7937 0.6319

(all features) (0.0317) (0.0274) (0.0188)

2.3 Complementarity between component methods
The power of DrugE-Rank comes from the effective integration of different component methods, and high complementarity among
different component methods will improve the performance of DrugE-Rank more. For the new target prediction on Data-3, Data-
1 is randomly divided into five parts of an equal size, four among five being used to train the component methods. We check
the complementarity of different component methods on the fifth part of Data-1, which is used to train the LTR model to make
prediction on Data-3. Ideally, each component method can predict a different set of true drugs at top positions. We selected top
200 drugs predicted by each method, and plotted the ranks of true interacting drugs by each method for a pair of two component
methods, such as BLM-svc vs. BLM-svr. Fig. 1 shows the results by eleven different pairs of component methods (the other four
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Fig. 1: Complementarity between component methods. The 200 drugs correctly predicted for a new given target by each method
is compared with that of another. The comparison is between (a) BLM-svr vs. BLM-svc, (b) BLM-svr vs. LapRLS, (c) BLM-svc
vs. LapRLS, (d) BLM-svc vs. NetLapRLS, (e) BLM-svc vs. WNN-GIP, (f) BLM-svc vs. k-NN, (g) LapRLS vs. NetLapRLS, (h)
LapRLS vs. WNN-GIP, (i) LapRLS vs. k-NN, (j) NetLapRLS vs. k-NN and (k) WNN-GIP vs. k-NN.

pairs are shown in the main text). So each point in the figure is a true interacting drug, ranked higher than 200 in at least one of the
two competitive methods. The red and blue points show those ranked lower than 200 by only one method, while the black points
are those ranked lower than 200 by both methods. The points close to the diagonal line are the drugs for which two competing
methods perform similarly, while the points far from the diagonal line are the drugs for which one method performs much better
than the other method. Fig. 1 shows that no methods can beat other methods clearly. All these results confirm the complementarity
of different component methods, which must bring diverse effects to allow DrugE-Rank to improve the predictive performance by
their ensemble.

2.4 New prediction analysis
For drug ‘Vecuronium’ (DrugBank-ID: DB01338) in drug-based cross-validation experiments, target ‘Muscarinic acetylcholine
receptor M3’ (UniProt-ID: P20309) was predicted by all 10 models. By checking DrugBank, we found that this target intera-
cts with Pancuronium (DrugBank-ID: DB01337), which are the most structural similar drugs to Vecuronium. Both Vecuronium
and Pancuronium are Androstanols, and can be used as non-depolarizing neuromuscular blocking agent. All these suggest that
‘Muscarinic acetylcholine receptor M3’ is a promising candidate target for Vecuronium.

For protein ‘5-hydroxytryptamine receptor 4’ (UniProt-ID: Q13639) in target-based cross-validation experiments, drug Loxapine
(DrugBank-ID: DB00408) was predicted by 7 out of 10 models. In fact, ‘5-hydroxytryptamine receptor 4’ is in the same family
(G-protein coupled receptor 1) with ‘5-hydroxytryptamine receptor 6’ (UniProt-ID: P50406), ‘5-hydroxytryptamine receptor 7’
(UniProt-ID: P34969), ‘5-hydroxytryptamine receptor 2A’ (UniProt-ID: P28223), ‘5-hydroxytryptamine receptor 2C’ (UniProt-ID:
P28335), and ‘5-hydroxytryptamine receptor 1A’ (UniProt-ID: P08908). All these five known proteins are the targets of Loxapine,
which suggests that ‘5-hydroxytryptamine receptor 4’ is a promising candidate target for Loxapine.
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Table 7. New interactions predicted by using target-based 10 × 5-fold cross validation results (models) on Data-1. Predicted (top
10) interactions were sorted by how many times they are predicted out of ten times (shown by #times), and the last column shows
YES or NO, indicating if the interaction was found in the latest DrugBank database or not.

UniProt ID DrugBank ID
#times Found?

(Target Name) (Drug Name)

Q8N1C3 (Gamma-aminobutyric acid receptor subunit gamma-1) DB00898 (Ethanol) 8 YES
Q99928 (Gamma-aminobutyric acid receptor subunit gamma-3) DB00898 (Ethanol) 8 YES
P78334 (Gamma-aminobutyric acid receptor subunit epsilon) DB00898 (Ethanol) 8 YES
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Q9UM07 (Protein-arginine deiminase type-4) DB00759 (Tetracycline) 7 YES
P19320 (Vascular cell adhesion protein 1) DB00898 (Ethanol) 7 YES
P29475 (Nitric oxide synthase, brain) DB01110 (Miconazole) 6 NO
Q12809 (Potassium voltage-gated channel subfamily H member 2) DB00537 (Ciprofloxacin) 6 YES
P00374 (Dihydrofolate reductase) DB00798 (Gentamicin) 6 YES
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